
THE GENERALIZED KULIKOV CRITERION 

CHARLES MEGIBBEN 

In 1941, Kulikov (5) showed that a ^-primary abelian group G is a direct 
sum of cyclic groups if and only if G is the union of an ascending sequence of 
subgroups each of which has a finite bound on the heights of its elements. 
An easy reformulation of the Kulikov criterion is: A ^-primary abelian group 
G is a direct sum of cyclic groups if and only if G[p] = ©w<»5n where, for 
each ny the non-zero elements of Sn have precisely height n. This statement 
suggests the consideration of reduced ^-groups G such that G[p] — ©«<x Sa 

where, for each a, Sa — {0} C paG — pa+lG. We shall call such ^-groups 
summable (the term principal p-group has been used by Honda (4)). Recall 
that the length of a reduced £-group G is the first ordinal X such that pxG = 0. 
Thus, our reformulation of the Kulikov criterion becomes: A £-group of 
length co is a direct sum of cyclic groups if and only if the group is summable. 

Our aim in this paper is to establish a generalization of the Kulikov criterion 
for direct sums of countable reduced ^-groups. Now if G is such a group, then 
G/paG is a direct sum of countable groups for all ordinals a. Since it is easy 
to construct summable groups G of length greater than co such that G/pwG 
is not a direct sum of cyclic groups (and, therefore, not a direct sum of count
able groups), summability is not enough. Apparently, we must require G/paG 
to be a direct sum of countable groups for all a less than the length of G in 
order to ensure that G is a direct sum of countable groups. This condition is, 
of course, free for groups of length co. Now if a is a countable ordinal and if 
both G/paG and paG are direct sums of reduced countable ^-groups, then G itself 
is a direct sum of countable groups. (This result is due to Nunke (7) and will 
also be proved below). Thus, a generalized Kulikov criterion will be of interest 
only for groups of limit length. My first formulation of such a generalization 
appeared in the joint paper (3). In that paper, the barest outline of a proof 
of the following result was sketched. 

THEOREM A. Let X be a countable limit ordinal. Then a p-primary abelian 
group G of length X is a direct sum of countable groups if and only if G is sum
mable and G/paG is a direct sum of countable groups for all a < X. 

Now, obviously, a direct sum of countable reduced ^-groups has length at 
most Œ and, as is proved in (3; 4), the same applies to summable groups. 
Therefore, Theorem A has the aesthetic fault of not covering the case X = 0. 
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This is unavoidable; for Hill (2) has just recently constructed an example 
that shows the theorem fails for X = 12, as does Theorem B below. The insight 
in Hill's example is the easily seen fact that an uncountable reduced p-group 
with countable Ulm invariants cannot itself be a direct sum of countable 
groups. On the other hand, there does exist a summable group G with 
fG(a) = Xo for all a < 12. 

The version of the generalized Kulikov criterion stated in Theorem A, 
though a rather elegant formulation, proved to be inadequate for my general
izations of the classical results about purity, basic subgroups, etc., which are 
to appear in (6). What is needed in (6) is the following theorem. 

THEOREM B, Let G be a p-primary abelian group of length X, where X is a 
countable limit ordinal. Then G is a direct sum of countable groups provided G 
is summable and, for each a < X, G contains a pa-high subgroup which is a direct 
sum of countable groups. 

In this paper, I shall give detailed proofs of Theorems A and B and shall 
consider certain applications that do not involve homological techniques. I am, 
indeed, able to avoid completely concepts that depend on homological algebra 
for their very statements; for example, ^"-purity and £a-projectivity. Such 
notions, of course, are of great importance in the study of abelian groups; but 
their introduction in the proofs of Theorems A and B (compare the proof of 
Theorem A sketched in (3)) really obscures the simple combinatorial nature 
of the arguments involved. Having decided to avoid such methods, I have 
moreover been able to write a paper that is more elementary and more nearly 
self-contained than would otherwise have been possible. This has, however, 
necessitated reproving some known results and stating a number of elementary 
lemmas. 

Throughout this paper, all groups are assumed to be ^-primary abelian 
groups for a fixed prime p (though many of our results are valid for all abelian 
groups). A subgroup H of G will be said to be isotype if H C\ paG = paH for 
all ordinals a. By a pa-high subgroup of G we mean a subgroup maximal 
among those subgroups of G that intersect paG trivially. pa-high subgroups are 
easily shown to be isotype. Another simple observation: if if is a />a-high 
subgroup of G and a ^ œ, then G/H is divisible. By the height hG(x) of a 
non-zero element x of the reduced ^-group G we mean the first ordinal a such 
that x £ pa+lG. 

1. Summability. For a simple proof that summable groups have length at 
most 12, see (3). Call a subgroup H of G height-finite if the heights (as computed 
in G) of the elements of H assume only finitely many values. If G is a sum
mable group of countable length, then G[p] is the union of an ascending 
sequence of height-finite subgroups. Indeed, if G[p] = ©a<\ Sa, where 
Sa — {0} C paG — pa+lG and if aif a2, . . . , an, . . . is an enumeration of the 
ordinals less than X, then G[p] = UST=i Qn> where Qn = Sai ® . . . © San is 
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height-finite. Conversely, Honda (4), has shown that if G[p] is the union of 
ascending sequence {Qn}n=x of height-finite subgroups, then G is summable. 
The proof is rather obvious. By induction, one constructs decompositions 
Qn = ©«<xS«(B) with Sa™ - {0} Q paG - p«+lG, Sa

w = 0 for almost all a and 
5«<w) ÇS«(W+1). Then G[p] = ©«<x5a, where Sa = U£-iS«(n). As immediate 
corollaries we have: (1) Countable reduced p-groups are summable; (2) Direct 
sums of countable reduced p-groups are summable; (3) Isotype subgroups of 
summable groups of countable length are summable. 

Call a direct decomposition H = 0 î € 7 Hi of the subgroup H of G a normal 
decomposition if 

hG(%i + x2 + . . . + xn) = min[h0(xi), hG(x2), . . . , hG(xn)] 

whenever the distinct x/s belong to distinct H/$. I t is then trivial to show 
that a reduced p-group G is summable if and only if there exists a normal 
decomposition G[p] = ©*€j 7\ with \Tt\ ^ X0 for each i. One, perhaps, 
requires here the obvious observation that the above statement about unions 
of height-finite subgroups applies to subgroups of G[p]: If 5 is a subgroup of 
G[p] such that 5 is the union of an ascending sequence of height-finite 
subgroups, then there exists a direct decomposition 5 = © a <\5 a with 
Sa ~ {0} CZ paG — pa+1G for each a. This suggests the obvious extension 
of the notion of summability to what we might call summable subsocles. 

2. A decomposition theorem. This section is devoted to a proof and some 
consequences of the following result. 

THEOREM 2.1. If H is a subgroup of the p-group G such that 
(1) pa(G/H) = p«G + H/Hfor all a < 0, 
(2) paGr\H = paHfor all a £ p, and 
(3) G/H is countable of length at most 0, 

then H is a direct summand of G. 

First we need to show that the properties (1) and (3) of Theorem 2.1 are 
inherited by finite subextensions of H. 

LEMMA 2.2. If S/H is a finite subgroup of G/H and if H satisfies conditions 
(1) and (3) of Theorem 2.1, then S also satisfies these conditions. 

Proof. To show that condition (1) is satisfied by 5 we proceed by induction. 
Assume that y < 13 and that pa(G/S) = paG + S/S for all a < y. Let 
x + S e py(G/S). If 7 = a + 1, then x + S = p(y + S) for some 

y + Se p«(G/S) = p«G + S/S. 

Thus, we may assume that y G paG, and therefore x + S = py + 
S G pyG + 5 /5 . Suppose, however, that 7 is a limit. Then, for each a < 7, 
we write x + S = za + 5, where za G p*G. Then x — za = sa + ha> where 
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sa G 5, ha G H, and the sa's assume only finitely many values. Therefore, 
there is a fixed s G 5 and a set A C {a: a < 7} such that sup 4̂ = 7 and 
x — za = s + ha with ha £ H for each a f i . Then x — s + i i = za + 
H G paG + # / i ? for all a G 4 . Since sup A = 7, x - s + H G py{G/H) = 
p^G + H/H and we can write x — s + H = z + H with s Ç p*G. But then 
x + 5 = s + 5 Ç ^ G + 5/5 . 

The proof that pfi(G/S) = 0 is similar, requiring separate consideration for 
the two cases (i) ft = a + 1 and (ii) ft a limit ordinal. In either case, beginning 
with an x + 5 G PP(G/S), we find an 5 G 5 such that 

x - 5 + if 6 pe(G/H) = 0, 

and therefore x — 5 G i i , or x + 5 = 0. 

Proof of Theorem 2.1. We call a mapping <j>: S—> T between subsets of G 
height-increasing if hG(<f>(x)) ^ hG(x) for all x G 5. Since G/His countable, 
it suffices to prove the following: If 

(i) S/H is a finite subgroup of G/H, 
(ii) px G 5, and 

(iii) </>: S->H is a height-increasing homomorphism such that <f>\H — 1#, 
then 0 extends to a height-increasing homomorphism $: (5, x) —» H. Assume 
(i), (ii), (iii), and x (? 5. Then hG/s(x + 5) = a for some a < ft. Therefore 
x + 5 = y + S with y G ̂ G . Since py £ S and (x, 5) = (y, 5), we may 
assume that x G £"(?. We then have hG{x + s) S hG/s(x + 5) — hG{x) = a 
for all 5 f 5. Since a + 1 ^ 0, we have an h G ^ a i i such that 

Define <f> on (5, x) by 4>{nx + s) = nh + <j>(s) whenever n G Z and 5 Ç 5. 
I t is then routine to show that $ is a well-defined, height-increasing homo
morphism that extends <£. 

As a corollary to Theorem 2.1, we have the following theorem, which has 
been proved in greater generality in (1; 3). 

THEOREM 2.3. Let H be a subgroup of the p-group G such that 
(1) (G/H)/pe(G/H) is countable, 
(2) H + p^G/p^G is a direct summand of G/p^G, 
(3) Hnp?G = pm, and 
(4) />*G = pm © L. 

77**» G = H ® K with K Z> L. 

P/-0O/. We write G/p?G = (H + p^G)/p^G © M/p^G. By an inductive 
argument, the details of which we leave to the reader, we establish that 
(H + paG) r\M = paGC\M for all a g 0. Next we show that paG C\ H = paH 
for all a ^ )3. Indeed, suppose that paG C\ H = paH for all a < 7 S j8. If 7 is 
a limit, we immediately have pyG C\ H = pyH. Suppose then that 7 = a + 1 
and let x G pyG P\ i i . We can write x = p(h + m), where h G H} m G ili, 
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and h + m G PaG. But then m Ç (H + paG) C\ M = paG C\ M, and therefore 
h = (h + m) - m G £aG C\ H = paH. Thus, x-ph = pmeHr\M = 
HC\ptG = £0JÏ and a = (x - ph) + ph £ p^H. To show that pa{G/H) = 
p<*G + H/H for all a g 0, it suffices to show t h a t M ( G / # ) / £ a G + # / # ] = 
pa{G/paG + H) = 0 for all a ^ 0. I t is enough then to show that G/paG + H 
is isomorphic to a subgroup of G/paG. However, 

G/H + p<*G = (H + p«G) + M/(H + p«G) ^ M/M H (if + paG) 

= M/p«G r\ M^paG + M/paG C G/£aG 
for all a S 0. 

We wish to apply Theorem 2.1 not to H but rather to H ® L/L = 
H + pPG/L. We observe that: 

(1) p«[(G/L)/(H ® L/L)] ^ p«(G/H ® L) = ^ ( G / J Ï + £'G) 

ç*p«((G/H/pe(G/H)) = p*(G/H)/pf>(G/H) ^paG + H/p^G + H 

^ (£«G + H/L)/(pf*G + H/L) = (p«(G/L) + H ® L/L)/(H ® L/L). 

Since the composition of the four isomorphisms in the above sequence of 
equations is just the identity on (G/L)/(H ® L/L), we have equality 
between the end terms for all a < p. 

(2) p«(G/L) C\H ® L/L = p<*G/L C\ H ® L/L = (p>G H H) ® L/L 

= paH ® L/L Qpa(H ® L/L) for all a ^ (3. 

(3) (G/L) (H ® L/L) s G/H + p?G ^ (G/p^G)/(H + p^G/p^G) 

= (G/H)/p*(G/H) 

is countable of length at most 0. Applying Theorem 2.1, we obtain 
G/L = H ® L/L ® K/L and therefore G = H ® K. 

To apply Theorem 2.1 to the proof of Theorem B, we require a few more 
lemmas. 

LEMMA 2.4. If pa{G/H)[p] = (paG)[p] + H/H for all a < X and if X is a 
limit ordinal, then pa(G/H) = paG + H/H for all a < X. 

Proof. Suppose that 0 < X and that pa{G/H) = £aG + # / # for all a < 0. 
Case 1. 0 = a + 1. Let * + if £ PP(G/H) and write x + if = p(y + H) 

with y 6 pa{G/H) = £aG + JÏ/JÏ . We may then assume that y Ç p«G, and 
therefore x + H = py + H£ p&G + H/H, as desired. 

Case 2. 0 is a limit. Assume that we have established 

pe(G/H)[pn] C pf>G + H/H 

and let x + H £ ^(G/JEOb*+1]. Then />»(* + H) G p*+*(G/H)\p] = 
( ^ w G ) b ] + # / # since 0 + n < 7. Thus pnx + H = pnz + Hy where 
2 Ç (^G)[£n+1] and (x - z) + H e p^(G/H)[pn] C ^ G + ff/ff. Therefore 
x ~ 2 + if = ^ + H with w 6 ^ G a n d x + i î = (z + w) + H Ç p^G + ff/ff. 

https://doi.org/10.4153/CJM-1969-132-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-132-9


KULIKOV CRITERION 1197 

LEMMA 2.5. If K/H is a divisible subgroup of G/H and if pa(G/H)[p] = 
(P«G)[p] + H/H, then p«(G/K)[p] = (p*G)\p] + K/K. 

Proof. We can write G/H = K/H © M/H. Let x + K G p«(G/K)[p] and 
write x = k + m with k G H and m G M. There is an obvious isomorphism 
<t>: G/K -> M/H such that 0(x + K) = m + H. Therefore 

m + H G £«(ikf/#)|>] ^ P"(G/H)\p] = ( ^ G ) b ] + # / # • 

Thus, there is a s G (£"£)[£] such that nt + H = z + H, and consequently 
x + X = m + i^ = 2 + ^ 6 (#"G)^] + # / # . 

LEMMA 2.6. //" -K w a pa+n-high subgroup of G where n < co, /feew 
G\p*] Ç Xb*] + £aG /or a// i£n+ 1. 

Proof. G\p] = i£|>] 0 (£a+wG)[£] £ i£[£] + £«G. Suppose that 

G\p*] C X[£<] + £«G, 

where i ^ n and let x G G[£*+1]. Then £*x = k + £w2, where & G -£"[/>] and 
s G paG. However, k = plx - pnz G p'G H X = £*if, and therefore k = p^x 
for some &i G if. We then have x - ki - pn-lz G G[p*] C if |>*] + £«G, 
from which it follows that x G if 0*+1] + £aG. 

The next lemma should be worth the reader's effort to prove. 

LEMMA 2.7. Ifp«(G/H)[p] = (p«G)[p] + H/Hfor all a < 0, then p'G C\H" = 
paH for all a ^ 0. For 0 ^ co, /Ae converse holds. 

LEMMA 2.8. 7/ ii" is a direct summand of a pa-high subgroup of G, then 
py(G/H)[p] = (pvG)[p] + H/H for all y ^ a. 

Proof. Now H is necessarily a pure subgroup of G, and therefore the desired 
equality follows for all y < co by Lemma 2.7. We may therefore assume that 
a ^ co. Let a = f$ + n, where n < cc and $ is a limit ordinal. Suppose that 
H © M is a £a-high subgroup of G. We assume that the lemma has been 
established for all ordinals à < a. Now if co ̂  ô < a and if 4̂ is a £5-high 
subgroup of ii", then A is the direct summand of a £5-high subgroup of G. 
Indeed, A © B is £ô-high in G if 5 is £5-high in If. Thus, by our inductive 
assumption, p8(G/A)[p] = (p8G)[p] + . 4 / 4 . However, i J / 4 is divisible and 
therefore, by Lemma 2.5, p*(G/H)[p] = (£5G)[£] + # / # . We conclude then 
that we have the desired equality for all y < a. 

Showing that pa(G/H)[p] = \paG)[p] + H/H is obviously equivalent to 
showing that p*(G/H)[pn+1} = (p^G)[pn+1] + H/H. Let 

x + H epe(G/H)[pn+i]. 

By the purity of H, we may assume that x G G[pn+l] and, by Lemma 2.6, we 
can write x = h + m + z, where A G H[pn+l}} m G -Mty**1], and z G £*G. 
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Since fi is a limit, we may (by Lemma 2.4) write, for each y < fi, x + H = 
z7 + H, where zy G pyG. Thus, for each y < fi, we have an equation 
x = h + m + z = hy + zy with h7 G i7. Therefore 

h-hy + mepyGn(H@M) = pyH®pyM and wG Cl pyM = p*M. 

Consequently, we have the desired result 

x + H = (m + z) + H G (pPG)[pn+l] + fl/iï. 

3. Proof of Theorem B. We approach the proof of Theorem B somewhat 
cautiously, choosing to prove some very technical preliminary lemmas. 

LEMMA 3.1. Let K = ©*<=/ Kt be a subgroup of G such that each Kt is countable. 
If H is a subgroup of G such that H H K = © î € r Kt and if A/H is a countable 
subgroup of GIH, then there is a subgroup M of G such that A C M, M/H is 
countable, and M C\ K = @ieJ Kf for some subset J of I. If, moreover, G/K 
and H/H C\ K are divisible, then M can be chosen so that M/M P\ K is also 
divisible. 

Proof. A P\ K/H H K is countable, and therefore there is a countable 
subset I" of I such that ©*£/" Kt contains a complete set of representatives 
of A r\ K/HC^K. We need only set M = A + ®,€z" Kt = A + ®^jKu 

where J = V \J I". 
Suppose, however, that we also have G/K and H/H C\ K divisible. We 

first prove that if B/H is countable, then there exists an N 2 B such that 
N/H is countable and B C pN + K. Indeed, if bi, b2, . . . , bn, . . . is a com
plete set of representatives of B/H, we choose elements g\, g2, . . . , gn, . . . 
such that bn — pg G i£. If -Af is generated by B and the gn's, then iV/iJ is 
clearly countable and B C £iV + i£. I t is then evident that we can choose 
two ascending sequences of subgroups 

i Ç I i Ç I 2 Ç . . . Ç I » Ç . . . and Nx ç iV2 C . . . c Nn ç . . . , 

where MJH and Nn/H are countable for each », Mw C\ K = ®ian Ku 

Mn Q Nn Ç Afn+i, and Afn Ç £iVw + X for each ». We then need only set 

CO CO CO 

M = U Mn= U Nn and J = \J In. 
n=l n—\ n = l 

The conditions M = LC=i ^ and iV„ Ç £iVw+i + K ensure that M/MC\K 
is divisible. 

We now extend Lemma 3.1 to take care of countably many K's. 

LEMMA 3.2. Let {Kn}n=i be a sequence of subgroups of G and suppose, for 
each n, that Kn = ®i^inKn

(i), where each K^ is countable. Let P be a subset 
of the positive integers such that G/Kn is divisible for each n G P. If H is a 
subgroup of G such that H C\ Kn = ® i € /n ' Kn

(i) for each n and H/H C\ Kn is 
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divisible whenever n G P and if A /H is a countable subgroup of G/H, then there 
is a subgroup M of G such that A C M, M/H is countable, M C\Kn= ®i^jn Kn

{ l) 

for each n, and M/M P\ Kn is divisible whenever n 6 P . 

Proof. Let n\, n^, . . . , nk, . . . be a sequence running infinitely through the 
positive integers, that is, for every pair of positive integers k and n there is a 
j > k such that nj = n. We construct by Lemma 3.1 an ascending sequence 
Mi Ç M2 Q . . . Q Mk Ç Mfc+i C . . . of subgroups of G each containing 4̂ 
and such that, for each k, Mk/H is countable, Mk C\ Knjc = @iQTnk

k Knk\ 
and Mk/Mk C\ Knjc is divisible whenever nk £ P . Set M = \Jk=i Mk and, for 
each n, let J"n be the union of all Ink

k for which nk = n. Since, for each n, M is 
the union of those Mk such that nk = n, it is easily verified that M has the 
desired properties. 

We require one further lemma before proceeding to the proof of Theorem B. 

LEMMA 3.3. Let H be a subgroup of G such that pa (G/H) [p] = (paG) [p] + H/H 
for all a < X. Suppose, further, that there is a normal decomposition G[p] = 
H[p] © S, where S is a summable sub socle such that S C\ pxG = 0. Then G/H 
is a summable group of length at most X. 

Proof. Let S = © a < x Sa with Sa - {0} Q paG - pa+1 G for each a. Then 
(G/H)[p] = G[p] + H/H = 5 0 H/H = ©a < x (Sa 0 ff/ff). We need only 
show that, for each a < X, the non-zero elements of Sa © i ï / i ï have precisely 
height a in G/H". Since the decomposition G[p] = #[£] 0 5 is normal, 
(£"G)[p] = (H[p]r\p«G) 0 (Sr\p*G) = ( H b ] n ^ « G ) 0 9 ^ ^ . There
fore 

£ a(G/#)[£] = (p°G)[p]+H/H = (SC\paG)+H/H = © (S^®H/H) 

= (5« 0 ff/H) 0 © (Sfi 0 ff/H) = (Sa 0 H/H) © Pa+\G/H) [p]. 

Proof of Theorem B. For each a such that « ^ a < X, let Ka be a pa-high 
subgroup of G which is a direct sum of countable groups and fix direct de
compositions Ka = ©î€ja KJ with each i£a* countable. Let G[p] = © i € / 7\ 
be a normal decomposition with each Tt countable. Choose a well-ordering 
{g/*}»/* < -Wf °f the elements of G. Since X is countable, the Ka can be 
enumerated and therefore, using Lemma 3.2, we construct a well-ordered 
family {iJM},/z < M, of subgroups satisfying the following conditions: 

(1) Ho = 0, H» Ç i J , for /x < ç and iJM = U<r<M #<r if /* is a limit; 
(2) &, e H„+i; 
(3) Hlir\Ka= ©i€7aM i£a* for each a; 
(4) iJM+i/i7M is countable ; 
(5) HJHp C\ Ka is divisible for each a\ 
(6) HM[p] = 0 , € i * 7\. 

By Lemma 2.8, pa(G/Hfi)[p] = OaG)[£] + i V # M for all a < X. Therefore, 
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by Lemma 2.7, each iJM is isotype and, by Lemma 2.4, pa(G/HfJL) = 
paG + H^/H» for all a < X. These two conditions combine to yield 

p^H^/H,) = p«H»+1 + H JH, 

for all a < X. By Lemma 3.3, H^+i/H, has length at most X. Finally» 
p*H»+x P H» = (£*G P i^+i) P #M = £«£ P #M = £«#M for all a ^ X. 
Therefore, Theorem 2.1 yields a direct decomposition i ^+ i = H, © LM for 
each \x < M. Consequently, G = ®,<M L, is a direct sum of countable groups. 

4. A theorem of Nunke. Using homological techniques, Nunke (7) first 
proved the following theorem. 

THEOREM 4.1. If 13 is a countable ordinal and if G is a reduced p-primary 
abelian group such that both G/p^G and p&G are direct sums of countable groups, 
then G is a direct sum of countable groups. 

A non-homological proof has been given in (3). We shall give another here. 
First we need the following purification lemmas. 

LEMMA 4.2. If /? is a countable ordinal and x Ç p&G, then there is a countable 
subgroup N of G such that x £ p^N. 

Proof. By induction on /3. The result is trivial for /3 = 0. Assume that it 
has been established for all ordinals a < fi. 

Case 1. P = a + 1. Then there exists a y £ paG such that x = py. By 
induction, there is a countable subgroup N such that y 6 paN. But then 
x = py £ pa+lN = p$N. 

Case 2. 0 is a limit ordinal. Then x £ paG for all a < 13. By induction, there 
exists, for each a < $, a countable subgroup Na such that x Ç ^aiVa. Let TV 
be the subgroup generated by all the Na's. Clearly, N is countable and 

x e n«<* paNa ç rw/s £<w = P*N. 
LEMMA 4.3. Let 13 be a countable ordinal and let H be a subgroup of G such 

that p$G P H = pfiH. If A/H is a countable subgroup of G/H, then there exists 
a subgroup K of G such that A C K, K/H is countable, and p&G P K = p&K. 

Proof. Since A P p^G/p^H ÊË (A P p?G) + H/H Ç A/H, we can choose 
a sequence ai, a2, . . . , an, . . . that forms a complete set of representatives 
for A P pPG/pPH. By Lemma 4.2, there is for each n a countable subgroup 
Nn such that an £ p^Nn. Let i£i be generated by A and all the Nn's. Then 
Ki/H is countable and, as is easily seen, A P ^ G Ç p?Ki. Continuing in 
this manner we construct a sequence I i Ç I 2 Ç , . . of subgroups with 
KJH countable and Kn P pf*G Q ppKn+1. Set K = U"=i Kn. 

The proof of Theorem 4.1 requires the same sort of combinatorial game 
played in the proof of Theorem B. Actually, however, things are somewhat 
simpler. The requisite lemma is the following. 

https://doi.org/10.4153/CJM-1969-132-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-132-9


KULIKOV CRITERION 1201 

LEMMA 4.4. Let 13 be a countable ordinal and let S be a subgroup of G such that 
S = ®ieiBi and G/S = ®J^JAJ, where each Bt and each Aj is countable. 
Suppose that H is a subgroup of G such that H P\ S = ©w Bu H + S/S = 
®JÇ.J' Aj, and p^G C\ H = p?H. If A/H is a countable subgroup of G/H, then 
there exists a subgroup M of G such that A Ç M, M/H is countable, M C\ S — 
0 i € / " Bu M + S/S = ®J€J„ A j , and p?G H M = pt>M. 

Proof. Now A + S/H + S is clearly countable. Therefore there is a count
able subset J* of J such that © ;€j* A j that contains a complete set of 
representatives of (A + S/S)/(H + S/S). Now if V is generated by a com
plete set of representatives of ©;e/* 4̂ ,̂ then F is a countable subgroup of G 
such that V + S/S = ©,€J* 4 , . Set Mi = A + N and Jx = J'KJ J*. Then 
Mi/H is countable and Mi + 5 /5 = ©^.n -4^. From this construction of 
Mi and from Lemmas 4.3 and 3.1, it is then evident that there exist three 
ascending sequences of subgroups Mi C M2 £ . . . Q Mn C . . . , 
iVi £ N2 Q . . . ç Nn C . . . , and JSTX C K2 C . . . C i£„ C . . . such that 
H Q Mn Cl Nn Q Kn Q Mn+i, MJH is countable for each n, Mn + S/S = 
®^JnAj, NnC\S= ®tvnBu and p*G C\ Kn = p*Kn. Set M = U n l i ^ n , 
/ " = U ^ i A , a n d / " = U ^ i / . . 

Pnw/ o/ Theorem 4.1. Write G/^G = ©,e, ^ and £*G = ©*<:/£*, where 
each ^ and each Bt is countable. Choose a well-ordering {gM}, ju < M, of the 
elements of G. Using Lemma 4.4, we construct a well-ordered family 
{JÏM}, fi < M j of subgroups of G satisfying the following conditions: 

(1) Ho = 0, H» CI i l , for /x < o-, and i7M = U(r<M #* if M is a limit; 
(2) &, Ç ffM+1; 
(3) H.nptG = ®iv,Bù 
(4) H» + peG/p*G= ®jej,Aj; 

(5) p?G r\ H, = ptH,; 
(6) Hp+i/Hp is countable. 

Clearly p^H^+i H iJM = ^^i?M and ^ifM = ©*€//* 5,- is a direct summand of 
p^Hp+i = ©JG/M+i^i- Now under the canonical isomorphism 

#„+! + ^ G / ^ G -> H^i/pW^i, 
iJM + pPHp+i/ptHp+i is the image of iJM + p^G/p^G. Since the latter is a 
direct summand of #M+i + p^G/p^G, the former is a direct summand of 
Hp+i/pPHn+i. All the conditions of Theorem 2.3 are satisfied and hence, for 
each fi < M, we have a direct decomposition H^+i = iJM 0 LM. Therefore 
G = ®H<M Lu is a direct sum of countable groups. 

5. A theorem of Hill and the proof of Theorem A. In addition to proving 
Theorem A, we give in this section a proof of Hill's theorem on isotype sub
groups of direct sums of countable groups that is far simpler than that given 
in (1). As a special case of Hill's theorem, we first establish the following result. 

PROPOSITION 5.1. If a is a countable ordinal and if G/paG is a direct sum of 
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countable groups, then every pa-high subgroup of G is a direct sum of countable 
groups. 

Proof. The proof is by induction on a, where we may surely assume that 
a ^ co. Assume that the proposition is established for all ordinals less than a 
and write a = (3 + n, where P is a limit and n < co. Let H be a pa-high sub
group of G. Then by Lemmas 2.8 and 2.4, G/H = py(G/H) = ^ G + ff/i? 
for all y < fi. Therefore 

ff/^ff ^ ^ G + # / ^ G = G/pyG ^ (G/p«G)/py(G/p«G) 

is a direct sum of countable groups for all y < £. Thus 

(H/pPH)/py(H/peH) ^H/pm 

is a direct sum of countable groups for all y < $ and, by our induction 
hypothesis, each ^-high subgroup of H/p^H is a direct sum of countable 
groups. Since H/p^H = H + p^G/p^G and the latter group is isotype in the 
summable group G/p$G} H/p^H is summable. Theorem B then applies to 
show that H/p^H is a direct sum of countable groups, and therefore, by 
Theorem 4.1, i? itself is a direct sum of countable groups. 

Remark 5.2. Proposition 5.1 fails for a = 12. Indeed, if p®G ^ 0, a pQ-high 
subgroup of G cannot even be summable, much less a direct sum of countable 
groups. The proof of this assertion is easy. For suppose that H is summable 
and a £fi-high subgroup of G, where p®G 9^ 0. For some n < co, the (12 + n)th 
Ulm invariant of G is non-zero, that is, G[p] has an element of height 12 + n. 
If K 3 H is taken to be a £Q+n+1-high subgroup of G, then K is obviously a 
summable group of length exceeding 12, which is known to be impossible. 

We now actually have Theorem A proved. The conditions that G be sum
mable and G/paG be a direct sum of countable groups are obviously necessary. 
Proposition 5.1 together with Theorem B show these conditions to be sufficient. 

The following theorem is due to Hill (1). 

THEOREM 5.3. If H is an isotype subgroup of G having countable length and if 
G is a direct sum of countable reduced p-groups, then H is also a direct sum of 
countable groups. 

Proof. Let X be the length of H. Since H © pxG/pxG is isotype in G/pxG, 
there is no loss of generality in assuming that G also has countable length X. 
The proof is by induction on X. We assume that the theorem has been estab
lished for all lengths a < X. Then H + paG/paG is isotype in G/paG for all 
a < X and, by our induction hypothesis, H/paH ~ H + paG/paG is a direct 
sum of countable groups for all a < X. 

Case 1. X = a + 1. Then both H/paH and paH are direct sums of countable 
groups, and the conclusion follows from Theorem 4.1. 

Case 2. X is a limit. We have H/paH as a direct sum of countable groups 
for all a < X and that H, being isotype in the summable group G of countable 
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length, is summable. Theorem A then implies that H is a direct sum of 
countable groups. 

6. Further applications. Nunke (8), using properties of the functor Tor 
showed that if one pa-high subgroup of a p-group is a direct sum of countable 
groups, then they all are direct sums. The use of Tor in establishing such a 
result strikes me as unnatural and it is therefore pleasing that I can give a 
group-theoretic proof of this result. First, the following lemma is needed. 

LEMMA 6.1. Let H and K be pa-high subgroups of G, where a = f3 + n with 
n < co. Then the correspondence h + p&H <-> k + p$K if and only ifh — k£ p$G 
yields an isomorphism between (H/p^H)[p] and (K/p&K)[p] that preserves 
heights (as computed in H/p^H and K/p^K). 

Proof. I t suffices to show that for each h Ç H such that ph £ p&H there 
exists a k G K such that h — k Ç p$G. Indeed, once this is established, it will 
be evident that the correspondence is well-defined, one-to-one, additive, and 
height-preserving. Suppose then that h Ç H and ph (E pfiH. We may assume 
that h Q K. Then (K, h) C\ paG j* 0, and therefore there is a ki € K and a 
zi e P0G such that h + p*h = pnzx ^ 0. Since K C\ paG = 0, i S n, and 
there is a k2 G K such that ki = pik2. By Lemma 2.6, 

k2 + h - pn~% e G[p*] C K\p*] + p'G, 

and therefore h = (fe3 — k2) + pn~% + z for some &3 G ^ [£ f ] and z G ^ G . 
Let & = kz — k2. 

THEOREM 6.2. If one pa-high subgroup of the p-group G is a direct sum of 
countable groups, then each pa-high subgroup of G is a direct sum of countable 
groups. 

Proof. By Remark 5.2, we may assume that a is countable. Obviously, we 
may also take a ^ co. Write a = (3 -{- n, where /3 is a limit and n < co. Let 
H and i£ be £a-high subgroups of G and suppose that H is a direct sum of 
countable groups. Then H/p^H is also a direct sum of countable groups and, 
by Lemma 6.1, K/p^K is at least summable. Now & is a limit, and, as observed 
in the proof of Proposition 5.1, we must have H/p^H ^ G/p^G = K/p^K 
for all 7 < p. Therefore, by Theorem A, K/p^K is a direct sum of countable 
groups. However, p$K is bounded and thus, by Theorem 4.1, K itself is a 
direct sum of countable groups. 

PROPOSITION 6.3. If G/paG is summable for all a ^ X, where X is countable, 
then G/p^G is a direct sum of countable groups. 

Proof. By induction on X. Assume that the proposition has been established 
for all ordinals less than X. 

Case 1. X = ix + 1. By the inductive hypothesis, G/p^G is a direct sum of 
countable groups. But then both (G/p*G)/p»(G/pxG) ^ G/p*G and p^G/p^G) 
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are direct sums of countable groups, and therefore the desired conclusion 
follows from Theorem 4.1. 

Case 2. X is a limit. By our inductive assumption, (G/pxG)/pa(G/pxG) ~ 
G/paG is a direct sum of countable groups for each a < X and, since G/pxG 
is summable, Theorem A yields the conclusion that G/p*G is a direct sum of 
countable groups. 

COROLLARY 6.4. If G is a p-group of length Œ, then the following conditions 
are equivalent: 

(1) G/paG is a direct sum of countable groups for all a < 12; 
(2) G/paG is summable for all a < U. 

COROLLARY 6.5. Let X be a countable limit ordinal and let G be a p-group of 
length X. Then the following conditions are equivalent: 

(1) G is a direct sum of countable groups; 
(2) G is summable and G/paG is a direct sum of countable groups for all a < X; 
(3) G/paG is summable for all a ^ X; 
(4) G is summable and, for each a < X, the pa-high subgroups of G are direct 

sums of countable groups. 

We can easily translate these results to statements about Ulm subgroups 
and Ulm factors. Recall that the ath Ulm subgroup Ga of G is defined by 
Qa = pœ«Q a r i ( j j-j^t t^e afc Ulm factor is the quotient group Ga/Ga+1. The type 
of a p-group G is the smallest ordinal r such that GT = 0. 

LEMMA 6.6. Let T be a countable ordinal. Then G/p^G is a direct sum of 
countable groups for all fi < cor if and only if G/Ga is a direct sum of countable 
groups for all a < r. 

Proof. If P < cor, we can write 13 = coa + n with n < co and a < r. Then 
we have 

G/G« = G/p™G^ (G/peG)/(p"G/peG) = (G/p^G)/p-a(G/p^G). 

Thus, pua(G/pPG) is bounded and, if G/Ga is a direct sum of countable groups, 
G/p^G is a direct sum of countable groups by Theorem 4.1. 

THEOREM 6.7. Let G be a p-primary abelian group of countable type. Then G 
is a direct sum of countable groups if and only if 

(1) all Ulm factors of G are direct sums of cyclic groups and 
(2) G/Ga is summable for all limit ordinals a. 

Proof. Condition (2), in particular, tells us that G is summable. Therefore, 
whether or not G has limit length, it is clear that G will be a direct sum of 
countable groups if G/p^G is a direct sum of countable groups for all fi less 
than the length of G. Let r be the type of G. Then, by Lemma 6.6, it suffices 
to show that G/Ga is a direct sum of countable groups for all a < r. Assume 
then that a < r and that we have established that G/G& is a direct sum of 
countable groups for all £ < a. 
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Case 1. a = y + 1. Then (G/G«)/p«v(G/G«) = (G/G»)/(G*/G") ^ G / C is 
a direct sum of countable groups by our induction hypothesis. Furthermore, 
p^{G/Ga) = &/& = Gv/G*+l is a direct sum of cyclic groups by (1). Thus, 
by Theorem 4.1, we conclude that G/Ga is a direct sum of countable groups. 

Case 2. a is a limit ordinal. Then G/Ga = G/p^G is summable by (2). 
However, by induction, G/Gy is a direct sum of countable groups for all 
7 < a. But then, by Lemma 6.6, G/p^G is a direct sum of countable groups for 
all /S < œa. An application of Theorem A yields the desired conclusion that 
G/p^G = G/Ga is a direct sum of countable groups. 

COROLLARY 6.8. Let G be a summable p-group of type œ. Then G is a direct 
sum of countable groups if and only if all of its Ulm factors are direct sums of 
cyclic groups. 

Finally, we mention that some of the most striking applications of the 
generalized Kulikov criterion occur in (6), though a familiarity with Nunke's 
paper (7) is essential to full understanding of that paper. In particular, it is 
in (6) that one perceives that our Theorem B is the more potent formulation 
of the generalized Kulikov criterion. 
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