Canad. Math. Bull. Vol. 44 (1), 2001 pp. 3-11

The Generating Degree of \mathbb{C}_p

Victor Alexandru, Nicolae Popescu and Alexandru Zaharescu

Abstract. The generating degree gdeg(A) of a topological commutative ring A with char A = 0 is the cardinality of the smallest subset M of A for which the subring $\mathbb{Z}[M]$ is dense in A. For a prime number p, \mathbb{C}_p denotes the topological completion of an algebraic closure of the field \mathbb{Q}_p of p-adic numbers. We prove that $gdeg(\mathbb{C}_p) = 1$, *i.e.*, there exists t in \mathbb{C}_p such that $\mathbb{Z}[t]$ is dense in \mathbb{C}_p . We also compute gdeg(A(U)) where A(U) is the ring of rigid analytic functions defined on a ball U in \mathbb{C}_p . If U is a closed ball then gdeg(A(U)) = 2 while if U is an open ball then gdeg(A(U)) is infinite. We show more generally that gdeg(A(U)) is finite for any *affinoid* U in $\mathbb{P}^1(\mathbb{C}_p)$ and gdeg(A(U)) is infinite for any *wide open* subset U of $\mathbb{P}^1(\mathbb{C}_p)$.

1 Introduction

Let *p* be a prime number, \mathbb{Q}_p the field of *p*-adic numbers, $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p and \mathbb{C}_p the completion of $\overline{\mathbb{Q}}_p$ with respect to the unique extension of the *p*-adic valuation ν on \mathbb{Q}_p .

Some insight into the structure of closed subfields of \mathbb{C}_p is provided by the Galois theory in \mathbb{C}_p as developed by Tate [T], Sen [S] and Ax [A]. In particular, there is a canonical one-to-one correspondence between the closed subfields E of \mathbb{C}_p and the subfields $\mathbb{Q}_p \subseteq L \subseteq \overline{\mathbb{Q}}_p$ via the maps (see [I-Z1, Th. 1]):

$$(*) E \mapsto E \cap \overline{\mathbb{Q}}_p = L \quad \text{and} \quad L \mapsto \widetilde{L} = E,$$

where \overline{L} denotes the topological closure of L in \mathbb{C}_p . These maps pave the way for transfering information from subfields of $\overline{\mathbb{Q}}_p$ to closed subfields of \mathbb{C}_p .

In practice, when working in such a field *L* the situation is much improved if L/\mathbb{Q}_p is finite. For one thing, the elements of *L* can be expressed in terms of a primitive element α of *L*, which moreover can be chosen in convenient ways, *e.g.* like being a uniformizer. If however L/\mathbb{Q}_p is not finite then no such primitive element exists and in this case one needs to adjoin to \mathbb{Q}_p infinitely many elements $\alpha_1, \alpha_2, \ldots$ from *L* to control the entire field *L* and so to produce a dense subfield in *E*.

With these in mind, Iovita and Zaharescu [I-Z1] investigated the possibility of obtaining something dense in *E* by adjoining *fewer* elements from *E*. They showed that it is enough to adjoin one element: there exists *t* in *E* such that $\mathbb{Q}_p(t)$ is dense in *E*.

In [A-P-Z] Alexandru, Popescu and Zaharescu took this matter one step further, by showing how one can actually express the elements of E in terms of this t. It is proven that:

Received by the editors December 11, 1998; revised May 9, 1999.

AMS subject classification: 11S99.

[©]Canadian Mathematical Society 2001.

- (i) For any element t in C_p the ring Q_p[t] and the field Q_p(t) have the same topological closure. Thus for any closed subfield E of C_p there exists t such that Q_p[t] is dense in E.
- (ii) The theory of saturated distinguished chains for elements in $\overline{\mathbb{Q}}_p$ developed in [P-Z] naturally extends from $\overline{\mathbb{Q}}_p$ to \mathbb{C}_p . This provides us for any $t \in \mathbb{C}_p$ with distinguished sequences of polynomials $\{f_n(X)\}_n$ together with an infinite set of (metric) invariants for *t*.
- (iii) Given any t such that $\mathbb{Q}_p[t]$ is dense in E and any distinguished sequence of polynomials associated to t, there is a canonical way to obtain from it a sequence $\{M_m(t)\}_{m\geq 0}$ of polynomials in t which as elements in $\mathbb{Q}_p[t]$ form an integral basis of E over \mathbb{Q}_p . Thus:
 - (1) Any $z \in E$ can be expressed in a unique way in the form: $z = \sum_{m>0} c_m M_m(t)$ where the c_m 's are in \mathbb{Q}_p and $c_m \to 0$ as $m \to \infty$, and
 - (2) The above *z* belongs to the ring of integers O_E if and only if all the coefficients c_m are in \mathbb{Z}_p .

Some of these results were generalized in [I-Z3] and were applied to the ring B_{dR}^+ defined by J.-M. Fontaine in [Fo]. In particular it is proved that there is an element T in B_{dR}^+ such that $\mathbb{Q}_p[T]$ is dense in B_{dR}^+ . Here one has a canonical projection of B_{dR}^+ on \mathbb{C}_p and the image of the above T in \mathbb{C}_p will be an element t for which $\mathbb{Q}_p[t]$ is dense in \mathbb{C}_p . It should be stressed that not all the above results for \mathbb{C}_p could be lifted to B_{dR}^+ , one of the main obstructions here being the failure of the Galois correspondence in B_{dR}^+ (for more details, see [I-Z2]).

The concept of generating degree was introduced in [I-Z3] as a convenient way to formulate various results from [I-Z2] and [I-Z3] (see Section 2 below). These generating degrees are important on their own. Being unchanged under isomorphisms of topological rings, they provide us with some natural invariants of these rings.

For two commutative topological rings $A \subset B$, a subset $M \subset B$ is said to be a *generating set* of *B* over *A* if the ring A[M] is dense in *B*. The *generating degree* of B/A is defined to be

 $gdeg(B/A) := min\{|M|, where M is a generating set of B/A\}$

where |M| denotes the number of elements of M if M is finite and ∞ if M is not finite.

The generating degree of *B* over \mathbb{Z} if char B = 0, respectively over \mathbb{F}_p if char B = p, will be denoted by gdeg(*B*) and will be called the absolute generating degree of *B*.

Some general properties of generating degrees are presented in Section 2. Our objective is to compute $gdeg(\mathbb{C}_p)$. This is achieved in Section 3 following an investigation on the structure of closed subrings of \mathbb{C}_p . We show that $gdeg(\mathbb{C}_p) = 1$ and that the same holds true for any of its closed subfields:

Theorem 1 For any closed subfield E of \mathbb{C}_p there exists t in E such that $\mathbb{Z}[t]$ is dense in E.

By contrast we note that $gdeg(O_{\mathbb{C}_p})$ is infinite, where $O_{\mathbb{C}_p}$ denotes the ring of integers in \mathbb{C}_p .

The Generating Degree of \mathbb{C}_p

In the last section we consider rings A(U) of rigid analytic functions defined on various open sets U of \mathbb{C}_p (for the general theory of rigid analytic functions see [F-P]). We found that if U is an affinoid then gdeg(A(U)) is finite. The situation changes dramatically if we replace U by a "wide open set" (in the terminology of Coleman [Co]). In this case gdeg(A(U)) is infinite.

For example, if $a \in \mathbb{C}_p$ and $0 < r \in \{|z|; z \in \mathbb{C}_p\}$ then the "closed ball" $B[a, r] := \{z \in \mathbb{C}_p; |z-a| \le r\}$ is an affinoid while the "open ball" $B(a, r) := \{z \in \mathbb{C}_p; |z-a| < r\}$ is a wide open set.

In the following by a *closed ball* in $\mathbb{P}^1(\mathbb{C}_p)$ we mean either a set of the form B[a, r] as above or a set of the form $\mathbb{P}^1(\mathbb{C}_p) \setminus B(a, r)$. Similarly subsets of the form B(a, r) or $\mathbb{P}^1(\mathbb{C}_p) \setminus B[a, r]$ will be called *open balls*. An affinoid in $\mathbb{P}^1(\mathbb{C}_p)$ is a subset U of the form $U = \mathbb{P}^1(\mathbb{C}_p) \setminus \bigcup_{j=1}^g B_j$ where each B_j is an open ball in $\mathbb{P}^1(\mathbb{C}_p)$. A subset U as above, $U = \mathbb{P}^1(\mathbb{C}_p) \setminus \bigcup_{j=1}^g B_j$ where the B_j 's are balls and at least one of them is a closed ball is called a wide open set in $\mathbb{P}^1(\mathbb{C}_p)$. With these notations and terminology we have the following:

Theorem 2

- (i) If U is a wide open set in $\mathbb{P}^1(\mathbb{C}_p)$ then gdeg(A(U)) is infinite.
- (ii) Let $U = \mathbb{P}^1(\mathbb{C}_p) \setminus \bigcup_{j=1}^g B_j$, where the B_j 's are distinct, be an affinoid in $\mathbb{P}^1(\mathbb{C}_p)$. Then $gdeg(A(U)) \leq g + 1$.
- (iii) If U is a closed ball in $\mathbb{P}^1(\mathbb{C}_p)$ then gdeg(A(U)) = 2.

2 Generating Degrees

Recall the definitions from the Introduction:

For two commutative topological rings $A \subset B$, a subset $M \subset B$ is said to be a *generating set* of *B* over *A* if the ring A[M] is dense in *B*. The *generating degree* of B/A, $gdeg(B/A) \in \mathbf{N} \cup \infty$ is defined to be

 $gdeg(B/A) := min\{|M|, where M is a generating set of B/A\}$

where |M| denotes the number of elements of M if M is finite and ∞ if M is not finite.

Thus *A* is dense in *B* if and only if gdeg(B/A) = 0.

Define the absolute generating degree gdeg(B) of *B* by $gdeg(B) = gdeg(B/\mathbb{Z})$ if char B = 0, respectively $gdeg(B) = gdeg(B/\mathbb{F}_p)$ if char B = p.

Some very simple properties of generating degrees are summarized in the following

Proposition 3

a) gdeg(B/A) is invariant with respect to isomorphisms of topological rings.

- b) If $A \subset B \subset C$ then $gdeg(C/A) \ge gdeg(C/B)$.
- c) If $A \subset B \subset C$ then $gdeg(C/A) \leq gdeg(B/A) + gdeg(C/B)$.

- d) If $A \subset B$ and $\psi: B \to C$ is a continuous morphism of rings then for any generating set M of B over A, $\psi(M)$ will be a generating set of $\psi(B)$ over $\psi(A)$. In particular: $gdeg(\psi(B)/\psi(A)) \leq gdeg(B/A)$ and $gdeg(\psi(B)) \leq gdeg(B)$.
- e) If $A \subset B$ is a finite separable extension of fields then we have $gdeg(B/A) \leq 1$.

Remark It is not true that for any $A \subset B \subset C$ one has $gdeg(C/A) \ge gdeg(B/A)$. For example $gdeg(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) = \infty$ while $gdeg(\mathbb{C}_p/\mathbb{Q}_p) = 1$.

There is a connection between generating degrees and continuous derivations of *B* over *A*. Let $A \subset B$ be two topological commutative rings. *A* derivation of *B* over *A* is a map $D: B \rightarrow B$ which satisfies the usual rules:

$$D(u + v) = D(u) + D(v), \quad D(uv) = uD(v) + vD(u)$$

and whose restriction to A is trivial. Assume at this point that B is an integral domain and denote by F and E the field of fractions of A and B respectively. Then any such Dhas a unique extension to a derivation of E over F, given by:

$$D\left(\frac{u}{v}\right) = \frac{vD(u) - uD(v)}{v^2}$$

and the set D(B/A) of all such derivations becomes a vector space over *E*. Let us denote by $D_{\text{cont}}(B/A)$ the subspace of D(B/A) spanned by derivations $D: B \to B$ which are continuous with respect to the topology of *B*. With these notations, we have the following:

Proposition 4 dim_{*E*} $D_{\text{cont}}(B/A) \leq \text{gdeg}(B/A)$.

There is also a connection between the generating degrees and chains of open prime ideals of *B*. Recall that the height $h(\mathcal{P})$ of a prime ideal \mathcal{P} of a commutative ring *B* is defined to be the largest integer *n* for which there is a chain of prime ideals in *B*:

$$\mathcal{P}_0 \subset \mathcal{P}_1 \subset \cdots \subset \mathcal{P}_n = \mathcal{P}.$$

Then one defines the Krull dimension of *B* to be

$$\dim B := \sup\{h(\mathcal{P})\}$$

where \mathcal{P} runs over the set of prime ideals in *B*.

If now *B* is a topological commutative ring we can define its topological Krull dimension dim_{\top} *B* by counting only open prime ideals, as follows. Define the topological height $h_{\top}(\mathcal{P})$ of an open prime ideal \mathcal{P} of *B* to be the largest integer *n* for which there is a chain

$$\mathcal{P}_0 \subset \mathcal{P}_1 \subset \cdots \subset \mathcal{P}_n = \mathcal{P}$$

of open prime ideals of B. Then set:

$$\dim_{\mathbb{T}} B = \sup\{h_{\mathbb{T}}(\mathcal{P})\}\$$

where \mathcal{P} runs over the set of open prime ideals in *B*.

Note that $\dim_{\top} B \leq \dim B$ and if *B* is endowed with the discrete topology then $\dim_{\top} B = \dim B$. With the above notations we also have the following:

The Generating Degree of \mathbb{C}_p

Proposition 5 For any topological commutative ring B one has:

 $\dim_{\top}(B) \leq \operatorname{gdeg} B.$

We skip the details of the proofs of the above results and mention only that:

1) In the proof of Proposition 4 the point is that if M is a generating set of B/A then any continuous derivation D of B is uniquely determined by its restriction to M, and

2) For the proof of Proposition 5 intersect an arbitrary chain of open prime ideals

$$\mathcal{P}_0 \subset \mathcal{P}_1 \subset \cdots \subset \mathcal{P}_n$$

with $\mathbb{Z}[M]$ where M is an arbitrary generating set of B to get a chain $\mathcal{J}_0 \subseteq \mathcal{J}_1 \subseteq \cdots \subseteq \mathcal{J}_n$ of open prime ideals in $\mathbb{Z}[M]$. Now the point is that the sets $\mathcal{P}_j \setminus \mathcal{P}_{j-1}$ being open and $\mathbb{Z}[M]$ being dense in B there will be points from $\mathbb{Z}[M]$ in $\mathcal{P}_j - \mathcal{P}_{j-1}$ thus $\mathcal{J}_0 \subset \mathcal{J}_1 \subset \cdots \subset \mathcal{J}_n$, so n is bounded by dim_{\top} $\mathbb{Z}[M]$ which is bounded by |M|.

Now let us see some examples of generating degrees in \mathbb{C}_p and in B_{dR}^+ . Galois theory in \mathbb{C}_p shows that for any algebraic extension L of Q_p we have $(\mathbb{C}_p)^{G_L} = \tilde{L}$, where $G_L = \text{Gal}(\bar{\mathbb{Q}}_p/L) = \text{Gal}_{\text{cont}}(\mathbb{C}_p/L)$. In other words:

$$\operatorname{gdeg}((\mathbb{C}_p)^{G_L}/L) = 0.$$

As was mentioned in the introduction the Galois correspondence fails in B_{dR}^+ . Thus in general an algebraic extension *L* is not dense in $(B_{dR}^+)^{G_L}$, although $\tilde{\mathbb{Q}}_p$ itselt is dense in B_{dR}^+ as was proved in [F-C]. We do have however the following result:

If $K := \mathbb{Q}_p^{ur} \subseteq L \subseteq \overline{\mathbb{Q}}_p$ and *L* is not a *deeply* ramified extension of *K* (in the sense of Coates-Greenberg [C-G]) then

$$\operatorname{gdeg}\left(\left(B_{dR}^{+}\right)^{G_{L}}/L\right) = 0.$$

It is proved in [I-Z3] that for any algebraic extension *L* of *K* one has:

$$\operatorname{gdeg}\left((B_{dR}^+)^{G_L}/L\right) \leq 1.$$

A characterization of deeply ramified extensions *L* of *K* satisfying the equation $gdeg((B_{dR}^+)^{G_L}/L) = 0$ is obtained in [I-Z2]. Concerning generating degrees over \mathbb{Q}_p we have the following result:

Let $\mathbb{Q}_p \subset L \subseteq \overline{\mathbb{Q}}_p$ and let *E* be the topological closure of *L* in \mathbb{C}_p (respectively in B_{dR}^+). Then (in both cases) we have:

$$\operatorname{gdeg}(E/\mathbb{Q}_p)=1.$$

Note that, by contrast, one has:

$$\operatorname{gdeg}(O_{\mathbb{C}_p}/\mathbb{Z}_p) = \infty.$$

Indeed, for any finite subset M of \mathbb{C}_p the image of $\mathbb{Z}_p[M]$ in the residue field $\overline{\mathbb{F}}_p$ of $O_{\mathbb{C}_p}$ will be a finite field. Then any element of $O_{\mathbb{C}_p}$ whose image in $\overline{\mathbb{F}}_p$ lies outside this finite field will be at distance 1 from $\mathbb{Z}_p[M]$, so $\mathbb{Z}_p[M]$ is not dense in $O_{\mathbb{C}_p}$ and M is not a generating set of $O_{\mathbb{C}_p}/\mathbb{Z}_p$.

Let now *L* be a finite extension of \mathbb{Q}_p , $L \neq \mathbb{Q}_p$. It is well known that *L* has a maximal unramified subextension, say *F*, that $O_F = \mathbb{Z}_p[u]$ and $O_L = O_F[\pi]$ where *u* is a unit in O_F whose image in $\overline{\mathbb{F}}_p$ generates the residue field of *L* and π is a uniformiser of O_L . Hence $\{u, \pi\}$ is a generating set of O_L and $gdeg(O_L) \leq 2$. It is proved in [Se, Ch. III, Proposition 12] that there is an α in O_L such that $O_L = \mathbb{Z}_p[\alpha]$. Thus in fact one has:

$$\operatorname{gdeg}(O_L/\mathbb{Z}_p) = 1.$$

3 Closed Subrings of \mathbb{C}_p

By a closed subring of \mathbb{C}_p we mean a subring of \mathbb{C}_p which is closed with respect to the topology induced from \mathbb{C}_p .

Lemma 6 Let *E* be a closed subring of C_p . Then either $E \subseteq O_{C_p}$ or $\mathbb{Q}_p \subseteq E$.

Proof Assume *E* is not contained in O_{C_p} . Choose $t \in E$ with v(t) < 0. Raise *t* to an integer power $r \ge 1$ such that $v(t^r)$ is an integer -m. Then $t^r = p^{-m}u$, where m > 0 and *u* is a unit in O_{C_p} . Now raise *u* to a power $k \ge 1$ such that u^k is a principal unit. Hence $u^k = 1 - x$ with v(x) > 0. Let $y = \frac{1}{1-x} = 1 + x + \dots + x^n + \dots$. Since $u = p^m t^r \in E$ it follows that $x = 1 - u^k \in E$ and so $y \in E$. Therefore $\frac{1}{p} = t^{kr} p^{(mk-1)}y \in E$ and then clearly $\mathbb{Q}_p \subseteq E$.

Theorem 7 Let E be a closed subring of \mathbb{C}_p , not contained in $O_{\mathbb{C}_p}$. Then E is a field.

We note the following consequence of Theorem 7:

Corollary 8 For any $z_1, z_2, ..., z_n \in \mathbb{C}_p$ the ring $\mathbb{Q}_p[z_1, z_2, ..., z_n]$ and the field $\mathbb{Q}_p(z_1, z_2, ..., z_n)$ have the same topological closure.

Indeed, the closure of $\mathbb{Q}_p[z_1, z_2, ..., z_n]$ is a ring *E* which is not contained in $O_{\mathbb{C}_p}$ thus by Theorem 7 it follows that *E* is a field so it contains $\mathbb{Q}_p(z_1, z_2, ..., z_n)$.

Proof of Theorem 7 Let *E* be a closed subring of \mathbb{C}_p not contained in $O_{\mathbb{C}_p}$. From Lemma 6 we know that $\mathbb{Q}_p \subseteq E$. Now let $L = E \cap \overline{\mathbb{Q}}_p$. Then *L* is a subring of \mathbb{Q}_p which contains \mathbb{Q}_p . It follows immediately that *L* is a subfield of $\overline{\mathbb{Q}}_p$. Then \tilde{L} is a complete subfield of \mathbb{C}_p . It remains to show that $\tilde{L} = E$. The inclusion $\tilde{L} \subseteq E$ is clear. Assume now that there is an element $z \in E$ such that $z \notin \tilde{L}$. Since $\mathbb{Q}_p[z] \subseteq E$ and *E* is closed it follows that the topological closure of $\mathbb{Q}_p[z]$, call it *H*, is also contained in *E*. From [A-P-Z] we know that *H* is a field. Moreover from the one-to-one correspondence (*) we know that we can intersect *H* with $\overline{\mathbb{Q}}_p$ and then we can recover it by completion: $H \cap \overline{\mathbb{Q}}_p = F$ say, $\tilde{F} = H$. But *F* is contained in $E \cap \overline{\mathbb{Q}}_p = L$, thus $\tilde{F} \subseteq \tilde{L}$. We obtained a contradiction since *z* belongs to *H* but not to \tilde{L} , and this completes the proof of Theorem 7.

Proof of Theorem 1 Let *E* be a closed subfield of \mathbb{C}_p . Choose *t* as in [A-P-Z] such that $\mathbb{Q}_p[t]$ is dense in *E*. Now divide *t* by a large power of *p* to force it out of $O_{\mathbb{C}_p}$: $\frac{t}{p^r} = z \notin O_{\mathbb{C}_p}$. Consider the subring $\mathbb{Z}[z]$ of *E*. The closure *H* of $\mathbb{Z}[z]$ will be a closed subring of \mathbb{C}_p which is not contained in $O_{\mathbb{C}_p}$. From Theorem 7 we know that *H* is a closed subfield of \mathbb{C}_p . It now follows easily that H = E.

4 Proof of Theorem 2

Note first that for any rigid analytic function $F: U_1 \to U_2$ we get a map $F^*: A(U_2) \to A(U_1)$, given by: $g \mapsto g \circ F$. If U_1 and U_2 are conformal in the sense that there is a oneto-one map $F: U_1 \to U_2$ with F and F^{-1} rigid analytic, then $F^*: A(U_2) \to A(U_1)$ will be an isomorphism of topological rings. In particular if U_1 and U_2 are conformal then gdeg $(A(U_1)) = \text{gdeg}(A(U_2))$. If now $U = \mathbb{P}^1(\mathbb{C}_p) \setminus \bigcup_{j=1}^q B_j$ is an affinoid or a wide open set one can use a linear fractional transformation $F: U \to \mathbb{P}^1(\mathbb{C}_p)$, $F(z) = \frac{az+b}{cz+d}$ with a, b, c, d in \mathbb{C}_p , $ad - bc \neq 0$ to send one B_j to or away from the "point at infinity".

Let's now prove (i). By making such a linear fractional transformation, we may assume that

$$U = B(0,1) \setminus \bigcup_{j=1}^{g-1} B_j$$

where $B_j = B(a_j, r_j)$ for $1 \le j \le s$, $B_j = B[a_j, r_j]$ for $s < j \le g - 1$ for some integer $1 \le s \le g - 1$ and some $a_1, ..., a_{g-1} \in B(0, 1)$ and $0 < r_1, ..., r_{g-1} < 1$.

Note that any power series $g(z) = \sum_{n=0}^{\infty} a_n z^n$ with coefficients a_n in $O_{\mathbb{C}_p}$ is convergent on B(0, 1) and so it belongs to A(U). Moreover, it is easy to see that for such a function f the norm $||f|| := \{\sup |f(z)|; z \in U\}$ is given by

$$\|f\| = \sup_{n \ge 0} |a_n|$$

As a consequence, two such functions $f(z) = \sum_{n=0}^{\infty} c_n z^n$ and $g(z) = \sum_{n=0}^{\infty} a_n z^n$ with $c_n, a_n \in O_{\mathbb{C}_p}$ will be at distance ||f - g|| = 1 unless for any *n* the coefficients c_n and a_n have the same image in the residue field $\overline{\mathbb{F}}_p$ of $O_{\mathbb{C}_p}$.

Now let *M* be a generating set of A(U). We choose for any power series $h(X) = \sum_{n \ge o} b_n X^n \in \overline{\mathbb{F}}_p[[X]]$ a representative $g(z) = \sum_{n \ge 0} a_n z^n$ with $a_n \in O_{\mathbb{C}_p}$, where b_n is the image of a_n in $\overline{\mathbb{F}}_p$ and then we choose an element $f \in \mathbb{Z}[M]$ such that ||f-g|| < 1. Note that for distinct *h* we have distinct *f*'s, therefore the mapping $h \mapsto f$ gives an injection $\overline{\mathbb{F}}_p[[X]] \hookrightarrow \mathbb{Z}[M]$.

But $\overline{\mathbb{F}}_p[[X]]$ is an uncountable set, therefore *M* can not be countable, much less finite.

ii) Send the B_i 's away from the point at infinity. Thus U will have the form:

$$\mathbb{P}^1(\mathbb{C}_p)\setminus \bigcup_{j=1}^g B(a_j,r_j).$$

Then A(U) consists of functions f of the form (see [F-P]):

$$f(z) = c_0 + \sum_{j=1}^{g} \sum_{n=1}^{\infty} c_{jn} (z - a_j)^{-n}$$

with $c_0, c_{jm} \in \mathbb{C}_p$, and $|c_{jn}|r_j^{-n} \to 0$ as $n \to \infty$ for $1 \le j \le g$. Here $||f|| = \max\{|c_0|, \sup_{jn}|c_{jn}|r_j^{-n}\}$. We have:

$$\lim_{N \to \infty} \left\| f - c_0 - \sum_{j=1}^g \sum_{n=1}^N c_{jn} (z - a_j)^{-n} \right\| = 0.$$

Thus the ring $\mathbb{C}_p[\frac{1}{z-a_1},\ldots,\frac{1}{z-a_g}]$ is dense in A(U), and thus $gdeg(A(U)/\mathbb{C}_p) \leq g$. From Theorem 1 and Proposition 3 c) it now follows that $gdeg(A(U)) \leq g+1$.

iii) By making a suitable fractional linear transformation we may assume that U = B[0, 1]. From (ii) we know that $gdeg(A(U)) \leq 2$. Let's assume that gdeg(A(U)) = 1 and let f be a generating element of A(U). Now for any $z_0 \in U$ we have a surjective continuous morphism of topological rings $\psi: A(U) \to \mathbb{C}_p$ given by $\psi(g) = g(z_0)$. From Proposition 3 d) it follows that $\psi(f) = f(z_0)$ is a generating element of C_p . Thus we arrived at the following question: Is there an $f \in A(U)$ such that f(z) is a generating element of C_p for any z in B[0, 1]?

The answer is "no". Indeed, write $f(z) = a_0 + a_1 z + \cdots + a_n z^n + \cdots$, with $a_n \in \mathbb{C}_p$ and $a_n \to 0$ as $n \to \infty$. Let us choose an $\alpha \in \overline{\mathbb{Q}}_p$ close enough to a_0 such that $|\alpha - a_0| < \max_{n \ge 1} |a_n|$ and put $g(z) = f(z) - \alpha = (a_0 - \alpha) + a_1 z + \cdots + a_m z^m + \cdots$. Now from the Weierstrass Preparation Theorem (see Lang [L, Ch. 5, Section 2]) we have a decomposition g(z) = P(z)h(z) with $h(z) \in O_{\mathbb{C}_p}[[z]]$ and P polynomial of degree ≥ 1 distinguished in the sense that its leading coefficient is larger than the other coefficients. Here the roots of P are in B(0, 1). If z_1 is such a root then $g(z_1) = 0$ and $f(z_1) = \alpha$ which is not a generating element of \mathbb{C}_p . This completes the proof of Theorem 2.

References

- [A] J. Ax, Zeros of Polynomials Over Local Fields. The Galois Action. J. Algebra 15(1970), 417–428.
 [C-G] J. Coates and R. Greenberg, *Kummer Theory of Abelian Varieties*. Invent. Math. (1–3)
 - **126**(1996), 129–174.
- [Co] R. Coleman, Dilogarithms, regulators and p-adic L-functions. Invent. Math. (2) 69(1982), 171–208.
- [Fo] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate. Ann. of Math. 115(1982), 529–577.
- [F-C] , Le corps des périodes p-adiques (avec une appendice par P. Colmez). Astérisque 223(1994), 59–111.
- [F-P] J. Fresnel and M. van der Put, *Géometrie Analytique Rigide et Applications*. Birkhäuser, 1981.
- [I-Z1] A. Iovita and A. Zaharescu, Completions of r.a.t-Valued fields of Rational Functions. J. Number Theory, (2) 50(1995), 202–205.
- [I-Z2] _____, *Galois theory of* B_{dR}^+ . Compositio Math., to appear.

The Generating Degree of \mathbb{C}_p

- [I-Z3]
- _____, *Generating elements for* B_{dR}^+ . Preprint. S. Lang, *Cyclotomic fields*. Graduate Texts in Math. **59**, Springer-Verlag, New York-Heidelberg, [L] 1978.
- [P-Z] N. Popescu and A. Zaharescu, On the Structure of Irreducible Polynomials Over Local Fields. J. Number Theory (1) **52**(1995), 98–118.
- S. Sen, On Automorphisms of local fields. Ann. Math. 90(1969), 33-46. [S]
- [Se] J. P. Serre, Corps Locaux. Hermann, Paris, 1962.
- J. Tate, *p-Divisible Groups*. Proceedings of a Conference on Local Fields at Driebergen, 1967, [T] 158–183.

University of Bucharest Department of Mathematics Str. Academiei 14 RO-70109, Bucharest Romania

Institute of Mathematics of the Romanian Academy P.O. Box 1-764 RO-70700, Bucharest Romania email: nipopesc@stoilow.imar.ro

Department of Mathematics and Statistics McGill University 805 Sherbrooke Street West Montreal, Quebec H3A 2K6 email: zaharesc@math.mcgill.ca