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Abstract

Almost all populations existing in the real world are finite populations. Specifically, in
the areas relevant to lifetime modeling and analysis, finite populations are frequently
encountered. However, descriptions of failure/survival patterns of elements in the finite
population have not yet been properly established. In particular, it is questionable whether
the ordinary failure rate can be defined for finite populations in the same way and whether
the corresponding interpretations are still valid. In this paper we consider two kinds of
finite mixed population and provide new definitions for their failure rates. Then we clarify
the notion of failure rate in finite populations.
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1. Introduction

The failure (hazard) rate function plays a crucial role in the areas of lifetime modeling and
analysis such as reliability, survival analysis, actuarial sciences, and demographic and biological
disciplines which deal with the ‘lifetime’ of items. Denote the lifetime of an item by X and
its absolutely continuous cumulative distribution function (CDF) and probability distribution
function (PDF) by F(t) and f (t), respectively. The failure rate function of X is defined by

λ(t) = lim
�t→0

1

�t
P(t < X ≤ t + �t | X > t) = f (t)

F̄ (t)
, (1)

where F̄ (t) ≡ 1−F(t). The failure rate in (1) is also called the ‘force of mortality’or ‘mortality
rate’in actuarial and demographic disciplines. In what follows, we will use the term ‘failure rate’
and describe our problem in the context of reliability for a convenient formulation. However,
applications of the results obtained in this paper should not be limited to only the reliability
field but could generally be applied to fields relevant to lifetime modeling and analysis as well.

The failure rate function λ(t) has the following very popular and interesting probabilistic
interpretation (see Aven and Jensen (1999, p. 37)):

λ(t)�t ≈ P(t < X ≤ t + �t | X > t).

Note that the failure rate function in (1) is generally defined under the basic assumption that
the hypothetical population of interest consists of infinitely many items, i.e. infinite population.
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However, almost all populations in the areas relevant to lifetime modeling and analysis, such
as reliability, quality control, survival analysis, and biological sciences and demographic disci-
pline, are finite. For example, consider items produced during specific years by a manufacturing
company. In this case, the total produced items constitute a finite population. Also, in the areas
of reliability and quality control, produced items may constitute lots of (finite) size N , with
these lots sold to customers. Then, from the view point of a customer who purchased a lot, the
reliability of this ‘finite population’ (i.e. lot) is of importance. Of course, when the population
size is very large, a finite population can be well approximated by an infinite population, which
is the main reason why infinite populations are frequently adopted in practice. However, when
we have a relatively small population size, a more careful approach needs to be taken. In this
case, it is questionable whether the failure rate function defined in (1) would still constitute a
proper and comprehensive definition.

In this paper we consider finite mixed populations. A mixture is an important practical tool
for modeling lifetimes under heterogeneity. For a detailed practical example, a population of
items from several different production lines in a factory can constitute a mixed population due
to different reliability characteristics among the production lines. Research on the failure rate
function of the mixture distribution has been carried out by many authors; see, e.g. Finkelstein
(2008), (2009), Finkelstein and Esaulova (2001), Navarro and Hernandez (2004), Jiang and
Murthy (1995), Block et al. (2003), and Vaupel and Zhang (2010). However, most of the
research is based on the assumption of infinite populations.

We consider two kinds of finite mixed population and provide new definitions of the failure
rate in finite populations. Furthermore, the notion of the failure rate in a finite population is
clarified.

The structure of this paper is as follows. In Section 2 we consider a fixed finite mixed
population and introduce a new definition of its failure rate function. We show that, in the case
of a finite population, the use of the ordinary failure rate function (1) may lead to misleading
interpretations. In Section 3, a randomly selected finite mixed population is considered and
the new definition of its failure rate function for the population is discussed. Furthermore, we
show that the survival function of a finite mixed population does not uniquely determine the
new type of failure rate. Finally, in Section 4 we give some concluding remarks.

2. Fixed finite mixed population

We start this section by considering the basic questions raised by the problem, which are the
motivation and starting point of this research.

Before our main discussions, it is useful to present some preliminaries on the interpretations
of the failure rate and the corresponding applications. According to the aim of the analyses,
the failure rate can usually be interpreted as

• a measure of the proneness to failure (death) of an item which was randomly selected at
time 0 from the population and has survived up to time t , or

• a measure of the proneness to failure of an item which is randomly selected at time t

from all the nonfailed items in the population.

Throughout this paper, the term ‘randomly selected’ is defined as ‘selected with equal probabil-
ities’. Obviously, the above two-fold interpretations are equivalent for infinite populations and
can be expressed by the ordinary failure rate in (1). Hereafter, for the sake of clarity, we will
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use the term ‘failure rate’ to refer to the former interpretation and the term ‘proportion-based
failure rate’ to refer to the latter interpretation.

By virtue of this two-fold interpretation, engineers are attracted to the notion of the failure
rate. In fact, the first interpretation captures their intuitive notions about wear, in the sense that
items that wear out should have a failure rate function that increases with time. Based on the
shape of the failure rate function, in the reliability field, reasonable decisions (e.g. maintenance
actions) which optimize system performance measures can be reached.

On the other hand, the second interpretation is referred to by engineers when the whole
population of nonfailed items is of concern. For example, burn-in procedures are developed
based on this interpretation (see, e.g. Mi (1994) and Cha (2000), (2001), (2003)).

Similarly, in biometry, actuarial, and demographic disciplines the failure rate function is
considered a useful tool for expressing opinions about ageing or attrition over time.

Now we start our main discussions. Consider identical items produced by k manufacturers
(manufacturer 1, manufacturer 2, etc.) belonging to the same manufacturing company. In this
situation, each of these k subpopulations can be considered to be an infinite population as
infinite numbers of items can be produced (theoretically). Suppose that the failure rate function
(defined in accordance with (1)) of an item from subpopulation i is given by

λi(t) = fi(t)

F̄i(t)
, i = 1, 2, . . . , k,

where Fi(t) = 1 − F̄i(t) and fi(t) are the corresponding absolutely continuous CDF and
PDF of subpopulation i, respectively. During a ‘fixed period’, ni items are produced from
manufacturer i, i.e. ni items are randomly selected from subpopulation i, i = 1, 2, . . . , k.
Then all of these produced items from k subpopulations constitute a mixed population of size
N , where N is a fixed constant and N = n1 + n2 + · · · + nk . These items mixed from k

manufacturers during the period then constitute a fixed finite mixed population.
As we have a ‘mixed population’ which is composed of k subpopulations (subpopulation 1,

subpopulation 2, etc.), with corresponding proportions

π1 = n1

N
, π2 = n2

N
, . . . , πk = nk

N
,

the mixture distribution of the population is given by

F(t) = π1F1(t) + π2F2(t) + · · · + πkFk(t),

and the corresponding density function is given by

f (t) = π1f1(t) + π2f2(t) + · · · + πkfk(t).

Then the ‘ordinary failure rate’ which corresponds to the definition in (1) is given by

λ(t) =
∑k

i=1 πifi(t)∑k
i=1 πiF̄i(t)

=
k∑

i=1

πi(t)λi(t), (2)

where the time-dependent probabilities πi(t), i = 1, 2, . . . , k, are

πi(t) = πiF̄i(t)∑k
j=1 πj F̄j (t)

, i = 1, 2, . . . , k.

Suppose now that this finite population ‘lives’ for time t (i.e. all the items in the finite population
are operated during (0, t]) and we have an aged finite population at time t . This situation can
be frequently realized in practice, for instance, when items are burned-in in the reliability field.
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(Burn-in is a widely used engineering method applied to eliminate initial failures in field usage.
See, e.g. Mi (1994), Cha (2000), (2001), (2003), and Ebrahimi (2004).) Suppose now that, at
time t , an item is randomly selected among the ‘survived items’ in the finite population. Then
the questions of interest are the following.

• Can the measure of the proneness to failure of the item randomly selected at time t be
described by λ(t) in (2)?

• Can the proneness of future failure of the item randomly selected at time t be measured
by λ(t + u), u ≥ 0?

Note that, according to the two-fold interpretation described above, πi(t) in (2) can be
interpreted in two ways: (i) the probability that the item randomly selected at t = 0 and
operational at time t will be from subpopulation i; (ii) the probability that the item randomly
selected at time t among survived items in an infinite population will be from subpopulation i.
According to this consideration, if an item in the above mixed finite population is randomly
selected at time t = 0, then we can answer the above two questions in the affirmative. However,
in our setting, the item is selected at time t among survived items in a finite population and a
more careful consideration is needed. In this case, the answer to the first question is given in
Corollary 1, whereas the following theorem gives a general result for obtaining it.

Theorem 1. Consider a finite population with N different items whose lifetimes are denoted
by X1, X2, . . . , XN . Let ri(t) be the failure rate function (defined in accordance with (1)) of
Xi, i = 1, 2, . . . , N . Then the proportion-based failure rate of this finite population is given
by

N∑
i=1

E

[
M ′

i

M ′
1 + M ′

2 + · · · + M ′
N

∣∣∣∣ N ′ > 0

]
ri(t),

where N ′ is the total number of items that survived up to time t and M ′
i , i = 1, 2, . . . , N , is 1

if the ith item survived up to time t and 0 otherwise.

Proof. As we are dealing with a finite population, it is clear that the proportion-based failure
rate should be obtained by applying the limiting measure

lim
�t→0

1

�t
E

[∑N
i=1 1(t < Xi ≤ t + �t)∑N

i=1 1(Xi > t)

∣∣∣∣ at least one unit is alive at time t

]
,

which is called the ‘engineering notion of hazard rate’ in Ebrahimi (1996).
Define the sets A1, A2, and A3 by A1 ≡ [0, t], A2 ≡ (t, t + �t], A3 ≡ (t + �t, ∞), and

the set C by

C ≡ {(c1, c2, . . . , cN) : ci = 1, 2, 3, i = 1, 2, . . . , N, (c1, c2, . . . , cN) 	= (1, 1, . . . , 1)}.
Then observe that

E

[∑N
i=1 1(t < Xi ≤ t + �t)∑N

i=1 1(Xi > t)

∣∣∣∣ at least one unit is alive at time t

]

=
∑

(j1,j2,...,jN )∈C

M2(j1, j2, . . . , jN)

M1(j1, j2, . . . , jN)

× P(Xi ∈ Aji
, i = 1, 2, . . . , N | Xi /∈ A1for at least one i), (3)
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where M1(j1, j2, . . . , jN) is the number of ‘2’s or ‘3’s in (j1, j2, . . . , jN) and M2(j1, j2,

. . . , jN) is the number of ‘2’s in (j1, j2, . . . , jN). Then, in deriving (3) in a more detailed form,
it is sufficient to compute the conditional probabilities only for the sets j1, j2, . . . , jN for which
there is exactly one i such that Xi ∈ A2, as the probability of observing more than one failure
in the interval A2 will vanish when we take the limit ‘�t → 0’. Excluding such ‘eventually
vanishing’ terms, if we focus on the conditional probabilities with ‘X1 ∈ A2’ (unconditional
part) then the sum of these terms in (3) is given by

1

N
P(t < X1 ≤ t + �t, Xj > t + �t, j = 2, 3, . . . , N | at least one Xi > t)

+ 1

N − 1
[P(t < X1 ≤ t + �t, X2 < t, Xj > t + �t, j = 3, . . . , N | at least one Xi > t)

+ P(t < X1 ≤ t + �t, X2 > t + �t, X3 < t, Xj > t + �t,

j = 4, . . . , N | at least one Xi > t)

+ · · ·
+ P(t < X1 ≤ t + �t, Xj > t + �t, j = 2, . . . , N − 1,

XN < t | at least one Xi > t)]
+ 1

N − 2
[P(t < X1 ≤ t + �t, X2 < t, X3 < t, Xj > t + �t,

j = 4, . . . , N | at least one Xi > t)

+ P(t < X1 ≤ t + �t, X2 < t, X3 > t + �t, X4 < t, Xj > t + �t,

j = 5, . . . , N | at least one Xi > t)

+ · · ·
+ P(t < X1 ≤ t + �t, Xj > t + �t, j = 2, . . . , N − 2, XN−1 < t,

XN < t | at least one Xi > t)]
+ · · · + 1

1
P(t < X1 ≤ t + �t, Xj < t, j = 2, . . . , N | at least one Xi > t).

If we take the limit of the above equation after dividing by �t , we obtain

r1(t)
1

N
P(X1 > t, Xj > t, j = 2, 3, . . . , N | at least one Xi > t)

+ r1(t)
1

N − 1
[P(X1 > t, X2 < t, Xj > t, j = 3, . . . , N | at least one Xi > t)

+ P(X1 > t, X2 > t, X3 < t, Xj > t, j = 4, . . . , N | at least one Xi > t)

+ · · ·
+ P(X1 > t, Xj > t, j = 2, . . . , N − 1, XN < t | at least one Xi > t)]

+ r1(t)
1

N − 2
[P(X1 > t, X2 < t, X3 < t, Xj > t, j = 4, . . . , N | at least one Xi > t)

+ P(X1 > t, X2 < t, X3 > t, X4 < t, Xj > t,

j = 5, . . . , N | at least one Xi > t)

+ · · ·
+ P(X1 > t, Xj > t, j = 2, . . . , N − 2, XN−1 < t,

XN < t | at least one Xi > t)]
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+ · · · + r1(t)
1

1
P(X1 > t, Xj < t, j = 2, . . . , N | at least one Xi > t)

= E

[
M ′

1

M ′
1 + M ′

2 + · · · + M ′
N

∣∣∣∣ N ′ > 0

]
r1(t),

where N ′ is the total number of items which survived up to time t and M ′
i , i = 1, 2, . . . , N , is 1

if the ith item survived up to time t and 0 otherwise. Now, as the structure of (3) is symmetric,

lim
�t→0

1

�t
E

[∑N
i=1 1(t < Xi ≤ t + �t)∑N

i=1 1(Xi > t)

∣∣∣∣ at least one unit is alive at time t

]

=
N∑

i=1

E

[
M ′

i

M ′
1 + M ′

2 + · · · + M ′
N

∣∣∣∣ N ′ > 0

]
ri(t).

Corollary 1. For the fixed finite mixed population described above, the proportion-based
failure rate at time t is given by

k∑
i=1

[
1

1 − ∏k
j=1(Fj (t))

nj

×
n1∑

m1=0

n2∑
m2=0

· · ·
ni∑

mi=1

· · ·
nk∑

mk=0

(
mi∑k

j=1 mj

) k∏
j=1

(
nj

mj

)
(F̄j (t))

mj (Fj (t))
nj −mj

]
λi(t).

(4)

Proof. In the fixed finite mixed population considered in Theorem 1, we suppose that ri(t) =
λ1(t), i = 1, 2, . . . , n1; ri(t) = λ2(t), i = n1 +1, n1 +2, . . . , n1 +n2; …; ri(t) = λk(t), i =∑k−1

j=1 nj + 1,
∑k−1

j=1 nj + 2, . . . ,
∑k−1

j=1 nj + nk , where n1 + n2 + · · · + nk = N . Then this
setting corresponds to the fixed finite mixed population we are concerned with in this section
and the proportion-based failure rate at time t is given by

k∑
i=1

E

[
N ′

i

N ′
1 + N ′

2 + · · · + N ′
k

∣∣∣∣ N ′ > 0

]
λi(t),

where N ′
i is the number of items from subpopulation i in the finite population which has survived

up to time t and N ′ = ∑k
i=1 N ′

i . It can be seen that the conditional expectation can be expressed
as

E

[
N ′

i

N ′
1 + N ′

2 + · · · + N ′
k

∣∣∣∣ N ′ > 0

]

= 1

1 − ∏k
j=1(Fj (t))

nj

×
n1∑

m1=0

n2∑
m2=0

· · ·
ni∑

mi=1

· · ·
nk∑

mk=0

(
mi∑k

j=1 mj

) k∏
j=1

(
nj

mj

)
(F̄j (t))

mj (Fj (t))
nj −mj ,

which completes the proof.
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In the following discussion, in order to distinguish the proportion-based failure rate in a
finite population from the ordinary failure rate λ(t), we will use the notation λFN

(t).
The following example illustrates the difference between λ(t) and λFN

(t).

Example 1. Consider a finite mixed population with two subpopulations, and let n1 = n2 = 1.
Suppose that the corresponding failure rate functions are given by λ1(t) = λ1, t > 0, and
λ2(t) = λ2, t > 0. Then the failure rate function in (2) is defined by

λ(t) = e−λ1t

e−λ1t + e−λ2t
λ1 + e−λ2t

e−λ1t + e−λ2t
λ2.

Now we consider the proportion-based failure rate in Corollary 1. In this case, it is not difficult
to verify that the conditional expectations are given by

E

[
N ′

1

N ′
1 + N ′

2

∣∣∣∣ N ′
1 + N ′

2 > 0

]
= (1/2)e−λ1te−λ2t + e−λ1t (1 − e−λ2t )

e−λ1t + e−λ2t − e−λ1te−λ2t

and

E

[
N ′

2

N ′
1 + N ′

2

∣∣∣∣ N ′
1 + N ′

2 > 0

]
= (1/2)e−λ1te−λ2t + e−λ2t (1 − e−λ1t )

e−λ1t + e−λ2t − e−λ1te−λ2t
.

Thus, we have

λFN
(t) = (1/2)e−λ1te−λ2t + e−λ1t (1 − e−λ2t )

e−λ1t + e−λ2t − e−λ1te−λ2t
λ1 + (1/2)e−λ1te−λ2t + e−λ2t (1 − e−λ1t )

e−λ1t + e−λ2t − e−λ1te−λ2t
λ2,

and, therefore, λ(t) 	= λFN
(t).

Remark 1. In Example 1, λ(t) corresponds to the proportion-based failure rate function of an
infinite mixed population composed of two subpopulations (λ1(t) = λ1 and λ2(t) = λ2) with
equal proportions π1 = π2 = 0.5. On the other hand, λFN

(t) is the proportion-based failure rate
function of a finite mixed population with the same structure (i.e. with the same subpopulations
and the same proportions). Thus, intuitively, these two populations might be expected to share
the same probabilistic properties of the lifetime of the components. For example, at time t ,
we randomly select one item among the survivors in the infinite population and one among the
survivors in the finite population. Then, intuitively, reliability characteristics of these two items
could be expected to be the same. However, contrary to our intuition, this is not true.

Remark 2. For the setting considered in this section,

πi(t) = πiF̄i(t)∑k
j=1 πj F̄j (t)

= niF̄i(t)∑k
j=1 nj F̄j (t)

= E[N ′
i ]

E[N ′
1 + N ′

2 + · · · + N ′
k]

.

Therefore, for the type of finite mixed population considered above, λFN
(t) is, as illustrated in

Example 1, different from the failure rate λ(t) defined in accordance with the ordinary definition
in (1). In order to explain the origin of the difference between λ(t) and λFN

(t), it is useful to
understand that, ‘probabilistically’, the two-fold interpretations lead to different types of finite
population, and, thus, they define two different random variables and distribution functions.
Indeed, in the case of the first interpretation, the items randomly selected at time 0 from the
finite mixed population are probabilistically the same as the items randomly selected from an
infinite population with the failure rate given in (2). On the other hand, in the case of the
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proportion-based failure rate λFN
(t) in (4), this is not true. In fact, λFN

(t) in (4) is defined
based on the knowledge of the finite (combinatorial) structure of the survived population (see
also Theorem 2), whereas this knowledge of the structure is not taken into consideration by the
ordinary failure rate λ(t) in (2).

We are now ready to answer the second question raised at the start of this section. It is now
obvious that the proneness of future failure of the item selected at time t can be described by
(2) with λi(t), F̄i(t), and πi replaced by λi(t + u), F̄i(t + u)/F̄i(t), and[

1

1 − ∏k
j=1(Fj (t))

nj

×
n1∑

m1=0

n2∑
m2=0

· · ·
ni∑

mi=1

· · ·
nk∑

mk=0

(
mi∑k

j=1 mj

) k∏
j=1

(
nj

mj

)
(F̄j (t))

mj (Fj (t))
nj −mj

]
,

respectively, i = 1, 2, . . . , k. Therefore, the answers to the two questions for the fixed finite
mixed population are ‘no’.

3. Randomly selected finite mixed population

In this section we consider a finite population constructed from an infinite mixed population
which is composed of k subpopulations (subpopulation 1, subpopulation 2, etc.), with the
corresponding proportions π1, π2, …, πk , respectively. The failure rate function, CDF, and
PDF of the corresponding subpopulations are given by λi(t), Fi(t) = 1 − F̄i(t), and fi(t), i =
1, 2, . . . , k, respectively. Now a finite population of size N (fixed constant) is constructed by
randomly selecting items from the infinite mixed population. Thus, we now have a randomly
selected finite mixed population. Note that the failure rate function for the original ‘infinite
mixed population’ described above is given by (2). Let Ni be the number of items from
subpopulation i in this randomly selected finite mixed population, i = 1, 2, . . . , k. Then,
obviously, Ni ∼ Bin(N, πi) and the conditional survival function for this finite population is
given by

F̄ (t | Ni, i = 1, 2 . . . , k) =
k∑

i=1

Ni

N
F̄i(t).

Thus, the marginal survival function of this finite population is given by

F̄ (t) =
k∑

i=1

E

[
Ni

N

]
F̄i(t) =

k∑
i=1

πiF̄i(t).

The following theorem implies that the proportion-based failure rate function for the above
randomly selected finite population λFN

(t) is also given by λ(t) in (2).

Theorem 2. For the randomly selected finite mixed population described above, the proportion-
based failure rate function λFN

(t) is given by

λFN
(t) =

k∑
i=1

πi(t)λi(t), (5)

where

πi(t) = πiF̄i(t)∑k
j=1 πj F̄j (t)

, i = 1, 2, . . . , k.
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Proof. Let N ′
i be the number of units from subpopulation i, i = 1, 2, . . . , k, in the finite

population which has survived up to time t , and let N ′ ≡ ∑k
i=1 N ′

i . As the survival function of
an item randomly selected from the infinite mixed population is given by

F̄ (t) = π1F̄1(t) + π2F̄2(t) + · · · + πkF̄k(t),

it follows that N ′ ∼ Bin(N, F̄ (t)). Thus, the probability mass function of N ′ given N ′ > 0 is

P(N ′ = n | N ′ > 0) =
(
N
n

)
(F̄ (t))n(F (t))N−n

1 − (F (t))N
, n = 1, 2, . . . , N.

On the other hand, given N ′ = n, n = 1, 2, . . . , N , the conditional distribution of N ′
i is given

by
P(N ′

i = m | N ′ = n)

=
(

n

m

)(
πiF̄i(t)∑k

j=1 πj F̄j (t)

)m(
1 − πiF̄i(t)∑k

j=1 πj F̄j (t)

)n−m

, m = 1, 2, . . . , n,

for i = 1, 2, . . . , k. Thus, we have

E

[
N ′

i

N ′

∣∣∣∣ N ′ = n

]
= πiF̄i(t)∑k

j=1 πj F̄j (t)
, i = 1, 2, . . . , k,

and, therefore, the conditional expectation is given by

E

[
N ′

i

N ′

∣∣∣∣ N ′ > 0

]
=

N∑
n=1

E

[
N ′

i

N ′

∣∣∣∣ N ′ = n

]
P(N ′ = n | N ′ > 0)

= πiF̄i(t)∑k
j=1 πj F̄j (t)

, i = 1, 2, . . . , k,

which completes the proof.

The intuitive meaning of Theorem 2 is as follows. We select N items at random from the
infinite mixed population. As the Nis are not observed (without any further information), each
has the failure rate given in (2). In fact, this infinite population can be considered homogeneous
with items having the failure rate given in (2). As mentioned before, for an infinite population,
the surviving item’s failure rate at time t is then given by (2) whether it is selected at time 0 (the
first interpretation) or at time t among survivors (the second interpretation). Therefore, λFN

(t)

in (5) is the same as the failure rate given in (2).

Remark 3. It is now clear that, for the randomly selected finite mixed population considered
in this section, the two questions raised in Section 2 can be answered in the affirmative.

Remark 4. Suppose that we have an infinite mixed population composed of k infinite subpop-
ulations (subpopulation 1, subpopulation 2, etc.) with corresponding proportions

π1 = n1

N
, π2 = n2

N
, . . . , πk = nk

N
. (6)

The reliability measures for each subpopulation are assumed to be the same as before. From
this infinite population, finite mixed populations are constructed in the following two models.
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Model A. From subpopulation i, ni, i = 1, 2, . . . , k, items are randomly selected and all of
these selected items from the k subpopulations constitute a finite mixed population of size N ,
where N is a fixed constant and N = n1 + n2 + · · · + nk .

Model B. A finite mixed population of size N (fixed constant) is constructed by randomly
selecting items from the infinite mixed population.

Then, the proportion-based failure rate functions for Models A and B are given by (4)
and (5), respectively, with the πis given in (6). Note that, for both of the above two types
of finite mixed population (i.e. Models A and B), the corresponding survival functions are
given by F̄ (t) = ∑k

i=1 πiF̄i(t). However, the proportion-based failure rate functions are
different, depending on the way in which the finite populations are constructed. In the case
of infinite populations there is one-to-one correspondence between the survival function and
the proportion-based failure rate, that is, for the same survival function, the same proportion-
based failure rate is obtained. This is not true in the case of finite populations. In finite mixed
populations, the survival function does not uniquely define the proportion-based failure rate.
How the finite population is constructed is also a crucial factor.

4. Concluding remarks

In this paper we considered two types of finite mixed population: fixed and randomly selected
finite mixed populations. For these two types of finite mixed population, we considered proper
definitions of the proportion-based failure rate function, and investigated the relationships
between these definitions and those for infinite populations. Defining the proportion-based
failure rate function of a fixed finite mixed population in terms of the failure rate functions
of the subpopulations, we showed that the use of failure rate function defined for the infinite
population instead of the appropriately proposed proportion-based failure rate function may give
misleading information. The proportion-based failure rate function for a randomly selected
finite mixed population was also discussed. Lastly, we revealed the important fact that the
survival function of a finite population does not uniquely define the corresponding proportion-
based failure rate function.

In this paper, for convenience, we described and discussed our problems from the viewpoint
of reliability theory. However, applications of the results obtained in this paper should not
be limited to reliability only but could also be generally applied to areas relevant to lifetime
modeling and analysis, such as survival analysis, actuarial sciences, and demographic and
biological disciplines.
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