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Abstract

A class of non-standard optimal control problems is considered. The non-standard feature
of these optimal control problems is that they are of neither fixed final time nor of fixed
final state. A method of solution is devised which employs a computational algorithm
based on control parametrization techniques. The method is applied to the problem of
maximizing the range of an aircraft-like gliding projectile with angle of attack control.

1. Introduction

A class of optimal control problems which frequently occurs in practice has the
non-standard feature that they are of neither fixed final time nor of fixed final
state. These problems arise in attempting to maximize the range of an aircraft-like
gliding projectile when angle of attack is considered as the control variable. This
paper describes a computational algorithm, devised to solve such problems, and
gives an example of its application to determining the maximum range of a
gliding projectile.

The technique employed is developed from that used in [2], [5], [6], [9]-[13],
[15], and [18]. This technique is known as the control parametrization technique.
It involves the approximation of the control variables by piecewise constant
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394 K. L. Teo et al. [21

functions with the instants of switching being preassigned. With this approxima-
tion, the original problem is converted into a sequence of optimal parameter
selection problems. Each of these optimal parameter selection problems can be
viewed as a finite dimensional optimization problem with linear constraints. Thus,
they can be solved by any standard quasi-Newton algorithm, such as the one
summarized in Appendix IV of [16]. Their optimal solutions will then give rise to
suboptimal controls of the original optimal control problem in an obvious
manner.

2. Problem statement

Consider the following non-linear differential equation

*{t)=f(t,x(t),u(t)),*>0 (la)
where x = ( jc l t . . . , xn) e R" and u = (uv..., ur) e Rr are, respectively, the
state and control vectors, and / is continuously differentiable in all its variables.
The initial condition for the differential equation (la) is

JC(O) = x° (lb)
where x° is a given vector in R".

Let

U= {v=(vl,...,vr)<ERr:(Ci)Tv^bi,i = l,...,

where C , i = 1, . . . , q, are r vectors, bi7 i = 1, . . . , q, are real numbers, and the
superscript'T' denotes transpose.

A bounded measurable function from [0, 00) -» U is called an admissible
control. Let °U be the class of all such admissible controls.

For each u e °ll, let x(u) denote the corresponding solution of the system (1).
Let $: R" -* R1 be continuously differentiable, and let T be the first positive
time such that

• ( * ( i i ) ( r ) ) - o (2)
Clearly, the terminating time T depends on w and is a variable. This differs
significantly from the well-known case where T is fixed. In the latter case, the
end-point lies on a curve given by 4>(x(u)(T)) = 0, so that the boundary
condition for the co-state is a " transversality condition"

for I > 0. In the case considered in this paper, the boundary condition for the
co-state needs to be derived differently, as the terminating time T is now a
variable rather than fixed. The derivation of this boundary condition is also the
main theoretical contribution of this paper.
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[ 3 ] Computational method for free time optimal control problems 395

It is assumed that, for each u e ' ? , there exists a T < oo such that condition
(2) is satisfied. This assumption is not really a "restriction" as we will see in
Section 5, where an example involving the maximization of the range of an
aircraft-like projectile is considered.

We may now state the optimal control problem, denoted by (P), formally as:
Subject to the system (1), find a control u e % such that the cost functional

J(u) = F(x(u)(T))+fTfo(t,x(u)(t),u(t))dt (3)

is minimized over <2e, where T is such that condition (2) is satisfied.
For the functions F and /0, we assume that the following conditions are

satisfied:
1. F: R" -* R1 is continuously differentiable.
2. f0: [0, oo) X R" X U -* R1 is continuously differentiable in all its variables.

3. A control parametrization algorithm

In this section, our aim is to devise a computational algorithm for solving the
problem (P), by using the control parametrization technique. The method em-
ployed is similar to that used in [5], [6], [9], [11]-[13], [15] and [18].

To begin, we will describe the method by which the sequence of optimal
parameter selection problems, whose solutions 'converge' to the solution of the
optimal control problem (P), is constructed.

Since the process involves choosing parameters on a finite number of intervals,
we need to choose some upper bound Tmax, so that T*, where T* corresponds to
the optimal control u* and is such that

0 < T* < Tmax.

In practice, the computational algorithm may require that Tmax be considerably
larger than T*.

Having chosen Tmax, let {Ip} be a sequence of partitions of the interval
[0, rmax], such that I" has np elements, Ip+l is a refinement of lp, and \\IP\\ -* 0
as p -> oo, where \\IP\\ denotes the length of the largest interval in the partition

Further, let Dp be the class of all those piecewise constant functions from
[0, Jmax] into Rr which are consistent with the partition Ip. Let op be the vector
of values which uniquely describes a function u in Dp, and let 2 be the class of
all such vectors.

To restrict the controls in <^l n Dp, the control restraints are reduced to:

(C') r<tf<*,, k = ! , . . . , « . ; / = ! , . ..,<?, (4)
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where

°p = (CTf»• • • > °n ) G ^p ̂  f° r e a c n ^ = 1. • • • > np,
 a£ is a r vector.

The problem (P) may now be approximated by the following problem:
Subject to the system

y(t)-f(t,y(t),o") (5a)

y(0) = x° (5b)
find a parameter vector ap e 2 such that

7 (c ' ) = i=t J ^ ' ) ^ ) ) + fTf0(t, y(o»)(t), o") dt (6)
•'o

is minimized over 1p, where y(op) denotes the solution of the system (5)
corresponding to the parameter vector op e ~2p, T is the first positive time such
that

*(y(o»)(T)) = 0, (7)
and / and f0 are, respectively, constructed from / and f0 in an obvious manner.
More precisely,

f(t,y(o')(t),o')=f(t,x{u)(t)Mt))
and

fo(t,y(o')(t),o')=f0(t,x(u)(t),u(t)),
with

«(0 - E <tfx/t(0.
where X/t denotes the characteristic function of Ik, Ik = [tk_i,tk), k =

Thus, to solve the optimal control (P), we suggest that one solves the finite
dimensional optimization problem (Pp) successively for p = p0, plt p2,...,
where p,, i = 0 , 1 , . . . , are positive integers such that pi+l is some multiple of />,-.

In order to devise a computational method for solving the problem (Pp), we
will need to derive a formula for the gradient of the cost functional J.

To begin, we define the Hamiltonian function H as follows:

H(t,y,a^.)^fo(t,y,a)+f(t,y,a)-i, (8)

where " •" denotes the usual inner product in a Euclidean space.
Now, for each ap e 2^, let us consider the following system

, y(o»)(t),o»,>Kop){t)), t e [0,T] (9a)
(9b)
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(s ] Computational method for free time optimal control problems 397

where T is the first positive time such that condition (7) is satisfied and is
assumed to be a continuous point of the functions / 0 and / .

d/9yH(t, y(o")(t), ap, *(o'X0) = 9/dyH(t, y, a", *(op)(t)) I ,-,<.'X0 i s t h e

gradient of H(t, y, ap, 4>(op)(t)) with respect to y evaluated at y = y(op)(t); and
d/dyF(y(op)(T)) and d/dy$(y(op)(T)) are to be understood similarly.

THEOREM 1. For each integer p > 0, consider the problem (Pp). Then, the
gradient of the cost functional (6) evaluated at ap is given by

Ja(o
p)= fT d/doH(t,y(op)(t),op,t(o>>)(t))dt (10)

PROOF. Let ap e 1p be given, and let pp e R"'r be such that ap + pp e I,p.
Then,

ap(e) = ap + epp = e(ap + pp) + ( l - e)ap e 2^

for all e, 0 < e < 1.
For brevity, let y(-) and y(-,e) denote, respectively, the solutions of the

system (5) corresponding to ap and ap(e). Furthermore, let T(e) be the first
positive time such that

Clearly,

y(t,e) = xo+f'f(r,y(r,e),cp(e))dr (12)
and yo

y(T(e), e) = x°+ fTU) / ( r , y(r, e),o»(e)) dr. (13)
•'o

Differentiating each of these expressions with respect to e, and then letting
e -* 0 gives

d/dey(t, e) | , . o = / ' { 9/dy/(r, y(r), a") • d/dey(r, e) | e=0
•'o

+ d/daf(j,y(r)>ap)-pp}dT (14)

and

d/dey(T(e), e) | . . o = jT { 9 / 8 ^ / ( T , J ( T ) , a") • d/dey(r, e) | ,_0

( e ) | , . o (15)

where we have used T = T(e) | e_0 in the upper hmit of integration in the second
expression.
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For convenience, let us adopt the following notation.

= d/dey(t,e)\t.o

and

8T=d/deT(e)\e_0

Substituting these abbreviations into equations (14) and (15), it follows, respec-
tively, that

( { , T ) - P ' } < / T (16)

and

+f(T,y(T),o')8T

= 8y(T)+f(T,y(T),o')8T. (17)

Since

J(o'(e)) = F(y(T(e), e)) + fT{e) fo(r, y(r, e),o»(e)) dr,

we have

J(o"(e)) = F(y(T,e),e) + fT(e) {H(t,y(t,e),a"(e),4>(t,e))

-f(t,y(t,e),a"(e))-4>(t,B))dt, (18)

where \p(-,e) denotes the solution of the co-state system (9) corresponding to
o/7(e). Hence,

d/dej(a"(e)) | e_0 = d/dyF(y(t)) • d/dey(T(e), e) \ e_0

£ {Hy(t) • 8y(t) + Ha(t) • PP

} dt+fo(T,y(T),a")ST

+f~(t,y(t),op)-8t(t)}dt, (19)
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where \p() denotes the solution of the co-state system (9) corresponding to ap,
and where

and

Again for convenience, let

f(t,e)=f(t>y(t,e),ap(e)),

f(t)=f(t,y(t),o"),

fo(t,e)=f0(t,y(t,e),oP(E)),

and
W)=W,y{t),o»).

Then, by (17), equation (19) can be written as
SJ(op) = Fy(y(T)) -(8y(T) + f(T)ST)

^ [Hy{t) • Sy(t) + Ha(t) • p" + H^t) • 8^(0} dt

T-fT {d/def(t,e)\e=0 • +(t) +/(/) • 8^(0} dt+fo(T)8T.

(20)
Now, we note that

j,{t) = -Hy(t) (21)

and
y{t) = H,(t). (22)

Thus, (20) is reduced to
= Fy(y(T)) -(8y(T) + f(T)8T)

+ f {-4,(0 • 8y(t) + Ha(t) • P" + f(t) • 8^(/)} dt

- f {d/def(t,e) |,_0 • +(t) +f(t) • 8i(t)} dt + fo(T)8T

= Fy(y(T))-(8y(T)+f(T)8dT)

+ f {Ho{t) • p" - [i(t) • 8y(t) + d/def'(t, e) \ , . o • ^(0]} dt

+fo(T)8T. (23)
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However,

d/def(t,e)\e=o=fy(t)-8y(t)+fa(t)-p>>

and, from (16), we have

Thus, it follows from (20) that

SJ(oP) = Fy(y(T))-(8y(T) +f(T)8T)

+ fT {Ha(t) • p» - d/dt( + (t) • Sy(t))} dt

+fo(T)8T

= Fy(y(T))(8y(T)+f(T)8T)

+ tTHa(t) -Ppdt- \*{t) • 8y(t)]T
0 + fo(T)8T. (24)

•'o

However,

imphes that

8y(0) = 0.

Hence,

8J(o") = Fy(y(T))-(8y(T) +f(T)8T)

+ JTHa(t) • p'dt - ^{T) • 8y(T) +fo(T)8T. (25)
•'o

Now, let us consider the constraint:

Differentiating with respect to e, and then letting e -» 0 gives:

*y(y(T)) • d/dey(T(e), e) \ c . o = 0, (26)

where %(y(T)) = d/dy<P(y)\yay(T).
Combining (26) and (17), we have

0 = *y(y(T))(8y(T)+f(T)8T)

= %(y(T)) • 8y(T) + %(y(T)) -f{T)8T.

Hence,

( 2 7 )
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Substituting (27) into (25), we obtain

8J(o») = Fy(y(T))-8y(T)

\F( (T\\ ?(T\- \Fy(y{T)) -f(T) -

+ fT' Ha{t)-Ppdt-t{T)-8y(T). (28)

Now, by virtue of (9b), it is clear that

8J(o») = (THa(t)p"dt. (29)
Jo

Since

SJ(ap) = d/deJ(o'(e))\._0 = Jo(o») • p"

and since pp e R"'r is such that
op + p»(E 2 p ,

we conclude that

•'o
Thus, the proof is complete.

We are now in a position to construct an algorithm for solving the problem
(Pp) as follows:

1. Set k = 0 and select an initial guess ap'k e 2p .
2. Integrate the system (5) with ap = ap'k forward in time from 0 until Tk such

that \$(y(op'k)(Tk)\ < e9, where E9 is a preset tolerance, and then integrate the
co-state system (9) with ap = ap'k backward in time from Tk to 0.

3. If tj < Tk< tJ+1 (i.e., Tk lies in the _/th decision interval), then set
(0, i>j+l

[Tk d/dolH(op'k)(t,op'k)dt,
J'j

'' d/doiH(op'k)(t,o"'k)dt,

where

f •*,..., a£*) , ork=(opik,...,op;k),

and d/da,H(ap'k)(t,ap'k) denotes the Ah vector of d/doH(op-kXt,op-k)
4. Solve for 6p-k e 2^ so that

Jo(o
p-k)-6p'k= mnJa(o"-k)-op,
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where

5. Solve for \p k> 0 (by a line search) so that

J(ap-k + \p,k(o
p-k - a"'k)) = min{J(o"-k + \p(d»-k - op>k)): Xp>

and op-k + Xp(a
p-k - ap-k) e 2

6. Set ap-k+1 = ap'k + Xp k(d
p-k - ap-k).

7. Stop if Xp k = 0; otherwise go back to Step 2 with a = ap-k.
Practical considerations require us to terminate the algorithm if any of the

following conditions is satisfied.
(a) If while integrating the system forward / = Tmax and \<b(y(op'k)(t)\ > e®

then stop, as we need a larger Tmax. Restart the problem with the control obtained
just prior to termination as the initial guess.

REMARK. Recall that the terminating time T in Theorem 1 is assumed to be a
continuous point of the functions /0 and / , and that op-k e 2 p determines
uniquely a control

where /, = [t,_v tt). Now, in Step 2 of the algorithm, Tk is the terminating time.
Thus, it is clear that Tk is a continuous point of the functions /0 and / only if
Tk * tL for all L e { l nf). If there exists an L e ( l , . . . , / i f ) such that
Tk = tL, then Tk is no longer a continuous point of the functions /0 and / . Thus,
we need to alter the definition of up<k as follows:

where

Sf-k = af-k forall/*L

and

5f-k = a['k for/=L +
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111) Computational method for free time optimal control problems 403

Then, we write 6p'k as ap'k and go to Step 3. Here, it is not necessary to go back
to Step 2, as the corresponding result of Step 2 would remain the same as before.
With this modification, Tk is now a continuous point of the functions / and /0,
also. In practice, it is, however, most unlikely that there would exist an L e
{ 1 , . . . , np } such that Tk = tL.

COMMENTS ON STOPPING CRITERIA.

i. eo > 0 is the required tolerance in $. In numerically integrating the system
forward we will often integrate through a zero of 0 with a large integration step.
In practice, we test for a sign change in 4> after each integration step. If a sign
change occurs in 0 but d^(y(ap'k)(t))\ > e^, we repeat the previous integration
step with half the previous step size. This process is repeated until the required
tolerance is obtained.

ii. Bj > 0 is a sufficiently small decrease in the cost functional for the optimiza-
tion routine to claim a minimum.

iii. ex > 0 is a sufficiently small step size for the optimization routine to claim a
minimum.

4. Implementation of the algorithm in a FORTRAN program

For fixed time optimal control problems, a corresponding algorithm may be
found in [11], [12], and [15]. This algorithm has already been implemented by the
third author at the School of Mathematics, University of New South Wales,
Australia, as a FORTRAN program, CONOPT. This FORTRAN program has
been modified by the fourth author to cover the problem under discussion by
using the algorithm developed in the previous section. The details of the imple-
mentation are not relevant to this paper. We shall, however, remark that the
optimization is carried out using a linearly constrained quasi-Newton method,
originally developed by Fletcher in [4], as implemented in the Harwell subroutine
library with minor modifications. A summary of this method may be found in
Appendix IV of [16].

5. An example: an aircraft-like projectile

In this section, we shall consider a model which describes a gliding projectile.
This projectile could be launched from an aircraft flying near sea level, with the
aircraft being placed in a steep climb just prior to the launch of the projectile, or
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Figure 1. Model of an aircraft-like projectile.

the projectile could be launched from a launching pad. The aim is to launch the
projectile at a point as far as possible from the target.

The model has 4 state variables X(t) = (xx(/), x2(t), x3(t), x4(/)) and one
control variable, u{t). It is shown in Figure 1. The state variables represent the
following quantities.

xx(0 = x = horizontal distance from launch point
x2(t) = h = vertical distance above launch point
x3(t) = v = speed of the projectile
x4(t) = 0 = the angle between the velocity vector and the horizon.

The control variable is
M(/) = a(t) = the angle of attack of the projectile.

The mathematical description of this model is:

x =

h = v sin $

(30a)

(30b)
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113 ] Computational method for free time optimal control problems 405

6=-(kDo + kDia
2)o2-gsin8 (30c)

6 = kLav-$-cos6 (30d)

with the fixed initial conditions

*(0) = (0,0,370.0,1.5),

where

kDo = 3.289 X lO"5/*!"1,

kDi = 1.133 X lO"3™"1,

kL = 3.289 X lO^m"1.

The problem is then to find a control u e W which maximizes the cost
functional

J(u) = x(T) (31)

subject to the dynamical system (30), where T is the first positive time such that

h(T) = 0 (32)

and U is the class of admissible controls which consists of all bounded measura-
ble functions u: [0, oo) -» R1. In this problem, the terminating criterion is defined
by (32).

Since the problem is highly nonlinear and very nonconvex, we can only expect
to obtain a local, rather than global, minimum. Consequently, our algorithm
should produce "better" local minimum if a good estimate of initial u(t) is
entered. For this reason, we shall first use a calculus of variations approach (cf.
[3]) to obtain an estimation of some asymptotic results of the problem.

Let us consider the following related problem.
Subject to the dynamical system (30), find a control u e L2 so that the cost

functional

J{u) = jTx{t)dt (33)

is maximized over L2.
Incorporating the state constraints using Lagrange's method of undetermined

multipliers, the problem becomes to maximize

J(u) = JT G(t,x(t),h(t),v(t),K'),Ht),Ht),6{t),Kt))dt, (34)•'o
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where

G = *(/) + Xo(0(» +(^D0 + kDa2)v2 + gsind)

+ Xe(t)U - kLav + ^ costf)

+ XH(t)(h - usind) + Xx(t)(x - ucosfl).

Substituting this in the Euler equations and considering the component of G
which does not include the 'dot' terms x,h,v,6 as H gives the following
equations

x = vcosO,

h = usinfl,

i> = -v2(kDo + kDa2) -gsinfl,

6= k.av - - cos0 ,
L v

Q

\ v = 2\vkDv - ^$2 c o s ^ ~ ^ / , s i n ^ + cos6,

a

Xe = \vgcos6 - \ e - sin0 - Xhvcos8 - usintf,

H = -ocosfl +(\kj/KD2
]jX2

e/Xv

-Xu(kDu2 + gsind) - Xe^- costf +

= constant.

These equations, which are the necessary conditions for the functional (34) to
have a maximum (or a minimum), can be solved if all the initial conditions are
known. However this is not the case. Although the initial conditions for the
trajectory, ^(0), are known; we do not know the initial conditions for the
Lagrange multipliers, 6(0). Nonetheless, some asymptotic results are available if
we assume that impact occurs when the time is large enough for these asymptotic
results to be closely approached.

Assume v, 6, a, Xh -* 0 for large /. Also, for optimal solutions with 'free' final
boundary conditions on v and 6 we have Xv = Xe = 0 for the final value of /.
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T h e asymptotic results obtained are:

of -» gcosOf/(kL]JkDo/kD2),

af

These results indicate that a -> 0.17 asymptotically. We will use this result in
the numerical solution of the maximum range problem.

In the statement of the problem in Section 2, we assume that for each u e <2f,
there exists a T < oo such that <fr(X(T)) = 0. We mention that this is not
necessarily a "restriction". In reference to the problem stated in this section, we
see that it is certainly not a restriction. In this particular case, <b(X(T)) = h(T),
and no matter what control we should choose, the physics of the model ensures
that at some time the projectile will strike the ground, and the condition
Q(X(T)) = 0 is satisfied.

Since the algorithm is designed to find minima of the cost functional, while we
desire to find the maximum range of the projectile, we implement the equivalent
problem of minimising the negative of the final range.

The problem, which is to be solved, uses

F(x(t)) = -Xj(r) = -x(t), (- the final range)

in the cost functional.
We proceed to select T as 400 seconds and recall that the asymptotic behavior

of the projectile should include a constant control of 0.17.
With this information, we make an initial estimate of the control as

M = / ° f o r O < / < 4 0
^ ' \0.17 for40 < / < 400

where / = 40 seconds is approximately the time at which the projectile reaches the
peak of its trajectory if zero control is used throughout the whole time. More
precisely, if zero control is used throughout the whole time, the projectile reaches
the peak of its trajectory at approximately t = 38 seconds, where the nearest
switching point occurs at t = 40 seconds, and hence 40 seconds instead of 38
seconds is chosen as the switching time. The application of the algorithm to this
initial estimate produces a range of 43302m. Let the corresponding trajectory and
control be referred to as trajectory 1 and control 1, respectively.
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Beginning with this control we obtain an improved range of 44151m. The
trajectory and control so obtained are to be referred to as trajectory 2 and control
2, respectively. The final dip reaches a minimum height of 0.500m at a range of
40.7 km before recovering and proceeding to climb to subsequent peak of 90m.

Using the initial portion of the control 2 until the time when the peak of the
trajectory 2 is reached and then a subsequent control of 0.17, the algorithm is
applied again. The control and trajectory produced are included in Figure 2 as
control 3 and trajectory 3.

We proceed to modify the program providing the implementation to incorpo-
rate the facility to vary the length of the decision intervals over the initial
(climbing) phase of the projectile's path.

The subsequent applications of the algorithm use 1 second decision intervals
for the first 40 seconds and 8 seconds decision intervals, as previously, for later
times. Since we have a good analytic asessment of the final behaviour we now
concentrate our attention on the initial phase of the projectile's path.

The initial estimate supplied for the modified algorithm is control 3. The
trajectory and control which are produced from this by applying the modified
algorithm are included as trajectory 4 and control 4 in Figure 3, where the range
is 45490m.

In an attempt to determine whether or not a constant glide path gave a superior
performance, we now re-configure the problem so that the control is fixed at 0.17
for times greater than 80 seconds. A switching time of 80 seconds is chosen
because when a control of 0.17 is used from the peak of the trajectory onwards
(trajectory 1 and control 1) the oscillations in the glide path have smoothed out
after an elapsed time of 80 seconds.

The initial estimate used is zero for the first 40 seconds, and then a constant
control of 0.17. The resulting optimal solution (trajectory 5 and control 5 in
Figure 4) gives a smooth control in the climbing phase of the trajectory, which is
as hoped for, but a range of only 43702 m. This is also a good example of the
insensitivity of the range to the control.

In a search for an easily implemented control, we proceed to cut off the peak in
the control near 0.13 and reduce all values above 0.17 to 0.17 to produce control
6. The corresponding trajectory (trajectory 6) has a final range of 43666m, a loss
of only 336m.

An examination of the controls produced by the algorithm up to this point in
relation to the corresponding maximum ranges would seem to indicate that the
model is insensitive to the control, in that a wide range of possible controls
produce comparable final ranges. This is in fact what one would expect, since any
model which was subject to large changes in the final range due to small changes
in the control would represent a very unstable physical system.
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Figure 4(a). Trajectory 5: Range = 43702 m.
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Figure 4(b). Control 5: Range = 43702 m.
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