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Cuntz Algebra States Defined by
Implementers of Endomorphisms of the
CAR Algebra
Michael J. Gabriel

Abstract. We investigate representations of the Cuntz algebra O2 on antisymmetric Fock space Fa(K1)
defined by isometric implementers of certain quasi-free endomorphisms of the CAR algebra in pure
quasi-free states ϕP1 . We pay special attention to the vector states on O2 corresponding to these repre-
sentations and the Fock vacuum, for which we obtain explicit formulae. Restricting these states to the
gauge-invariant subalgebra F2, we find that for natural choices of implementers, they are again pure
quasi-free and are, in fact, essentially the states ϕP1 . We proceed to consider the case for an arbitrary
pair of implementers, and deduce that these Cuntz algebra representations are irreducible, as are their
restrictions to F2.

The endomorphisms of B
(

Fa(K1)
)

associated with these representations of O2 are also consid-
ered.

1 Introduction

In [2], generalizing the results of [15], the author studies the isometric implemen-
tation of non-surjective quasi-free endomorphisms of the self-dual CAR algebra in
pure quasi-free states. The motivation for this was the author’s speculation that im-
plementable quasi-free endomorphisms might be useful in the construction of local-
ized endomorphisms for free Fermi fields with non-abelian gauge groups. The ex-
plicit construction of sequences of implementers of such quasi-free endomorphisms
is the main result of [2]. By definition, these satisfy the Cuntz relations and thus
define representations of the Cuntz algebras on antisymmetric Fock space.

The Cuntz algebras are a class of C∗-algebras whose importance cannot be over-
stated. Since their introduction in [7], they and their representation theory have
been the focus of a great deal of attention. In recent years, for example (in a setting
very different from ours), there has been much interest in particular Cuntz algebra
representations and their connection with multiresolution wavelet theory [4], [6],
[12]. The study of Cuntz algebra representations on a Hilbert space H is not only
interesting in its own right, but also because of its relation with the theory of endo-
morphisms of B(H) [3], [13]. In this paper we set about investigating such repre-
sentations which are defined by the implementers of quasi-free endomorphisms, in
particular, addressing the question of their irreducibility.

In order to test for irreducibility, the approach we adopt is to consider the vec-
tor states on the Cuntz algebras associated with them and the antisymmetric Fock
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Cuntz Algebra States 695

vacuum vector. Now the implementers constructed in [2] do not lend themselves in
full generality to computations of the type to be found here, and so we carry out our
investigations for the quasi-free endomorphism associated with the unilateral shift,
with its implementation in specified quasi-free states. (Note that this means that we
are dealing with representations of the Cuntz algebra O2.) We begin by obtaining ex-
plicit formulae for these states (for natural choices of implementers) and find that in
fact, the vector states we obtain take a surprising and very interesting form. Conse-
quently we focus further attention on them, particularly considering their restriction
to the subalgebra fixed under the gauge action. It turns out that on identifying the
gauge-invariant subalgebra F2 with the CAR algebra, these states when restricted to
F2 and considered as states on the CAR algebra are again pure and quasi-free. Un-
expectedly, they are in fact the quasi-free states in which the endomorphism is being
implemented. (Though this finding arises as a by-product of our investigations into
the Cuntz algebra representations, we feel it is our most interesting result.) Showing
that the vacuum vector is cyclic for these Cuntz algebra representations, and also for
their restrictions to the gauge-invariant subalgebra, we are able to deduce that both
representations are irreducible. We also consider the case for an arbitrary pair of
implementers.

Certainly, even for the specific quasi-free states chosen here, one could make sim-
ilar computations to those found in this note for alternative quasi-free endomor-
phisms. For example one could simply consider the endomorphisms generated by
higher powers of the unilateral shift, and still obtain simple formulae for the analo-
gous vector states on the Cuntz algebras O2n , for n ≥ 2. However, it is the interesting
formulae that we obtain in our case (closely related to the original quasi-free states
in which the endomorphism is being implemented) that we feel justifies our concen-
tration on these particular choices.

The paper is organized as follows. In Section 2 we set notation and state back-
ground definitions and results that will be needed in the sequel. In Section 3 the
explicit computation of the Cuntz algebra state is given for a natural choice of imple-
menters. We proceed in Section 4 to show that the vacuum vector is cyclic for these
Cuntz algebra representations, and also for their restrictions to the gauge-invariant
subalgebra. We then identify the gauge-invariant subalgebra with the CAR algebra,
and show that these states, as states on the CAR algebra, are the pure quasi-free states
in which the endomorphism is being implemented. From this we deduce irreducibil-
ity of the representations of O2 and F2, and discuss the case for an arbitrary pair of
implementers. We conclude Section 4 with some further observations on these states
and on induced endomorphisms of B(H).

2 Preliminaries

The self-dual CAR algebra ASDC (K,Γ) over a Hilbert space K with distinguished
conjugation Γ, is the unital C∗-algebra generated by the range of a complex linear
map B on K, satisfying the self-dual canonical anti-commutation relations:

B( f )B(g)∗ + B(g)∗B( f ) = 〈g, f 〉1, B( f )∗ = B(Γ f )

for f , g ∈ K. A projection P on K is said to be a basis projection if ΓPΓ = 1− P.
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696 Michael J. Gabriel

If V is an isometry in B(K), commuting with Γ, then it is said to be a Bogoliubov
operator and it induces a unital isometric ∗-endomorphism %V of ASDC (K,Γ) via the
map

B(k) 7→ B(V k), k ∈ K.

Such an endomorphism is called quasi-free, and is a ∗-automorphism if and only if
V is unitary.

For each S ∈ B(K) with 0 ≤ S ≤ 1 and ΓSΓ = 1−S, there exists a quasi-free state,
ϕS, on ASDC (K,Γ) [1], [10]. This state is pure if and only if S is a (basis) projection.
We omit its definition here, but it suffices to say that for P1 a basis projection on K,
the GNS-decomposition of ϕP1 can be identified with the triple

(
πP1 , Fa(K1),ΩP1

)
,

where ΩP1 is the usual Fock vacuum vector, and πP1 is the representation given by

πP1

(
B(k)

)
= a(P1k)∗ + a(P1Γk), for k ∈ K,

with a(·)∗ and a(·) the creation and annihilation operators on Fa(K1) and K1 :=
P1K.

With P2 := 1− P1, when A ∈ B(K) we denote by Aα,β the operator PαAPβ where
α, β = 1, 2.

Appearing in [2], the following definition relates to arbitrary C∗-algebras, ∗-endo-
morphisms and representations, though its motivation lies in the work of [8], [9] and
[14]. The subsequent result is Theorem 3.3 of [2].

Definition 1 A ∗-endomorphism % of a C∗-algebra A is isometrically implementable
in a representation (π,H) if there exists a (possibly finite) sequence {Ψn}n∈I in B(H)
with relations

Ψ∗mΨn = δmn1,
∑
n∈I

ΨnΨ∗n = 1

which implements % by

π ◦ % =
∑
n∈I

Ψnπ(·)Ψ∗n ,

with convergence of the sums with respect to the strong operator topology if I is
infinite.

Theorem 2 A quasi-free endomorphism %V of ASDC (K,Γ) is isometrically imple-
mentable in a Fock representation πP1 if and only if V12 is Hilbert-Schmidt.

In [2], for %V a quasi-free endomorphism of ASDC (K,Γ) and P1 a basis projection
on K such that [V, P1] is Hilbert-Schmidt, a sequence of implementers of %V in πP1

is constructed. For this construction it is assumed at the outset that K1 = L2(Rd),
though as in the case of [15], the reason for this is a notational one and all of the
results hold in the general case [2].

https://doi.org/10.4153/CJM-2002-026-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-026-5


Cuntz Algebra States 697

As a generalization of the operator Λ(U ) of [15], in [2] the author defines the
associate Λ(V ) of the isometry V :

(1)

Λ(V )11 = V11 − P1 −V12V−1
22 V21 + V−1

11
∗
V ∗21Pker V∗22

V21

Λ(V )12 = V12V−1
22 −V−1

11
∗
V ∗21Pker V∗22

Λ(V )21 = (V−1
22 −V ∗12V−1

11
∗
V ∗21Pker V∗22

)V21

Λ(V )22 = P2 −V−1
22 + V ∗12V−1

11
∗
V ∗21Pker V∗22

.

For the meaning of the operators V−1
ii see [2].

Let {e1, . . . , eLV } be an orthonormal basis for kerV11, where LV < ∞ by the
Hilbert-Schmidt assumption on [V, P1]. Define D to be the dense subspace
πP1

(
ASDC (K,Γ)

)
ΩP1 of Fa(K1). Then on D, an operator Ψ0(V ) is defined by

(2)

Ψ0(V ) :=
[

det
(

P1 + Λ(V )12Λ(V )12
∗)]−1/4

·
∑

(σ,s)∈PLV

(−1)s sign σa(V12Γeσ(1))
∗Ψ · · · a(V12Γeσ(s))

∗Ψ

: exp
(

b
(

Λ(V )
)
/2
)

: a(eσ(s+1))Ψ · · · a(eσ(LV ))Ψ,

where PLV is the index set with elements, pairs (σ, s) with s ∈ {0, . . . , LV} and σ a
permutation of order LV with σ(1) < · · · < σ(s) and σ(s+1) < · · · < σ(LV ). Further
Ψ is the unitary in B

(
Fa(K1)

)
implementing α−1 in πP1 and satisfying ΨΩ = Ω.

It follows that Ψ0(V ) has a continuous extension to an isometry, denoted by the
same symbol, on Fa(K1) [2, Lemma 4.3].

For n ∈ N, define In to be the set of 2n multiindices α = (α1, . . . , αl) with

0 ≤ l ≤ n, 1 ≤ α1 < · · · < αl ≤ n and α := 0 for l = 0,

and for k ∈ kerV ∗, define ψ(k) := πP1

(
B(k)

)
Ψ. Then fixing an orthonormal basis

{ki}m
i=1 for kerV ∗ ∩ ran

(
P1 − Λ(V )12

∗) , and defining for β = (β1, . . . , βr) ∈ Im,

ψβ := ψ(kβ1 ) · · ·ψ(kβr ) and Ψβ(V ) := ψβΨ0(V ),

the following is the main result of [2].

Theorem 3 m = 1
2 ind V ∗, and the 2m isometries {Ψβ(V )}β∈Im implement %V in

πP1 .

Definition 4 For 2 ≤ n <∞, the Cuntz algebra On [7] is defined to be the universal
C∗-algebra generated by n isometries s0, s1, . . . , sn−1 satisfying

(3) s∗i s j = δi, j1,
n−1∑
i=0

sis
∗
i = 1, for i, j ∈ {0, 1, . . . , n− 1}.
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698 Michael J. Gabriel

Then by definition, each sequence of implementers {Ψβ(V )}β∈Im of Theorem 3
defines a representation of the Cuntz algebra O2m on Fa(K1).

Denote by Fn, the gauge-invariant subalgebra of On, which is the closure of the
linear span of monomials of the form

si1 si2 · · · sim s∗jm
· · · s∗j2

s∗j1

for m = 0, 1, . . . . Then let θ be its canonical identification with
⊗∞

1 Mn,

(4) θ :
∞⊗
1

Mn 3 e(1)
i1 j1
⊗ e(2)

i2 j2
⊗ · · · ⊗ e(m)

im jm
7→ si1 si2 · · · sim s∗jm

· · · s∗j2
s∗j1
∈ Fn,

where ei j , for i, j ∈ {0, 1, . . . , n− 1}, are the usual matrix units in Mn.
Further, if H is a Hilbert space with orthonormal basis { fi}∞i=1, then

⊗∞
1 M2 can

be identified with ACAR (H), the CAR algebra over H in the complex formalism [10],
via the map

(5) ι : ACAR (H) 3 a( fk) 7→
( k−1∏

l=1

(e(l)
00 − e(l)

11)
)

e(k)
01 ∈

∞⊗
1

M2.

3 Computation of the State on O2

Let H = l2 and define a conjugation J on H by J(ξ1, ξ2, . . . ) = (ξ1, ξ2, . . . ). With V
the unilateral shift on H, denote by T the isometry V⊕ JV J = V⊕V on K = H⊕H.

For n ≥ 2 and m ∈ N0 define a projection Pn,m on H by

Pn,m(ξ1, ξ2, ξ3, . . . ) = (0, . . . , 0, ξn, ξn+1, . . . , ξn+m, 0, . . . )

and a basis projection P1 = Pn,m ⊕ (1− Pn,m) on K with respect to the conjugation,

Γ =
(

0 J
J 0

)
.

Remark 5 It will become clear that all of our computations could be carried out
more generally, when in place of Pn,m, we have the projection onto lin{ei}i∈I , where
{e j}∞j=1 is the canonical orthonormal basis for l2 and I is any finite or infinite subset
of N, and furthermore that similar results occur. For these computations when for
example I = ∅, I = N, I = {1, . . . , n}, I = {n, n + 1, n + 2, . . . }, see [11].

Now with { fi}∞i=1 the canonical orthonormal basis for l2, simplifying notation let
Ψ0 and Ψ1 be the isometric implementers of %T in πP1 of Theorem 3, where we choose

(6) e1 = ( fn+m ⊕ 0), e2 = (0⊕ fn−1)

to be the orthonormal basis for ker T11. The operator Λ defined in (1) here has com-
ponents,

(7) Λ(T)11 = T11 − P1, Λ(T)12 = 0, Λ(T)21 = 0, Λ(T)22 = P2 − T−1
22 ,

https://doi.org/10.4153/CJM-2002-026-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-026-5


Cuntz Algebra States 699

and we note that in fact

(8) T−1
ii = T∗ii for i = 1, 2.

Thus take k1 = (0⊕ f1) to be the orthonormal basis of ker T∗∩ ran
(

P1−Λ(T)∗12

)
=

ker T∗ ∩K1.
Then for s0, s1 the generators of O2, define the representation π of O2 on Fa(K1)

by π(si) = Ψi , for i = 0, 1.

Definition 6 Let ωπ be the state on O2 defined by

ωπ(sµs∗ν ) := 〈ΨµΨ∗νΩ,Ω〉,

for all multiindices µ and ν.

Of course there is freedom in the choice of implementers, and we discuss this in
Subsection 4.2. In fact any other pair of implementers is of the form

(9) Ψ ′0 := u00Ψ0 + u01Ψ1, Ψ ′1 := u10Ψ0 + u11Ψ1,

for U = [ui j]i, j=0,1 ∈ U (2) [2]. However, if we are to compute the state on O2

defined by the implementers of this quasi-free endomorphism, certainly Ψ0 and Ψ1

above are the most natural choices to begin with.

3.1 The Adjoints of the Implementers

In order to compute the state ωπ , we first need to understand how products of the
adjoints, Ψ∗0 and Ψ∗1 , act on the vacuum Ω. From the definitions one can verify that

Ψ∗0 =− a(e2)∗a(e1)∗ : exp
(

b
(

Λ(T)∗
))

:(10)

−Ψa(e2)∗ : exp
(

b
(

Λ(T)∗
))

: Ψa(T12Γe1)(11)

+ Ψa(e1)∗ : exp
(

b
(

Λ(T)∗
))

: Ψa(T12Γe2)(12)

− : exp
(

b
(

Λ(T)∗
))

: a(T12Γe2)a(T12Γe1)(13)

and Ψ∗1 = Ψ∗0 Ψa(k1). We will require the following, which are easily checked.

T∗11
ke1 = fn+m−k ⊕ 0, k = 1, . . . ,m and T∗11

m+1e1 = 0,(14)

T∗11
ke2 = 0⊕ fn−1+k, k = 1, . . . , n− 2 and T∗11

n−1e2 = 0,(15)

and

〈ei ,T12Γe2〉 = 0, i, j = 1, 2,(16)

〈T∗11
ke1,T12Γe1〉 = 0, k = 1, . . . ,m + 1,(17)

〈T∗11
ke1,T12Γe2〉 = δk,m,(18)

〈T∗11
ke2,T12Γei〉 = 0, i = 1, 2 and k = 1, . . . , n− 1.(19)
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Note that from (15), T∗11
n−2e2 = k1.

Furthermore, the first of the commutation relations of of [2, Lemma 4.1] will also
be needed. In our case it states that
(20)

: exp
(

b
(

Λ(T)∗
))

: a( f )∗ = a(T∗11 f )∗ : exp
(

b
(

Λ(T)∗
))

: for all f ∈ K1.

To write down expressions for Ψ∗νΩ for multiindices ν, it is necessary to consider
the cases

(i) n < m + 1,
(ii) n = m + 1 and
(iii) n > m + 1 separately.

We shall assume henceforth that (i) holds, although all of the results certainly hold in
an identical fashion for all n ≥ 2 and m ∈ N0.

In the first place, from (14)–(20) we find that for k = 1, . . . , n− 1,
(21)

Ψ∗0
kΩ = (−1)ka(e2)∗a(e1)∗a(T∗11e2)∗a(T∗11e1)∗ · · · a(T∗11

k−1e2)∗a(T∗11
k−1e1)∗Ω,

obtained through k applications of (10) to Ω, and that

(22) Ψ∗0
nΩ = 0.

Then noting that

〈T∗11
re1, k1〉 = 0, r = 0, 1, 2, . . . and(23)

〈T∗11
re2, k1〉 = δr,n−2,(24)

it is clear that for k = 0, 1, . . . , n− 2,

(25) Ψ∗1 Ψ∗0
kΩ = 0.

Moreover, from (14)–(20), (23)–(24) and since T∗11
n−2e2 = k1, it follows that for

k = 0, 1, . . . ,m− n + 2,

Ψ∗1
kΨ∗0

n−1Ω = (−1)nt(k)a(e2)∗a(e1)∗a(T∗11e2)∗a(T∗11e1)∗

· · · a(T∗11
n−2e2)∗a(T∗11

n−2e1)∗ · a(T∗11
n−1e1)∗

· · · a(T∗11
n−2+ke1)∗Ω

(26)

where

t(k) :=

{
+1 if k ≡ 2, 3 mod 4

−1 if k ≡ 0, 1 mod 4.

The expression in (26) is the result of k applications of (10) (×Ψa(k1)) to Ψ∗0
n−1Ω.
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Observe that when k = m− n + 2, the term T∗11
me1 ( = T12Γe2) appears immedi-

ately before Ω. Thus (14)–(20), (23)–(24) and the equality, T∗11
n−2e2 = k1 imply that

for r = 1, . . . , n− 1, r applications of (12) (×Ψa(k1)) to Ψ∗1
m−n+2Ψn−1

0 Ω yields the
equality,

Ψ∗1
rΨ∗1

m−n+2Ψ∗0
n−1Ω

= (−1)nt(m− n)t(r) · â(e2)∗a(e1)∗â(T∗11e2)∗a(T∗11e1)∗

· · · â(T∗11
r−2e2)∗a(T∗11

r−2e1)∗â(T∗11
r−1e2)∗a(T∗11

r−1e1)∗

· a(T∗11
re2)∗a(T∗11

re1)∗

· · · a(T∗11
n−2e2)∗a(T∗11

n−2e1)∗ · a(T∗11
n−1e1)∗ · · · a(T∗11

me1)∗Ω,

(27)

where by â(·) we mean omit a(·).
Then from (27), with r = n− 1, and by (23), we clearly have that

(28) Ψ∗1
m+2Ψ∗0

n−1Ω = Ψ∗1 Ψ∗1
n−1Ψ∗1

m−n+2Ψ∗0
n−1Ω = 0.

Moreover from (15)–(20), we deduce that for k = 0, 1, . . . ,m,

(29) Ψ∗0 Ψ∗1
kΨ∗0

n−1Ω = 0.

Then finally, from (14) and (16)–(20), for l ∈ N0 we have

Ψ∗0
lΨ∗1

m+1Ψ∗0
n−1Ω = (−1)l(m+1)Ψ∗1

m+1Ψ∗0
n−1Ω

= (−1)l(m+1)+nt(m− n)t(n− 1) · a(e1)∗a(T∗11e1)∗

· · · a(T∗11
me1)∗Ω,

(30)

this expression being the result of l applications of (12) to Ψ∗1
m+1Ψ∗0

n−1Ω.
We now gather together the above results, (21), (22) and (25)–(30), in the follow-

ing proposition.

Proposition 7 For arbitrary multiindex ν = (ν1, . . . , νs) with s ∈ N, the following
hold.
For s ∈ [1, n− 1],

Ψ∗νΩ = δν1,0 · · · δνs,0 · (−1)sa(e2)∗a(e1)∗ · a(T∗11e2)∗a(T∗11e1)∗

· · · a(T∗11
s−1e2)∗a(T∗11

s−1e1)∗Ω.
(31)

For s ∈ [n,m + 1],

Ψ∗νΩ = δν1,0 · · · δνn−1,0δνn,1

· · · δνs,1 · (−1)nt(s− n + 1)a(e2)∗a(e1)∗a(T∗11e2)∗a(T∗11e1)∗

· · · a(T∗11
n−2e2)∗a(T∗11

n−2e1)∗ · a(T∗11
n−1e1)∗ · · · a(T∗11

s−1e1)∗Ω.

(32)
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For s ∈ [m + 2, n + m− 1],

Ψ∗νΩ = δν1,0 · · · δνn−1,0δνn,1

· · · δνs,1 · (−1)nt(m− n)t(s−m− 1)â(e2)∗a(e1)∗â(T∗11e2)∗a(T∗11e1)∗

· · · â(T∗11
s−m−3e2)∗a(T∗11

s−m−3e1)∗â(T∗11
s−m−2e2)∗a(T∗11

s−m−2e1)∗

· a(T∗11
s−m−1e2)∗a(T∗11

s−m−1e1)∗

· · · a(T∗11
n−2e2)∗a(T∗11

n−2e1)∗ · a(T∗11
n−1e1)∗ · · · a(T∗11

me1)∗Ω.

(33)

For s ≥ n + m,

Ψ∗νΩ = δν1,0 · · · δνn−1,0δνn,1 · · · δνn+m,1δνn+m+1,0

· · · δνs,0 · (−1)(s−n−m)(m+1)(−1)nt(m− n)t(n− 1) · a(e1)∗a(T∗11e1)∗

· · · a(T∗11
me1)∗Ω.

(34)

3.2 The State

We are now in a position to write down a formula for the state.

Proposition 8 Let s, t ∈ N and µ = (µ1, . . . , µt ), ν = (ν1, . . . , νs) be multiindices.
For s ∈ [1, n],

(35) 〈ΨµΨ∗νΩ,Ω〉 = δt,s · δµ,ν · δµ1,0 · · · δµt ,0.

For s ∈ [n,m + n− 1],

(36) 〈ΨµΨ∗νΩ,Ω〉 = δt,s · δµ,ν · δµ1,0 · · · δµn−1,0 · δµn,1 · · · δµt ,1.

For s ≥ n + m,

〈ΨµΨ∗νΩ,Ω〉 = (−1)(s+t)(m+1)χ{m+n,m+n+1,... }(t) · δµ1,0

· · · δµn−1,0 · δµn,1 · · · δµn+m,1 · δµn+m+1,0 · · · δµt ,0 · δν1,0

· · · δνn−1,0 · δνn,1 · · · δνn+m,1 · δνn+m+1,0 · · · δνs,0,

(37)

where

χ{m+n,m+n+1,... }(t) :=

{
1 if t ≥ m + n

0 otherwise.

Proof Follows from Proposition 7.

Remark 9 The state is therefore obviously not gauge-invariant.
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4 Irreducible Representations of O2 and F2

4.1 Cyclicity of Ω for π

We begin with a notational definition.

Definition 10 For k ∈ K1 and i ∈ N,

aT i (k) := a
(

(T i)11k
)

+ a
(

(T i)12Γk
)∗

= πP1

(
B(T ik)

)∗
.

Then with t ∈ N and µi ∈ {0, 1}, 1 ≤ i ≤ t , neglecting signs we have,

Ψµ1 · · ·Ψµt Ω = (±)a(kµ1 )∗aT(kµ2 )∗

· · · aTt−1 (kµt )
∗ · aTt−1 (T12Γe1)∗aTt−1 (T12Γe2)∗

· · · aT(T12Γe1)∗aT(T12Γe2)∗a(T12Γe1)∗a(T12Γe2)∗Ω,

(38)

where if µi = 0 delete the term aT i−1 (kµi )
∗ from the expression.

Now from (34) and (37), for s, t ≥ n + m,

〈Ψn−1
0 Ψm+1

1 Ψt−n−m
0 Ψ∗0

s−n−mΨ∗1
m+1Ψ∗0

n−1Ω,Ω〉

= (±)〈aTt (e1)∗aTt (T∗11e1)∗ · · · aTt (T∗11
me1)∗Ψn−1

0 Ψm+1
1 Ψt−n−m

0 Ω,Ω〉

= (±)1.

(39)

Lemma 11 For all s, t ≥ n + m,

Ψn−1
0 Ψm+1

1 Ψt−n−m
0 Ψ∗0

s−n−mΨ∗1
m+1Ψ∗0

n−1Ω = (±)Ω.

Proof This follows immediately from (38), (39) and the computations,

aTt (T∗11
ie1)∗ =

{
a
(

(Tt )11T∗11
ie1

)∗
= a( fn+m+t−1 ⊕ 0)∗ t ≤ i

a
(

Γ(Tt )21T∗11
ie1

)
= a(0⊕ fn+m+t−1) t ≥ i + 1,

(40)

aTk (T12Γe1)∗ = a
(

(Tk)11T12Γe1

)∗
= a(0⊕ fn+m+1+k)∗, for all k ∈ N,(41)

aTk (T12Γe2)∗ =

{
a
(

(Tk)11T12Γe2

)∗
= a( fn+k ⊕ 0)∗ if k ≤ m

a
(

(Tk)12T21e2

)
= a(0⊕ fn+k) if k ≥ m + 1,

(42)

aTk (k1)∗ =

{
a
(

(Tk)11k1

)∗
= a(0⊕ fk+1)∗ if k ≤ n− 2 or k ≥ n + m

a
(

(Tk)12Γk1

)
= a( fk+1 ⊕ 0) if n− 1 ≤ k ≤ n + m− 1.

(43)

Proposition 12 Ω is cyclic for π, and so π is the GNS-representation of ωπ .
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Proof As a result of (38) and (40)–(43), for s, t ≥ n + m we have

Ψµ1 · · ·Ψµt Ψ
∗
0

s−n−mΨ∗1
m+1Ψ∗0

n−1Ω

= (±)aTt (e1)∗aTt (T∗11e1)∗ · · · aTt (T∗11
me1)∗Ψµ1 · · ·Ψµt Ω

= (±)a
(

Γ(Tt )21e1

)
a
(

Γ(Tt )21T∗11e1

)
· · · a

(
Γ(Tt )21T∗11

me1

)
· a(kµ1 )∗

· · · a
(

(Tn−2)11kµn−1

)∗ · a( (Tn−1)12Γkµn

)
· · · a

(
(Tn+m−1)12Γkµn+m

)
· a
(

(Tn+m)11kµn+m+1

)∗
· · · a

(
(Tt−1)11kµt

)∗ · a( (Tt−1)11T12Γe1

)∗
a
(

(Tt−1)12T21e2

)
· · · a

(
(Tm+1)11T12Γe1

)∗
a
(

(Tm+1)12T21e2

)
· a
(

(Tm)11T12Γe1

)∗
a
(

(Tm)11T12Γe2

)∗
· · · a(T11T12Γe1)∗a(T11T12Γe2)∗a(T12Γe1)∗a(T12Γe2)∗Ω,

(44)

where again, as in (38), if µi = 0 omit the term aT i−1 (kµi )
∗.

Note from (43) that

{(Tk)11k1 : 0 ≤ k ≤ n− 2, k ≥ n + m} ∪ {(Tk)12Γk1 : n− 1 ≤ k ≤ n + m− 1}

forms an orthonormal basis for K1.
Then from Lemma 11, it clearly follows that with appropriate choice of µi , for

i = 1, . . . , t , the orthonormal basis {a( fi1 )∗ · · · a( fir )
∗Ω : i1 < · · · < ir, r ∈ N0} for

Fa(K1) can be obtained through (44).
Thus the proof is complete.

4.2 Restriction to F2

We shall now consider the state ωπ restricted to F2.

Proposition 13 Ω is cyclic for the representation π restricted to F2, and so π|F2 is the
GNS-representation of ωπ|F2 .

Proof Exactly as for Proposition 12, taking s = t .

Now making the identifications, θ of F2 with
⊗∞

1 M2 given in (4), and ι of⊗∞
1 M2 with ACAR (H) in (5), where { fi}∞i=1 is a fixed orthonormal basis for a Hilbert

space H, we consider the state ωπ|F2 as a state on ACAR (H).
First note that on

⊗∞
1 M2, for r ∈ N,

(45) ωπ|F2 (eµ1···µr ,ν1···νr ) = δµ,ν · δµ1,0 · · · δµn−1,0 · δµn,1 · · · δµn+m,1 · δµn+m+1,0 · · · δµr ,0.

When Q is a projection on H, let ωQ denote the associated quasi-free state on
ACAR (H) [10].
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Proposition 14 Under the identifications above, ωπ = ωQn,m , where Qn,m is defined
as the projection of H onto lin{ fi}n+m

i=n .

Proof Assume that N, M and i1, . . . , iN , j1, . . . , jM ∈ N, and that ik 6= il if k 6= l
and jr 6= js if r 6= s. Then consider the monomial,

(46) a( fiN )∗ · · · a( fi1 )∗a( f j1 ) · · · a( f jM ).

First let 1 ≤ N = M ≤ m + 1 and i1 = j1, . . . , iN = jN , with i1, . . . , iN ∈
{n, n + 1, . . . , n + m}. Then

a( fiN )∗ · · · a( fi1 )∗a( fi1 ) · · · a( fiN )(47)

= a( fi1 )∗a( fi1 ) · · · a( fiN )∗a( fiN )

= (e(1)
00 + e(1)

11 ) · · · (e(i1−1)
00 + e(i1−1)

11 )e(i1)
11 · · · · · (e(1)

00 + e(1)
11 )

· · · (e(iN−1)
00 + e(iN−1)

11 )e(iN )
11 ,(48)

and of course applying ωQn,m to (47) gives 1, as does ωπ|F2 to (48).
Then suppose that N = M and i1, . . . , iN , j1, . . . , jN ∈ {n, n + 1, . . . , n + m},

but that there exists k, 1 ≤ k ≤ N with jk /∈ {i1, . . . , iN}. Then (46) is taken to 0 by

ωQn,m , as is its image in
⊗∞

1 M2, by ωπ|F2 , since e( jk)
01 will appear in each term in the

latter.
Now suppose that N = M, (not necessarily in [1,m + 1]), and that there exists k,

with 1 ≤ k ≤ N, such that ik /∈ {n, n + 1, . . . , n + m}. Then again, certainly (46) and
its image in

⊗∞
1 M2 are taken to 0 by ωQn,m and ωπ|F2 respectively.

Similarly if ik /∈ {n, n + 1, . . . , n + m}.
Finally, if N 6= M, and i1, . . . , iN , j1, . . . , jM ∈ {n, n + 1, . . . , n + m} are any

indices, then (46), taken to 0 by ωQn,m , also has its image taken to 0 by ωπ|F2 , as e(k)
01 or

e(k)
10 (or both) appear for some k (or k’s) in each term in the latter.

Thus ωQn,m and ωπ|F2 agree on (46) for all N,M and all indices, and so we are
done.

Corollary 15 With Ω as cyclic vector, the representation,

π ◦ θ ◦ ι : ACAR (H)→ B
(

Fa(K1)
)
,

is a GNS-representation for the pure quasi-free state ωQn,m .

Proof Immediate from Propositions 13 and 14.

Of course, the choice of H and of orthonormal basis has been totally arbitrary.
Taking H = l2 and { fi}∞i=1 to be the canonical orthonormal basis, for example, would
obviously mean that Qn,m = Pn,m.

Let U = [ui, j]i, j=0,1 ∈ U (2) and

(49) Ψ ′0 := u00Ψ0 + u01Ψ1, Ψ ′1 := u10Ψ0 + u11Ψ1
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be another pair of implementers. Define π ′ to be the representation of O2 on Fa(K1)
given by si 7→ Ψ ′i , for i = 0, 1, and let ωπ ′ denote the state, ωπ ′(sµs∗ν ) :=
〈Ψ ′µΨ ′ν

∗Ω,Ω〉 on O2. Then under the identifications above, with { fi}∞i=1 any fixed
orthonormal basis of a Hilbert space H, we have the following.

Proposition 16 ωπ ′ |F2 considered as a state on ACAR (H) is quasi-free if and only if
either

(i) Ψ ′0 = u00Ψ0 and Ψ ′1 = u11Ψ1, or
(ii) Ψ ′0 = u01Ψ1 and Ψ ′1 = u10Ψ0,

where in case (i), ωπ ′ |F2 = ωQn,m , and in case (ii), ωπ ′ |F2 = ω1−Qn,m .

Proof Since under the identifications above,

ωπ ′ |F2 (e(1)
01 ) = u00u10,

it follows that if ωπ ′ |F2 is to be quasi-free, either u00 or u10 has to be zero. That is,
either (i) or (ii) holds, where in (i), |u00| = |u11| = 1, and in (ii), |u01| = |u10| = 1.

Of course, different choices of u in (i) and (ii) respectively, give different exten-
sions of ωQn,m and ω1−Qn,m to O2.

Proposition 17 If {Ψ ′0,Ψ ′1} is any pair of implementers of %T in πP1 , with π ′ and ωπ ′
as defined above we have that π ′ is irreducible, as is its restriction to F2.

Proof Clearly ωπ|F2 is a pure state on F2, so that by Propositions 12 and 13, ωπ is
pure and π|F2 and π are irreducible.

Then the claim follows since any other pair of implementers Ψ ′0 and Ψ ′1 are given
by (49) for some U ∈ U (2).

We end this section with some observations.

Definition 18 A pure state ω on On is said to be strongly asymptotically shift invari-
ant [5] of order k if it satisfies

ω ◦ σk+1 = ω ◦ σk.

If (π,H,Ω) is its GNS-decomposition, then it is defined to be finitely correlated [5] if
the subspace S ⊂ H generated linearly by Ω and vectors of the form

π(s∗i1
s∗i2
· · · s∗im

)Ω,

where i1, . . . , im ∈ N and m = 1, 2, . . . , is finite dimensional.
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Proposition 19 ωπ is:

(1) finitely correlated, and
(2) strongly asymptotically shift invariant of order k, if and only if k ≥ n + m.

Proof (1) is an immediate consequence of Propositions 7 and 12, while a simple
calculation is enough to verify (2).

Denote by ρΨ ′ , the endomorphism of B
(

Fa(K1)
)

,

ρΨ ′ := Adπ ′ = Ψ ′0(·)Ψ ′∗0 + Ψ ′1(·)Ψ ′∗1 ,

where {Ψ ′0,Ψ ′1} is any pair of implementers of %T in πP1 .

Proposition 20 The endomorphism ρΨ ′ is a shift on B
(

Fa(K1)
)

admitting a pure,
normal invariant state.

Proof From Proposition 17 we have that π|F2 is irreducible, thus ρΨ is a shift [3],
[13]. Then we have that for all l ∈ N0, the vector state corresponding to
Ψ∗0

lΨ∗1
m+1Ψ∗0

n−1Ω is pure, normal and ρΨ-invariant.
The result then follows since for each pair {Ψ ′0,Ψ ′1}, we have by (9) and [13] that

ρΨ ′ and ρΨ are conjugate.
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