The Generating Degree of \mathbb{C}_{p}

Victor Alexandru, Nicolae Popescu and Alexandru Zaharescu

Abstract. The generating degree $\operatorname{gdeg}(A)$ of a topological commutative ring A with char $A=0$ is the cardinality of the smallest subset M of A for which the subring $\mathbb{Z}[M]$ is dense in A. For a prime number p, \mathbb{C}_{p} denotes the topological completion of an algebraic closure of the field \mathbb{O}_{p} of p-adic numbers. We prove that $\operatorname{gdeg}\left(\mathbb{C}_{p}\right)=1$, i.e., there exists t in \mathbb{C}_{p} such that $\mathbb{Z}[t]$ is dense in \mathbb{C}_{p}. We also compute $\operatorname{gdeg}(A(U))$ where $A(U)$ is the ring of rigid analytic functions defined on a ball U in \mathbb{C}_{p}. If U is a closed ball then $\operatorname{gdeg}(A(U))=2$ while if U is an open ball then $\operatorname{gdeg}(A(U))$ is infinite. We show more generally that $\operatorname{gdeg}(A(U))$ is finite for any affinoid U in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ and $\operatorname{gdeg}(A(U))$ is infinite for any wide open subset U of $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$.

1 Introduction

Let p be a prime number, $\left(\mathbb{O}_{p}\right.$ the field of p-adic numbers, $\overline{\mathbb{O}}_{p}$ a fixed algebraic closure of $\left(\mathbb{O}_{p}\right.$ and \mathbb{C}_{p} the completion of $(\overline{\mathbb{O}})_{p}$ with respect to the unique extension of the p-adic valuation v on $\left(\mathbb{O}_{p}\right.$.

Some insight into the structure of closed subfields of \mathbb{C}_{p} is provided by the Galois theory in \mathbb{C}_{p} as developed by Tate [T], Sen [S] and $A x[A]$. In particular, there is a canonical one-to-one correspondence between the closed subfields E of \mathbb{C}_{p} and the subfields $\left(\mathbb{O}_{p} \subseteq L \subseteq \overline{\mathbb{O}}_{p}\right.$ via the maps (see [I-Z1, Th. 1]):

$$
\begin{equation*}
E \mapsto E \cap \overline{\mathbb{O}}_{p}=L \quad \text { and } \quad L \mapsto \tilde{L}=E \tag{*}
\end{equation*}
$$

where \tilde{L} denotes the topological closure of L in \mathbb{C}_{p}. These maps pave the way for transfering information from subfields of $\left(\overline{\mathbb{O}}_{p}\right.$ to closed subfields of \mathbb{C}_{p}.

In practice, when working in such a field L the situation is much improved if L / \mathbb{O}_{p} is finite. For one thing, the elements of L can be expressed in terms of a primitive element α of L, which moreover can be chosen in convenient ways, e.g. like being a uniformizer. If however L / \mathbb{O}_{p} is not finite then no such primitive element exists and in this case one needs to adjoin to \mathbb{O}_{p} infinitely many elements $\alpha_{1}, \alpha_{2}, \ldots$ from L to control the entire field L and so to produce a dense subfield in E.

With these in mind, Iovita and Zaharescu [I-Z1] investigated the possibility of obtaining something dense in E by adjoining fewer elements from E. They showed that it is enough to adjoin one element: there exists t in E such that $\mathbb{O}_{p}(t)$ is dense in E.

In [A-P-Z] Alexandru, Popescu and Zaharescu took this matter one step further, by showing how one can actually express the elements of E in terms of this t. It is proven that:

[^0](i) For any element t in \mathbb{C}_{p} the ring $\left(\mathbb{O}_{p}[t]\right.$ and the field $\left(\mathbb{O}_{p}(t)\right.$ have the same topological closure. Thus for any closed subfield E of \mathbb{C}_{p} there exists t such that $\mathbb{O}_{p}[t]$ is dense in E.
(ii) The theory of saturated distinguished chains for elements in $\left(\overline{\mathbb{O}}_{p}\right.$ developed in [P-Z] naturally extends from $\left(\bar{O}_{p}\right.$ to \mathbb{C}_{p}. This provides us for any $t \in \mathbb{C}_{p}$ with distinguished sequences of polynomials $\left\{f_{n}(X)\right\}_{n}$ together with an infinite set of (metric) invariants for t.
(iii) Given any t such that $\left(\mathbb{O}_{p}[t]\right.$ is dense in E and any distinguished sequence of polynomials associated to t, there is a canonical way to obtain from it a sequence $\left\{M_{m}(t)\right\}_{m \geq 0}$ of polynomials in t which as elements in $\mathbb{O}_{p}[t]$ form an integral basis of E over \mathbb{O}_{p}. Thus:
(1) Any $z \in E$ can be expressed in a unique way in the form: $z=$ $\sum_{m \geq 0} c_{m} M_{m}(t)$ where the c_{m} 's are in $\left(\mathbb{O}_{p}\right.$ and $c_{m} \rightarrow 0$ as $m \rightarrow \infty$, and
(2) The above z belongs to the ring of integers O_{E} if and only if all the coefficients c_{m} are in \mathbb{Z}_{p}.

Some of these results were generalized in [I-Z3] and were applied to the ring $B_{d R}^{+}$ defined by J.-M. Fontaine in [Fo]. In particular it is proved that there is an element T in $B_{d R}^{+}$such that $\mathbb{O}_{p}[T]$ is dense in $B_{d R}^{+}$. Here one has a canonical projection of $B_{d R}^{+}$on \mathbb{C}_{p} and the image of the above T in \mathbb{C}_{p} will be an element t for which $\mathbb{O}_{p}[t]$ is dense in \mathbb{C}_{p}. It should be stressed that not all the above results for \mathbb{C}_{p} could be lifted to $B_{d R}^{+}$, one of the main obstructions here being the failure of the Galois correspondence in $B_{d R}^{+}$(for more details, see [I-Z2]).

The concept of generating degree was introduced in [I-Z3] as a convenient way to formulate various results from [I-Z2] and [I-Z3] (see Section 2 below). These generating degrees are important on their own. Being unchanged under isomorphisms of topological rings, they provide us with some natural invariants of these rings.

For two commutative topological rings $A \subset B$, a subset $M \subset B$ is said to be a generating set of B over A if the ring $A[M]$ is dense in B. The generating degree of B / A is defined to be

$$
\operatorname{gdeg}(B / A):=\min \{|M|, \text { where } M \text { is a generating set of } B / A\}
$$

where $|M|$ denotes the number of elements of M if M is finite and ∞ if M is not finite.

The generating degree of B over \mathbb{Z} if char $B=0$, respectively over \mathbb{F}_{p} if char $B=p$, will be denoted by $\operatorname{gdeg}(B)$ and will be called the absolute generating degree of B.

Some general properties of generating degrees are presented in Section 2. Our objective is to compute $\operatorname{gdeg}\left(\mathbb{C}_{p}\right)$. This is achieved in Section 3 following an investigation on the structure of closed subrings of \mathbb{C}_{p}. We show that $\operatorname{gdeg}\left(\mathbb{C}_{p}\right)=1$ and that the same holds true for any of its closed subfields:

Theorem 1 For any closed subfield E of \mathbb{C}_{p} there exists t in E such that $\mathbb{Z}[t]$ is dense in E.

By contrast we note that $\operatorname{gdeg}\left(O_{\mathbb{C}_{p}}\right)$ is infinite, where $O_{\mathbb{C}_{p}}$ denotes the ring of integers in \mathbb{C}_{p}.

In the last section we consider rings $A(U)$ of rigid analytic functions defined on various open sets U of \mathbb{C}_{p} (for the general theory of rigid analytic functions see [F-P]). We found that if U is an affinoid then $\operatorname{gdeg}(A(U))$ is finite. The situation changes dramatically if we replace U by a "wide open set" (in the terminology of Coleman [Co]). In this case $\operatorname{gdeg}(A(U))$ is infinite.

For example, if $a \in \mathbb{C}_{p}$ and $0<r \in\left\{|z| ; z \in \mathbb{C}_{p}\right\}$ then the "closed ball" $B[a, r]:=$ $\left\{z \in \mathbb{C}_{p} ;|z-a| \leq r\right\}$ is an affinoid while the "open ball" $B(a, r):=\left\{z \in \mathbb{C}_{p} ;|z-a|<\right.$ $r\}$ is a wide open set.

In the following by a closed ball in $\mathbb{P}^{11}\left(\mathbb{C}_{p}\right)$ we mean either a set of the form $B[a, r]$ as above or a set of the form $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash B(a, r)$. Similarly subsets of the form $B(a, r)$ or $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash B[a, r]$ will be called open balls. An affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ is a subset U of the form $U=\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash \bigcup_{j=1}^{g} B_{j}$ where each B_{j} is an open ball in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$. A subset U as above, $U=\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash \bigcup_{j=1}^{g} B_{j}$ where the B_{j} 's are balls and at least one of them is a closed ball is called a wide open set in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$. With these notations and terminology we have the following:

Theorem 2

(i) If U is a wide open set in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ then $\operatorname{gdeg}(A(U))$ is infinite.
(ii) Let $U=\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash \bigcup_{j=1}^{g} B_{j}$, where the B_{j} 's are distinct, be an affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$. Then $\operatorname{gdeg}(A(U)) \leq g+1$.
(iii) If U is a closed ball in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ then $\operatorname{gdeg}(A(U))=2$.

2 Generating Degrees

Recall the definitions from the Introduction:
For two commutative topological rings $A \subset B$, a subset $M \subset B$ is said to be a generating set of B over A if the ring $A[M]$ is dense in B. The generating degree of B / A, $\operatorname{gdeg}(B / A) \in \mathbf{N} \cup \infty$ is defined to be

$$
\operatorname{gdeg}(B / A):=\min \{|M|, \text { where } M \text { is a generating set of } B / A\}
$$

where $|M|$ denotes the number of elements of M if M is finite and ∞ if M is not finite.

Thus A is dense in B if and only if $\operatorname{gdeg}(B / A)=0$.
Define the absolute generating degree $\operatorname{gdeg}(B)$ of B by $\operatorname{gdeg}(B)=\operatorname{gdeg}(B / \mathbb{Z})$ if char $B=0$, respectively $\operatorname{gdeg}(B)=\operatorname{gdeg}\left(B / \mathbb{F}_{p}\right)$ if char $B=p$.

Some very simple properties of generating degrees are summarized in the following

Proposition 3

a) $\operatorname{gdeg}(B / A)$ is invariant with respect to isomorphisms of topological rings.
b) If $A \subset B \subset C$ then $\operatorname{gdeg}(C / A) \geq \operatorname{gdeg}(C / B)$.
c) If $A \subset B \subset C$ then $\operatorname{gdeg}(C / A) \leq \operatorname{gdeg}(B / A)+\operatorname{gdeg}(C / B)$.
d) If $A \subset B$ and $\psi: B \rightarrow C$ is a continuous morphism of rings then for any generating set M of B over $A, \psi(M)$ will be a generating set of $\psi(B)$ over $\psi(A)$. In particular: $\operatorname{gdeg}(\psi(B) / \psi(A)) \leq \operatorname{gdeg}(B / A)$ and $\operatorname{gdeg}(\psi(B)) \leq \operatorname{gdeg}(B)$.
e) If $A \subset B$ is a finite separable extension of fields then we have $\operatorname{gdeg}(B / A) \leq 1$.

Remark It is not true that for any $A \subset B \subset C$ one has $\operatorname{gdeg}(C / A) \geq \operatorname{gdeg}(B / A)$. For example $\operatorname{gdeg}\left(\overline{(\mathbb{O}}_{p} /\left(\mathbb{O}_{p}\right)=\infty\right.$ while $\operatorname{gdeg}\left(\mathbb{C}_{p} / \mathbb{O}_{p}\right)=1$.

There is a connection between generating degrees and continuous derivations of B over A. Let $A \subset B$ be two topological commutative rings. A derivation of B over A is a map $D: B \rightarrow B$ which satisfies the usual rules:

$$
D(u+v)=D(u)+D(v), \quad D(u v)=u D(v)+v D(u)
$$

and whose restriction to A is trivial. Assume at this point that B is an integral domain and denote by F and E the field of fractions of A and B respectively. Then any such D has a unique extension to a derivation of E over F, given by:

$$
D\left(\frac{u}{v}\right)=\frac{v D(u)-u D(v)}{v^{2}}
$$

and the set $D(B / A)$ of all such derivations becomes a vector space over E. Let us denote by $D_{\text {cont }}(B / A)$ the subspace of $D(B / A)$ spanned by derivations $D: B \rightarrow B$ which are continuous with respect to the topology of B. With these notations, we have the following:

Proposition $4 \operatorname{dim}_{E} D_{\text {cont }}(B / A) \leq \operatorname{gdeg}(B / A)$.
There is also a connection between the generating degrees and chains of open prime ideals of B. Recall that the height $h(\mathcal{P})$ of a prime ideal \mathcal{P} of a commutative ring B is defined to be the largest integer n for which there is a chain of prime ideals in B :

$$
\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \cdots \subset \mathcal{P}_{n}=\mathcal{P}
$$

Then one defines the Krull dimension of B to be

$$
\operatorname{dim} B:=\sup \{h(\mathcal{P})\}
$$

where \mathcal{P} runs over the set of prime ideals in B.
If now B is a topological commutative ring we can define its topological Krull dimension $\operatorname{dim}_{\top} B$ by counting only open prime ideals, as follows. Define the topological height $h_{\top}(\mathcal{P})$ of an open prime ideal \mathcal{P} of B to be the largest integer n for which there is a chain

$$
\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \cdots \subset \mathcal{P}_{n}=\mathcal{P}
$$

of open prime ideals of B. Then set:

$$
\operatorname{dim}_{\top} B=\sup \left\{h_{\top}(\mathcal{P})\right\}
$$

where \mathcal{P} runs over the set of open prime ideals in B.
Note that $\operatorname{dim}_{\top} B \leq \operatorname{dim} B$ and if B is endowed with the discrete topology then $\operatorname{dim}_{\top} B=\operatorname{dim} B$. With the above notations we also have the following:

Proposition 5 For any topological commutative ring B one has:

$$
\operatorname{dim}_{\top}(B) \leq \operatorname{gdeg} B
$$

We skip the details of the proofs of the above results and mention only that:

1) In the proof of Proposition 4 the point is that if M is a generating set of B / A then any continuous derivation D of B is uniquely determined by its restriction to M, and
2) For the proof of Proposition 5 intersect an arbitrary chain of open prime ideals

$$
\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \cdots \subset \mathcal{P}_{n}
$$

with $\mathbb{Z}[M]$ where M is an arbitrary generating set of B to get a chain $\mathcal{J}_{0} \subseteq \mathcal{J}_{1} \subseteq$ $\cdots \subseteq \mathcal{J}_{n}$ of open prime ideals in $\mathbb{Z}[M]$. Now the point is that the sets $\mathcal{P}_{j} \backslash \mathcal{P}_{j-1}$ being open and $\mathbb{Z}[M]$ being dense in B there will be points from $\mathbb{Z}[M]$ in $\mathcal{P}_{j}-\mathcal{P}_{j-1}$ thus $\mathcal{J}_{0} \subset \mathcal{J}_{1} \subset \cdots \subset \mathcal{J}_{n}$, so n is bounded by $\operatorname{dim}_{\top} \mathbb{Z}[M]$ which is bounded by $|M|$.

Now let us see some examples of generating degrees in \mathbb{C}_{p} and in $B_{d R}^{+}$. Galois theory in \mathbb{C}_{p} shows that for any algebraic extension L of Q_{p} we have $\left(\mathbb{C}_{p}\right)^{G_{L}}=\tilde{L}$, where $G_{L}=\operatorname{Gal}\left(\overline{\mathbb{O}}_{p} / L\right)=\operatorname{Gal}_{\text {cont }}\left(\mathbb{C}_{p} / L\right)$. In other words:

$$
\operatorname{gdeg}\left(\left(\mathbb{C}_{p}\right)^{G_{L}} / L\right)=0
$$

As was mentioned in the introduction the Galois correspondence fails in $B_{d R}^{+}$. Thus in general an algebraic extension L is not dense in $\left(B_{d R}^{+}\right)^{G_{L}}$, although $\left(\overline{\mathbb{O}}_{p}\right.$ itselt is dense in $B_{d R}^{+}$as was proved in [F-C]. We do have however the following result:

If $K:=\mathbb{O}_{p}^{u r} \subseteq L \subseteq\left(\bar{O}_{p}\right.$ and L is not a deeply ramified extension of K (in the sense of Coates-Greenberg [C-G]) then

$$
\operatorname{gdeg}\left(\left(B_{d R}^{+}\right)^{G_{L}} / L\right)=0
$$

It is proved in [I-Z3] that for any algebraic extension L of K one has:

$$
\operatorname{gdeg}\left(\left(B_{d R}^{+}\right)^{G_{L}} / L\right) \leq 1
$$

A characterization of deeply ramified extensions L of K satisfying the equation $\operatorname{gdeg}\left(\left(B_{d R}^{+}\right)^{G_{L}} / L\right)=0$ is obtained in [I-Z2]. Concerning generating degrees over $\left(\mathbb{O}_{p}\right.$ we have the following result:

Let $\mathbb{O}_{p} \subset L \subseteq \overline{\mathbb{O}}_{p}$ and let E be the topological closure of L in \mathbb{C}_{p} (respectively in $B_{d R}^{+}$). Then (in both cases) we have:

$$
\operatorname{gdeg}\left(E / \mathbb{O}_{p}\right)=1
$$

Note that, by contrast, one has:

$$
\operatorname{gdeg}\left(O_{\mathbb{C}_{p}} / \mathbb{Z}_{p}\right)=\infty
$$

Indeed, for any finite subset M of \mathbb{C}_{p} the image of $\mathbb{Z}_{p}[M]$ in the residue field $\overline{\mathbb{F}}_{p}$ of $O_{\mathbb{C}_{p}}$ will be a finite field. Then any element of $O_{\mathbb{C}_{p}}$ whose image in $\overline{\mathbb{F}}_{p}$ lies outside this finite field will be at distance 1 from $\mathbb{Z}_{p}[M]$, so $\mathbb{Z}_{p}[M]$ is not dense in $O_{\mathbb{C}_{p}}$ and M is not a generating set of $O_{\mathbb{C}_{p}} / \mathbb{Z}_{p}$.

Let now L be a finite extension of $\left(\mathbb{O}_{p}, L \neq\left(\mathbb{O}_{p}\right.\right.$. It is well known that L has a maximal unramified subextension, say F, that $O_{F}=\mathbb{Z}_{p}[u]$ and $O_{L}=O_{F}[\pi]$ where u is a unit in O_{F} whose image in $\overline{\mathbb{F}}_{p}$ generates the residue field of L and π is a uniformiser of O_{L}. Hence $\{u, \pi\}$ is a generating set of O_{L} and $\operatorname{gdeg}\left(O_{L}\right) \leq 2$. It is proved in [Se, Ch. III, Proposition 12] that there is an α in O_{L} such that $O_{L}=\mathbb{Z}_{p}[\alpha]$. Thus in fact one has:

$$
\operatorname{gdeg}\left(O_{L} / \mathbb{Z}_{p}\right)=1
$$

3 Closed Subrings of \mathbb{C}_{p}

By a closed subring of \mathbb{C}_{p} we mean a subring of \mathbb{C}_{p} which is closed with respect to the topology induced from \mathbb{C}_{p}.

Lemma 6 Let E be a closed subring of C_{p}. Then either $E \subseteq O_{\mathbb{C}_{p}}$ or $\left(\mathbb{O}_{p} \subseteq E\right.$.
Proof Assume E is not contained in $O_{C_{p}}$. Choose $t \in E$ with $v(t)<0$. Raise t to an integer power $r \geq 1$ such that $v\left(t^{r}\right)$ is an integer $-m$. Then $t^{r}=p^{-m} u$, where $m>0$ and u is a unit in $O_{\mathbb{C}_{p}}$. Now raise u to a power $k \geq 1$ such that u^{k} is a principal unit. Hence $u^{k}=1-x$ with $v(x)>0$. Let $y=\frac{1}{1-x}=1+x+\cdots+x^{n}+\cdots$. Since $u=p^{m} t^{r} \in E$ it follows that $x=1-u^{k} \in E$ and so $y \in E$. Therefore $\frac{1}{p}=t^{k r} p^{(m k-1)} y \in E$ and then clearly $\left(\mathbb{O}_{p} \subseteq E\right.$.

Theorem 7 Let E be a closed subring of \mathbb{C}_{p}, not contained in $O_{\mathbb{C}_{p}}$. Then E is a field.
We note the following consequence of Theorem 7:
Corollary 8 For any $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{C}_{p}$ the ring $\left(\mathbb{O}_{p}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right.$ and the field $\mathbb{O}_{p}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ have the same topological closure.

Indeed, the closure of $\left(\mathbb{O}_{p}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right.$ is a ring E which is not contained in $O_{\mathbb{C}_{p}}$ thus by Theorem 7 it follows that E is a field so it contains $\left(\mathbb{O}_{p}\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right.$.

Proof of Theorem 7 Let E be a closed subring of \mathbb{C}_{p} not contained in $O_{\mathbb{C}_{p}}$. From Lemma 6 we know that $\mathbb{O}_{p} \subseteq E$. Now let $L=E \cap\left(\bar{O}_{p}\right.$. Then L is a subring of $\overline{\mathbb{O}}_{p}$ which contains \mathbb{O}_{p}. It follows immediately that L is a subfield of $\left(\overline{\mathbb{O}}_{p}\right.$. Then \tilde{L} is a complete subfield of \mathbb{C}_{p}. It remains to show that $\tilde{L}=E$. The inclusion $\tilde{L} \subseteq E$ is clear. Assume now that there is an element $z \in E$ such that $z \notin \tilde{L}$. Since $\mathbb{O}_{p}[z] \subseteq E$ and E is closed it follows that the topological closure of $\mathbb{O}_{p}[z]$, call it H, is also contained in E. From [A-P-Z] we know that H is a field. Moreover from the one-to-one correspondence ($*$) we know that we can intersect H with $\left(\bar{O}_{p}\right.$ and then we can recover it by completion: $H \cap \overline{\mathbb{O}}_{p}=F$ say, $\tilde{F}=H$.

But F is contained in $E \cap \overline{\mathbb{O}}_{p}=L$, thus $\tilde{F} \subseteq \tilde{L}$. We obtained a contradiction since z belongs to H but not to \tilde{L}, and this completes the proof of Theorem 7 .

Proof of Theorem 1 Let E be a closed subfield of \mathbb{C}_{p}. Choose t as in [A-P-Z] such that $\left(\mathbb{O}_{p}[t]\right.$ is dense in E. Now divide t by a large power of p to force it out of $O_{\mathbb{C}_{p}}$: $\frac{t}{p^{r}}=z \notin O_{\mathbb{C}_{p}}$. Consider the subring $\mathbb{Z}[z]$ of E. The closure H of $\mathbb{Z}[z]$ will be a closed subring of \mathbb{C}_{p} which is not contained in $O_{\mathbb{C}_{p}}$. From Theorem 7 we know that H is a closed subfield of \mathbb{C}_{p}. It now follows easily that $H=E$.

4 Proof of Theorem 2

Note first that for any rigid analytic function $F: U_{1} \rightarrow U_{2}$ we get a map $F^{*}: A\left(U_{2}\right) \rightarrow$ $A\left(U_{1}\right)$, given by: $g \mapsto g \circ F$. If U_{1} and U_{2} are conformal in the sense that there is a one-to-one map $F: U_{1} \rightarrow U_{2}$ with F and F^{-1} rigid analytic, then $F^{*}: A\left(U_{2}\right) \rightarrow A\left(U_{1}\right)$ will be an isomorphism of topological rings. In particular if U_{1} and U_{2} are conformal then $\operatorname{gdeg}\left(A\left(U_{1}\right)\right)=\operatorname{gdeg}\left(A\left(U_{2}\right)\right)$. If now $U=\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash \bigcup_{j=1}^{q} B_{j}$ is an affinoid or a wide open set one can use a linear fractional transformation $F: U \rightarrow \mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$, $F(z)=\frac{a z+b}{c z+d}$ with a, b, c, d in $\mathbb{C}_{p}, a d-b c \neq 0$ to send one B_{j} to or away from the "point at infinity".

Let's now prove (i). By making such a linear fractional transformation, we may assume that

$$
U=B(0,1) \backslash \bigcup_{j=1}^{g-1} B_{j}
$$

where $B_{j}=B\left(a_{j}, r_{j}\right)$ for $1 \leq j \leq s, B_{j}=B\left[a_{j}, r_{j}\right]$ for $s<j \leq g-1$ for some integer $1 \leq s \leq g-1$ and some $a_{1}, \ldots, a_{g-1} \in B(0,1)$ and $0<r_{1}, \ldots, r_{g-1}<1$.

Note that any power series $g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ with coefficients a_{n} in $O_{\mathbb{C}_{p}}$ is convergent on $B(0,1)$ and so it belongs to $A(U)$. Moreover, it is easy to see that for such a function f the norm $\|f\|:=\{\sup |f(z)| ; z \in U\}$ is given by

$$
\|f\|=\sup _{n \geq 0}\left|a_{n}\right|
$$

As a consequence, two such functions $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ with $c_{n}, a_{n} \in O_{\mathbb{C}_{p}}$ will be at distance $\|f-g\|=1$ unless for any n the coefficients c_{n} and a_{n} have the same image in the residue field $\overline{\mathbb{F}}_{p}$ of $O_{\mathbb{C}_{p}}$.

Now let M be a generating set of $A(U)$. We choose for any power series $h(X)=$ $\sum_{n \geq 0} b_{n} X^{n} \in \overline{\mathbb{F}}_{p}[[X]]$ a representative $g(z)=\sum_{n \geq 0} a_{n} z^{n}$ with $a_{n} \in O_{\mathbb{C}_{p}}$, where b_{n} is the image of a_{n} in $\overline{\mathbb{F}}_{p}$ and then we choose an element $f \in \mathbb{Z}[M]$ such that $\|f-g\|<1$. Note that for distinct h we have distinct f 's, therefore the mapping $h \mapsto f$ gives an injection $\overline{\mathbb{F}}_{p}[[X]] \hookrightarrow \mathbb{Z}[M]$.

But $\overline{\mathbb{F}}_{p}[[X]]$ is an uncountable set, therefore M can not be countable, much less finite.
ii) Send the B_{j} 's away from the point at infinity. Thus U will have the form:

$$
\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash \bigcup_{j=1}^{g} B\left(a_{j}, r_{j}\right)
$$

Then $A(U)$ consists of functions f of the form (see [F-P]):

$$
f(z)=c_{0}+\sum_{j=1}^{g} \sum_{n=1}^{\infty} c_{j n}\left(z-a_{j}\right)^{-n}
$$

with $c_{0}, c_{j m} \in \mathbb{C}_{p}$, and $\left|c_{j n}\right| r_{j}^{-n} \rightarrow 0$ as $n \rightarrow \infty$ for $1 \leq j \leq g$. Here $\|f\|=$ $\max \left\{\left|c_{0}\right|, \sup _{j n}\left|c_{j n}\right| r_{j}^{-n}\right\}$. We have:

$$
\lim _{N \rightarrow \infty}\left\|f-c_{0}-\sum_{j=1}^{g} \sum_{n=1}^{N} c_{j n}\left(z-a_{j}\right)^{-n}\right\|=0
$$

Thus the ring $\mathbb{C}_{p}\left[\frac{1}{z-a_{1}}, \ldots, \frac{1}{z-a_{g}}\right]$ is dense in $A(U)$, and thus $\operatorname{gdeg}\left(A(U) / \mathbb{C}_{p}\right) \leq$ g. From Theorem 1 and Proposition 3 c) it now follows that $\operatorname{gdeg}(A(U)) \leq g+1$.
iii) By making a suitable fractional linear transformation we may assume that $U=B[0,1]$. From (ii) we know that $\operatorname{gdeg}(A(U)) \leq 2$. Let's assume that $\operatorname{gdeg}(A(U))=1$ and let f be a generating element of $A(U)$. Now for any $z_{0} \in U$ we have a surjective continuous morphism of topological rings $\psi: A(U) \rightarrow \mathbb{C}_{p}$ given by $\psi(g)=g\left(z_{0}\right)$. From Proposition 3 d) it follows that $\psi(f)=f\left(z_{0}\right)$ is a generating element of C_{p}. Thus we arrived at the following question: Is there an $f \in A(U)$ such that $f(z)$ is a generating element of C_{p} for any z in $B[0,1]$?

The answer is "no". Indeed, write $f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}+\cdots$, with $a_{n} \in \mathbb{C}_{p}$ and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let us choose an $\alpha \in \overline{\mathbb{O}}_{p}$ close enough to a_{0} such that $\left|\alpha-a_{0}\right|<\max _{n \geq 1}\left|a_{n}\right|$ and put $g(z)=f(z)-\alpha=\left(a_{0}-\alpha\right)+a_{1} z+\cdots+a_{m} z^{m}+\cdots$. Now from the Weierstrass Preparation Theorem (see Lang [L, Ch. 5, Section 2]) we have a decomposition $g(z)=P(z) h(z)$ with $h(z) \in O_{\mathbb{C}_{p}}[[z]]$ and P polynomial of degree ≥ 1 distinguished in the sense that its leading coefficient is larger than the other coefficients. Here the roots of P are in $B(0,1)$. If z_{1} is such a root then $g\left(z_{1}\right)=0$ and $f\left(z_{1}\right)=\alpha$ which is not a generating element of \mathbb{C}_{p}. This completes the proof of Theorem 2.

References

[A-P-Z] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of \mathbb{C}_{p}. J. Number Theory (2) 68(1998), 131-150.
[A] J. Ax, Zeros of Polynomials Over Local Fields. The Galois Action. J. Algebra 15(1970), 417-428.
[C-G] J. Coates and R. Greenberg, Kummer Theory of Abelian Varieties. Invent. Math. (1-3)
126(1996), 129-174.
[Co] R. Coleman, Dilogarithms, regulators and p-adic L-functions. Invent. Math. (2) 69(1982), 171-208.
[Fo] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate. Ann. of Math. 115(1982), 529-577.
[F-C] ,Le corps des périodes p-adiques (avec une appendice par P. Colmez). Astérisque 223(1994), 59-111.
[F-P] J. Fresnel and M. van der Put, Géometrie Analytique Rigide et Applications. Birkhäuser, 1981.
[I-Z1] A. Iovita and A. Zaharescu, Completions of r.a.t-Valued fields of Rational Functions. J. Number Theory, (2) 50(1995), 202-205.
[I-Z2] , Galois theory of $B_{d R}^{+}$. Compositio Math., to appear.

$\begin{aligned} & {[\mathrm{I}-\mathrm{Z} 3]} \\ & {[\mathrm{L}]} \end{aligned}$	\qquad Generating elements for $B_{d R}^{+}$. Preprint. S. Lang, Cyclotomic fields. Graduate Texts in Ma	
	S. Lang, Cyclotomic fie 1978.	in Mat
[P-Z]	N. Popescu and A. Z Number Theory (1)	cture
[S]	S. Sen, On Automorp	nn. M
[Se]	J. P. Serre, Corps Loca	1962.
[T]	J. Tate, p-Divisible G 158-183.	a Con
University of Bucharest		Inst
Department of Mathematics		
Str. Academiei 14		P.O.
RO-70109, Bucharest		RO
Romania		Rom
		email
Department of Mathematics and Statistics		
McGill University		
805 Sherbrooke Street West		
Montreal, Quebec		
H3A 2K6		
email: zaharesc@math.mcgill.ca		

[^0]: Received by the editors December 11, 1998; revised May 9, 1999.
 AMS subject classification: 11S99.
 (C)Canadian Mathematical Society 2001.

