
Appendix G

Relativistic quasielastic scattering

If one scatters an electron from a nucleon at rest to a final state of discrete
mass, then, as was shown in chapter 12, the Lorentz invariant response
surfaces take the following form1

Wi(q
2, q · p) = wi(q

2)
m2

p′
0

δ(p0 − p′
0 − q0) ; i = 1, 2 (G.1)

For a Dirac nucleon

w1 =
q2

4m2
(F1 + 2mF2)

2

w2 = F2
1 +

q2

4m2
(2mF2)

2 (G.2)

For elastic scattering from an isolated nucleon, it was shown in chapter
12 that ∫

dε2 δ(m − E′ − q0) =
E′

m
r

r−1 ≡
(

1 +
2ε1 sin2 θ/2

m

)
(G.3)

Hence the differential cross section for elastic scattering is given by

dσ

dΩ
= σM

[
w2(q

2) + 2w1(q
2) tan2 θ

2

]
r (G.4)

This is the celebrated Rosenbluth cross section.

1 In this section, momenta denote four-vectors so that q2 ≡ q2
μ. We explicitly denote the

three-vectors by q, etc.
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An alternative way to proceed is to rewrite the energy-conserving delta
function in Eq. (G.1) as

m2

p′
0

δ(p0 − p′
0 − q0) = 2m2 δ[(p0 − q0)

2 − p′2
0 ]

= 2m2 δ[(p − q)2 − p′2]

= 2m2 δ(2p · q − q2)

= mδ

(
ν − q2

2m

)

=
m

ν
δ(1 − x) (G.5)

Here

ν ≡ p · q
m

; x ≡ q2

2mν
(G.6)

The quantity ν = ε1 − ε2 is the electron energy loss in the lab, and x is the
Bjorken scaling variable. Three-momentum conservation has been used in
arriving at the second equality in Eq. (G.5) and the fact that this is elastic
scattering so that p2 = p′2 = −m2 in the third.

Note also that the combination

q2

4m2
δ

(
ν − q2

2m

)
=

1

2m

q2

2mν
δ

(
1 − q2

2mν

)

=
1

2m
δ(1 − x) (G.7)

Hence for elastic scattering from an isolated nucleon, the response surfaces
are given by

ν

m
W2 = δ(1 − x)w2(q

2)

2m

m
W1 = δ(1 − x)w̄1(q

2)

w̄1 ≡ 4m2

q2
w1(q

2) = (F1 + 2mF2)
2

w2 = F2
1 +

q2

4m2
(2mF2)

2 (G.8)

If one now models the nucleus as a collection of non-interacting nucleons
at rest, the nucleon cross sections can just be summed; equivalently, the
structure functions take the form

ν

m
W

(A)
2 = δ(1 − x)[Zw

p
2(q

2) + Nwn
2(q

2)]

2W
(A)
1 = δ(1 − x)[Zw̄

p
1(q

2) + Nw̄n
1(q

2)] (G.9)
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This is the world’s most naive model of the nucleus; however, it does
have the following features to recommend it:

• It is completely covariant, assuming only that the nucleons are at
rest in the lab frame and remain nucleons after the scattering. The
nuclear response tensor has the correct Lorentz covariant structure;

• The nuclear current is conserved, and the structure of the nuclear
response tensor reflects this fact;

• The nucleons can have arbitrarily large final four-momentum p′ =
p − q; the calculation still holds;

• When divided by the appropriate single-nucleon response functions,
the nuclear response tensors exhibit Bjorken scaling, depending only
on the variable ν through the Bjorken scaling variable x appearing
in the factor δ(1 − x).

It is a simple matter to generalize the above to the situation where the
target nucleon is moving with momentum p. There are two changes that
one has to consider:

1) From the definition of the initial flux as the number of particles
crossing unit area transverse to the beam per unit time, one has

Iinc =
1

Ω
vrel ·

(
k1

k1

)

=
1

Ω

(
k1

k1
− p

E

)
·
(

k1

k1

)

=
1

Ω

√
(p · k1)2

Ek1
(G.10)

This is exactly the same expression used previously in obtaining the
invariant form of the cross section in Eq. (11.20). Hence it is appropriate
to start from there.

2) Since the electron tensor is conserved, the terms in the nucleon tensor
proportional to qμ and qν can be discarded in the contraction of the two.
The required replacements are therefore:

ημνδμν → ημνδμν

ημν
pμpν

m2
→ 1

m2
[2(p · k1)(p · k2) + (k1 · k2)m

2]

=
1

m2

[
2(p · k1)

2 + q2(p · k1) − 1

2
q2m2

]
(G.11)

The first contraction, given entirely in electron variables, is unchanged. For
a nucleon at rest in the lab frame with pμ = (0, im), the second contraction
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takes the previous form

1

m2
[2(p · k1)(p · k2) + (k1 · k2)m

2] = 2ε1ε2 cos2
θ

2
(G.12)

For a moving nucleon, one simply evaluates Eqs. (G.11) for

pμ = (p, iE) = (p, i
√

p2 + m2) (G.13)

The cross section for scattering a massless Dirac electron from a Dirac
nucleon moving with initial momentum p in the lab is thus given by(

d2σ

dε2dΩ2

)
mov nucl

= σM
mε1√

(k1 · p)2
2m δ(2p · q − q2)

{
2w1(q

2) tan2 θ

2

+w2(q
2)

1

2m2ε1ε2 cos2 θ/2

[
2(p · k1)

2 + q2(p · k1) − 1

2
q2m2

]}
(G.14)

Now suppose the nucleus is modeled as a collection of non-interacting
nucleons where there are n(p2) d3p nucleons moving with momentum be-
tween p and p+dp. This could, for example, be the momentum distribution
for nucleons in an independent-particle shell model2

n(α)(p2) =
∑
i

|φ(α)
i (p)|2 ; α = p, n (G.15)

One can again just add the individual cross sections.
The third modification required for this case, in addition to the previous

two, is as follows:
3) The expression for the energy-conserving delta function now takes

the form

2m

∫
n(p2) d2p⊥ dp‖ δ(2p · q − q2) =

2m

2q

∫
n(p2) d2p⊥ dW

(
∂p‖
∂W

)
δ(W )

=
m

q

∫
n(p2

⊥ + p2
‖) d

2p⊥

(
∂p‖
∂W

)

W ≡ p‖ +
ω

q
(p2

⊥ + p2
‖ + m2)1/2 −

q2
μ

2q
= 0

∂W

∂p‖
=

Eq + ωp‖
Eq

(G.16)

The equation W = 0 determines p‖(p
2
⊥, q, ω) where now q ≡ |q| and

ω = −q0 = ε1 − ε2.

2 Closed shells are assumed and hence the distribution is a function of p2.
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The resulting nuclear cross section is given by an incoherent sum(
d2σ

dε2dΩ2

)(A)

= σM
m

q

∑
α=n,p

∫
n(α)(p2

⊥ + p2
‖) d

2p⊥

×
(

Eq

Eq + ωp‖

)
mε1√

(k1 · p)2
{

2w
(α)
1 (q2) tan2 θ

2

+w
(α)
2 (q2)

1

2m2ε1ε2 cos2 θ/2

[
2(p · k1)

2 + q2(p · k1) − 1

2
q2m2

]}
(G.17)

Here p‖ is again determined from W = 0.
These are exact results within this model. The nuclear current is again

conserved, and the nucleon can be scattered through arbitrarily large
(q, ω). While achieving these goals, it is important to note that the kine-
matics for electron scattering on a free nucleon have been employed, as
well as the dispersion relation for a free initial nucleon in Eq. (G.13).
Final-state interactions and modification of the initial nucleon spinors
have been neglected.

To obtain some insight into this answer, specialize to the case where
|p/E| = |(v/c)initial| � 1. To leading order, the coefficients in the cross
section reduce to those in Eq. (G.8), and the only change is to introduce
a new quantity into the previous y-scaling analysis in Eq. (23.36)

ỹ ≡ mω

q
−

q2
μ

2q
(G.18)

This is energy–momentum conservation to order (v/c)2initial. Note again,
(q, ω) can be arbitrarily large as long as the nucleon remains a nucleon.
y-scaling is discussed in much more detail in the review article [Da90],
and also in [Do99].
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