Erratum to 'Anosov Foliations and Cohomology’

DAVID FRIED
Department of Mathematics, Boston University, Boston, MA 02215, USA

We regret to say that there is an error in the proof of theorem 1 of [\mathbf{F}]. The algebras $E^{*}(U), E^{*}(S)$ used there are not preserved by d, as claimed, save in the restricted case when U and S commute. A counterexample is the nilmanifold automorphism of [AA], Appendix 23. Thus the results of $\S 1$ and $\S 2$ are dubious, although the third section is unaffected.

As a partial correction, we consider the Lefschetz (zeta) function $\tilde{\zeta}$ of an Anosov automorphism $A: X \rightarrow X$ of a compact nilmanifold X and show that it behaves as if A were the Cartesian product of an expanding map and the 'inverse' of an expanding map. Let \mathcal{N} be corresponding Lie algebra, S and U the stable and unstable subalgebras and $\alpha: \mathcal{N} \rightarrow \mathcal{N}$ the differential of A at the identity. As in [F], we can use Nomizu's theorem to identify the cohomology of X with the Lie algebra cohomology of \mathcal{N} and we find

$$
\tilde{\zeta}=\prod_{i}\left[\operatorname{det} I-t\left(\Lambda^{i} \alpha\right)\right]^{(-1)^{\prime+1}} .
$$

Taking the divisor of this rational function we have, in the group ring $\mathbf{Z C}^{*}$,

$$
\operatorname{div}(\tilde{\zeta})=-\Pi_{\lambda}\left([1]-[\lambda]^{-1}\right),
$$

where λ runs over the eigenvalues of α with multiplicity. Grouping these eigenvalues into stable and unstable, we find

$$
\begin{equation*}
-\operatorname{div}(\tilde{\zeta})=\left([1]+\Sigma_{s}+(-1)^{s}\left[\lambda^{-1} \varepsilon_{s}\right]^{-1}\right)\left([1]+\Sigma_{u}+(-1)^{u}\left[\lambda \varepsilon_{u}\right]^{-1}\right), \tag{*}
\end{equation*}
$$

where $\lambda^{-1} \varepsilon_{s}, \lambda \varepsilon_{u}$ are the eigenvalues of the Ruelle-Sullivan classes, $\varepsilon_{s}, \varepsilon_{u} \in\{ \pm 1\}$, $\lambda=e^{h(A)}$, and where Σ_{s}, Σ_{u} are supported in the annuli $1<|z|<\lambda, \lambda^{-1}<|z|<1$ respectively. (*) should be compared to the formula for the Lefschetz function $\tilde{\zeta}$ of a Cartesian product $f_{1} \times f_{2}$ in terms of the Lefschetz functions $\tilde{\zeta}_{1}, \tilde{\zeta}_{2}$ of the factors:

$$
-\operatorname{div} \tilde{\zeta}=\left(-\operatorname{div} \tilde{\zeta}_{1}\right)\left(-\operatorname{div} \tilde{\zeta}_{2}\right)
$$

the formula for the Lefschetz function of an expanding map of degree d on a closed, oriented n-manifold:

$$
-\operatorname{div} \tilde{\zeta}=[1]+\Sigma+(-1)^{n}[d], \operatorname{supp} \Sigma \subset\{1<|z|<|d|\}
$$

and the formula for the Lefschetz function of the inverse f^{-1} of a diffeomorphism (or basic set)

$$
-\operatorname{div} \tilde{\zeta}(f)=\Sigma \pm[\lambda] \Rightarrow-\operatorname{div} \tilde{\zeta}\left(f^{-1}\right)=\Sigma \pm\left[\lambda^{-1}\right] .
$$

One finds that (*) is formally what would hold if $A=A_{1} \times A_{2}^{-1}$ where A_{1}, A_{2} are
expanding maps (or expanding attractors) of degree $\varepsilon_{u} \lambda, \varepsilon_{s} \lambda$. Thus the divisor $-\operatorname{div} \tilde{\zeta}$ factors according to the splitting $\mathcal{N}=S \oplus U$, even though the cohomology itself may not.
[AA] V. I. Arnold \& A. Avez. Ergodic Problems of Classical Mechanics (Benjamin, 1968).
[F] D. Fried. Anosov foliations and cohomology. Ergod. Th. \& Dynam. Sys. 6 (1986), 9-16.

