Interaction of Magnetic Nanoparticles in Cells of Human Breast Adenocarcinoma (MCF-7)

Karina Midori Endo^{1*}, Raquel Dosciatti Bini^{2*}, Danielle Lazarin-Bidóia³, Veronica Elisa Pimenta Vicentini¹ and Luiz Fernando Cótica²

¹ Department of Biotechnology, Genetics and Cell Biology/State University of Maringa – UEM, Maringa, Brazil.

^{2.} Department of Physics/State University of Maringa – UEM, Maringa, Brazil.

³ Department of Pharmaceutical Sciences/State University of Maringa – UEM, Maringa, Brazil.

* Corresponding author: karinaendo@gmail.com

Nanotechnology is a field of interdisciplinary and multidisciplinary research with numerous potential applications and scientific advances in the treatment of cancer [1] [2]. In the search for alternatives to improve efficiency and minimize the effects of non-invasive treatments, magnetic nanoparticles (MNPs) are the most promising candidates due to their superparamagnetic behavior, biocompatibility and easy synthesis [3]. Thus, the objective of this study was to evaluate the cytotoxic activity, using the MTT assay, and analyze possible morphological changes by SEM in breast cancer cells (MCF-7), exposed to the MNPs (Fe₃O₄) and MNPs coated with chitosan (CS-Fe₃O₄). For the MTT assay, the cells were treated with different concentrations of Fe₃O₄ and CS-Fe₃O₄ for 24 and 48 hours. For the SEM, cells treated and incubated for 48 h with Fe₃O₄ and CS-Fe₃O₄ were fixed, dehydrated, critical point-dried in CO₂, sputtercoated with gold and observed using FEI Scios. Analysis by TEM showed that the MNPs have a spherical shape and the CS-Fe₃O₄ are more dispersed and less agglomerated in relation to Fe₃O₄. It was observed in the MTT assay that Fe₃O₄ and CS-Fe₃O₄ were not statistically cytotoxic in MCF-7 for all concentrations and incubation periods. MCF-7 treated with Fe₃O₄ and CS-Fe₃O₄ and visualized by SEM showed that both MNPs showed similar morphology to control, presenting cells of polygonal shape, well adhered to the substrate and covered with numerous microvilli and not seem to have been changed by the treatment with the MNPs. In this way, in biomedical applications, the CS-Fe₃O₄ can open new possibilities in use as carriers of drugs.

References:

- [1] E M Ali et al., Int J Biol Macromol. **120** (2018), p. 1170.
- [2] F Assa et al., Crit Rev Biotechnol. 37 (2017), p. 492.
- [3] S Lotfi et al., J Supercond Nov Magn. 30 (2017), p. 3031.
- [4] This research was supported by CNPq (Brazil).

Figure 1. Transmission electron microscopy for magnetic nanoparticles (A) Fe₃O₄ and (B) CS-Fe₃O₄.

Figure 2. Mean and standard deviation obtained by the MTT test. Groups: Control (DMEM + 10% FBS), and different concentrations of CS-Fe₃O₄ (0.75, 1.5, 3.12, 6.25, 12.5, 25 and 50 μ g/mL) were incubated with MCF-7 cells for 24 and 48 hours. *Statistically significant difference in relation to control (p <0.05).

Figure 3. Mean and standard deviation obtained by the MTT test. Groups: Control (DMEM + 10% FBS), and different concentrations of Fe₃O₄ (0.75, 1.5, 3.12, 6.25, 12.5, 25 and 50µg/mL) were incubated with MCF-7 cells for 24 and 48 hours. *Statistically significant difference in relation to control (p < 0.05).

Figure 4. Scanning electron microscopy (SEM) images of MCF-7 cells, incubated with different magnetic nanoparticle treatments for 48 hours. (A, B) Control (C) Fe₃O₄ 6.25µg/mL; (D) Fe₃O₄ 25µg/mL; (E) Fe₃O₄ 50µg/mL; (F) CS-Fe₃O₄ 6.25µg/mL; (G) CS-Fe₃O₄ 25µg/mL; (H) CS-Fe₃O₄ 50µg/mL.