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Abstract

We study the Bayesian disorder problem for a negative binomial process. The aim is
to determine a stopping time which is as close as possible to the random and unknown
moment at which a sequentially observed negative binomial process changes the value
of its characterizing parameter p ∈ (0, 1). The solution to this problem is explicitly
derived through the reduction of the original optimal stopping problem to an integro-
differential free-boundary problem. A careful analysis of the free-boundary equation and
of the probabilistic nature of the boundary point allows us to specify when the smooth fit
principle holds and when it breaks down in favour of the continuous fit principle.
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1. Introduction

In this paper we study the Bayesian disorder problem for a negative binomial process.
Let us recall that a negative binomial process X = (Xt )t≥0 with parameter p ∈ (0, 1) is a Lévy
process whose characteristic function ût (z) := E[eizXt ] is

ût (z) = exp

{
t

∫
(0,+∞)

(eizx − 1)v(dx)

}
=

(
p

1 − qeiz

)t

, z ∈ R, (1.1)

where q := 1 −p and v({x}) := qx/x, x = 1, 2, . . . , is the so-called Lévy measure. We easily
deduce that for any t > 0, Xt follows a negative binomial distribution with parameters t and
p ∈ (0, 1) or, equivalently, that X is a compound Poisson process with intensity − log p (i.e.
the time between two successive jumps has exponential distribution with mean 1/ log(1/p))
and jumps whose magnitude follows the logarithmic distribution ζ({x}) = −qx/(x log p),
x = 1, 2, . . . .

Our problem can be stated as follows: at time t = 0 we begin to observe continuously
a negative binomial process X = (Xt )t≥0; at a random and unobservable time ϑ , known as
disorder time or change point, the characterizing parameter p of X shifts from p0 to p1. It is
assumed that ϑ = 0, with probability π , and, given that it is greater than 0, is exponentially
distributed with parameter λ > 0. The disorder problem for a negative binomial process aims to
determine a stopping time at which one can declare that the disorder has occurred. This stopping
time must be as close as possible to ϑ in the sense that the sum between the probability of a
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168 B. BUONAGUIDI AND P. MULIERE

false alarm and the expected cost due to the delay for a correct identification of the disorder
time is minimized.

Explicit solutions to the quickest detection of a change in the probability characteristics of
the ongoing process were obtained by Shiryaev (1978, Section 4.4), for the drift of a Brownian
motion, Peskir and Shiryaev (2002), for the intensity of a Poisson process, and Gapeev (2005),
for a compound Poisson process whose intensity equals the mean of the exponential distribution
of its jumps. The method of proof that these works are based on consists of reducing the
initial optimal stopping problem to a free-boundary problem, and specifying when the smooth
fit principle holds at the optimal boundary point and when it breaks down in favour of the
continuous fit principle.

Our study adopts the same free-boundary approach. In particular, after a formal description
of the problem in Section 2, in Section 3 we reduce the original optimal stopping problem
to a free-boundary problem for an integro-differential operator. In Section 4 we analyze the
regularity of the optimal boundary point. The existence of a singularity point in the free-
boundary equation and the results of Section 4 allow us to specify when the smooth fit holds
and when it is replaced by the continuous fit principle. In Section 5 we state and prove the main
theorem of the paper and in Section 6 we conclude with a summary and discussion.

We underline that although the compound Poisson representation of a negative binomial
process makes possible the application of the numerical scheme developed by Dayanik and
Sezer (2006), we provide the next example of a process whose disorder problem admits a closed
form solution. The exponential distribution of the change point and the linear penalty for the
correct identification of the disorder that we assume throughout this paper ensure an explicit
and analytical tractability of the problem, which, instead, would require numerical solution
methods if these settings were removed (see, e.g. Bayraktar and Sezer (2009) and Dayanik
(2010)). Furthermore, from (1.1) we observe that the height of the jumps of a negative binomial
process ranges in the positive integer numbers and E[Xt ] = qt/p < qt/p2 = var[Xt ], t > 0.
These facts make our results valid in those situations where the Poisson process is inappropriate,
namely, when the events occur in clusters and are characterized by overdispersion. Our study is
motivated by the application of the negative binomial process and the related negative binomial
distribution in several fields, such as distribution theory (Anscombe (1950), Barndorff-Nielsen
and Yeo (1969), Vaillant (1991), Zhou and Carin (2013)), agriculture and pest management
(Mukhopadhyay (2014) and Mukhopadhyay and de Silva (2005)), cosmology (Carruthers and
Minh (1983)), entomology (Nedelman (1983) and Wilson and Room (1983)), and hydrology
(Kozubowski and Podgórski (2009)). Problems of sequential testing for such a process were
faced in Buonaguidi and Muliere (2013a) and Buonaguidi and Muliere (2013b).

2. Formulation of the problem

On the statistical space (�, F , Pπ ) the unobservable random variable ϑ is defined; the
probability measure Pπ is such that Pπ (ϑ = 0) = π and Pπ (ϑ > t | ϑ > 0) = e−λt , for
t ≥ 0, where λ > 0 and π ∈ [0, 1] are given. The same space hosts two independent
and unobservable negative binomial processes X0 = (X0

t )t≥0 and X1 = (X1
t )t≥0, with known

parameters p0, p1 ∈ (0, 1), p0 �= p1, respectively. They are assumed to be independent of ϑ .
The process X = (Xt )t≥0 we observe is given by

Xt :=
∫ t

0
(1 − ϑs−) dX0

s +
∫ t

0
ϑs− dX1

s , (2.1)

where ϑs := 1{ϑ≤s}, for all t, s ≥ 0 and 1 is the indicator function.
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Let F X = (F X
t )t≥0, with F X

t := σ {Xs : 0 ≤ s ≤ t}, be the natural filtration of X. The
Bayesian disorder problem for a negative binomial process aims at computing

V (π) := inf
τ

(Pπ (τ < ϑ) + cEπ [τ − ϑ]+), c > 0, (2.2)

and finding, among all the F X stopping times, the optimal stopping time at which the expression
in the brackets on the right-hand side of (2.2) reaches the infimum. It is easily seen that
introducing the posterior probability process (πt )t≥0, being πt := Pπ (ϑ ≤ t | F X

t ) with
π0 = π , V (π) can be equivalently written as

V (π) = inf
τ

Eπ

[
1 − πτ + c

∫ τ

0
πt dt

]
, (2.3)

where the infimum is taken over all the stopping times with respect to the natural filtration of
(πt )t≥0, which, as shown by (2.5) below, coincides with F X. It is well known (see, e.g. Shiryaev
(1978, pp. 197–198)) that the map π �→ V (π) is decreasing and concave on [0, 1] and that

τ 	
π := inf{t ≥ 0 : πt ≥ B	, π0 = π} (2.4)

is optimal in (2.3), where B	 is the smallest number π ∈ [0, 1] satisfying V (π) = 1 − π .
The value function V (π) and the threshold B	 can be obtained as a solution of a suitable

free-boundary problem, involving the infinitesimal operator L of (πt )t≥0. In order to derive
its expression, we follow the analogous schema of arguments of Peskir and Shiryaev (2002).
Using standard means (see, e.g. Sato (1999, Theorem 33.2, p. 219)), we can show that the
likelihood ratio process ϕt := πt/(1 − πt ), t ≥ 0, is

ϕt = exp

(
log

(
q1

q0

)
Xt +

(
λ − log

(
p0

p1

))
t

)
×

(
ϕ0 +

∫ t

0
λ exp

(
− log

(
q1

q0

)
Xs −

(
λ − log

(
p0

p1

))
s

)
ds

)
, (2.5)

where qi := 1 − pi , i = 0, 1. A simple application of Itô’s equation and the fact that
πt = ϕt/(1 + ϕt ), t ≥ 0, imply that (ϕt )t≥0 and (πt )t≥0 satisfy

dϕt =
(

λ(1 + ϕt ) − log

(
p0

p1

)
ϕt

)
dt + ϕt−

∞∑
x=1

(ξ(x) − 1)μX({x}, dt),

dπt = λ(1 − πt ) dt +
∞∑

x=1

πt−(1 − πt−)(ξ(x) − 1)

1 + πt−(ξ(x) − 1)
(μX − vX)({x}, dt), (2.6)

being ξ(x) := (q1/q0)
x , μX({x}, (0, t]) the number of jumps of X of magnitude x in the time

interval (0, t], and vX({x}, dt) := dt (πt−qx
1 + (1 − πt−)qx

0 )/x its compensator. By Itô’s
equation, the infinitesimal operator L of (πt )t≥0 acts on a function f ∈ C1[0, 1] such that

(Lf )(π) =
(

λ − log

(
p0

p1

)
π

)
(1 − π)f ′(π) + f (π)((1 − π) log p0 + π log p1)

+
∞∑

x=1

f

(
πqx

1

πqx
1 + (1 − π)qx

0

)
(πqx

1 + (1 − π)qx
0 )

x
, (2.7)

that for λ = 0 reduces to the analogous expression given in Buonaguidi and Muliere (2013a,
Equation 6.3).
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3. The free-boundary problem

The strong Markov property of (πt )t≥0, evident from (2.6), and the general theory of optimal
stopping (see, e.g. Peskir and Shiryaev (2006, Chapters 3 and 4) or Shiryaev (1978, Chapter 3))
naturally entail the formulation of the following free-boundary problem for the unknown map
π �→ V (π) and boundary B	:

(LV )(π) = −cπ, 0 < π < B	, (3.1)

V (π) = 1 − π, B	 ≤ π ≤ 1, (3.2)

V (B	−) = 1 − B	 (continuous fit), (3.3)

V ′(0+) = 0 (normal entrance). (3.4)

It is easy to check that the last condition is satisfied by any function solving (3.1) and will prove
to be useful when p0 < p1. Furthermore, in some cases, V and B	 also satisfy

V ′(B	) = −1 (smooth fit). (3.5)

Before deriving the solution of the above free-boundary problem, we observe that the
‘step’ function

S(π; x) := πqx
1

πqx
1 + (1 − π)qx

0
, x = 0, 1, 2, . . . ,

appearing in (2.7), enjoys the following properties:

∂S(π; x)

∂π
> 0; (3.6)

S(π; x + 1) = S(S(π; x); 1);

S(π; x + 1)

{
> S(π, x), p0 > p1,

< S(π; x), p0 < p1,
x = 0, 1, 2, . . . ; (3.7)

lim
x→∞ S(π, x) =

{
1, p0 > p1,

0, p0 < p1.
(3.8)

For further reference, we define the ‘distance’ function

d(π; y) := 1 +
⌊

log((y/(1 − y))((1 − π)/π))

log(q1/q0)

⌋
, (3.9)

where y is a fixed number in (0, 1) and �x� is the largest integer less than or equal to x.
Let us first assume that p0 > p1. For a fixed B ∈ (0, 1), determine the sequence of points

· · · < Bn < · · · < B1 < B0 =: B such that S(Bn; 1) = Bn−1, n ≥ 1. Straightforwardly,

Bn = qn
0 B

qn
0 B + qn

1 (1 − B)
. (3.10)

Denote by In := (Bn, Bn−1], n ≥ 1, and note that, for all π ∈ (0, B],
π ∈ In ⇐⇒ d(π; B) = n. (3.11)
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Consider (3.1) on I1; because of the properties (3.6), (3.7), and (3.8), S(π; x), x ≥ 1, ranges
in (B, 1] so that, according to (3.2), we set V (S(π; x)) = 1 − S(π; x) for x ≥ 1. In this way
we have a first-order linear differential equation, whose unique solution π �→ V (π; B) on I1
is given by

V (π; B) = c1(B)Vg(π) + Vp,1(π; B), π ∈ I1, (3.12)
where

Vg(π) :=

⎧⎪⎪⎨⎪⎪⎩
(1 − π)γ1

|λ − log(p0/p1)π |γ0
, λ �= log(p0/p1),

(1 − π) exp

( − log(p1)

log(p0/p1)(1 − π)

)
, λ = log(p0/p1)

(3.13)

is a general solution of the homogeneous equation in (3.1), with

γ0 := λ − log p0

log(p0/p1) − λ
, γ1 := − log p1

log(p0/p1) − λ
,

and

Vp,1(π; B) := log p0(c + log p1)

log p1(λ − log p0)
π − log p0 log p1 + cλ

log p1(λ − log p0)
(3.14)

is a bounded particular solution of the nonhomogeneous equation in (3.1). The constant
term c1(B) is determined by imposing the continuity condition (3.3) at B and is given by

c1(B) = − 1

Vg(B)

(
λ log p1 + c log p0

log p1(λ − log p0)
B − λ(log p1 + c)

log p1(λ − log p0)

)
. (3.15)

Moving now onto the generic interval In, n ≥ 1; because of the properties (3.6)–(3.8) and
by construction of Bn, Bn−1, . . . , B1, S(π; 1) ∈ In−1, S(π; 2) ∈ In−2,…, S(π; n − 1) ∈ I1,
and S(π; x) ∈ (B, 1] for x ≥ n. Thus, setting V (π) equal to the solution found on In−i for
π ∈ In−i , i = 1, . . . , n− 1, and, according to (3.2), V (π) = 1 −π for π ∈ (B, 1], we obtain a
first-order linear differential equation that has a unique solution π �→ V (π; B) on In given by

V (π; B) = cn(B)Vg(π) + Vp,n(π; B), π ∈ In, (3.16)

where π �→ Vg(π) is a general solution expressed by (3.13), π �→ Vp,n(π; B) is a bounded
particular solution and the constant term cn(B) is obtained by imposing a continuity condition
on In∪In−1 at Bn−1. Unless λ = 0 as in Buonaguidi and Muliere (2013a, Section 6), cn(B) and
Vp,n(π; B) for n ≥ 2 cannot be expressed in terms of elementary functions and we therefore
omit their equations.

The general solution of (3.1)–(3.3) is, therefore, given by

V (π) =
{

V (π; B), 0 < π < B,

1 − π, B ≤ π ≤ 1,
(3.17)

where, by using the distance function (3.9),

V (π; B) = cd(π;B)(B)Vg(π) + Vp,d(π;B)(π; B), π ∈ (0, B]. (3.18)

Remark 3.1. When λ < log(p0/p1), the point

B̂ := λ

log(p0/p1)
(3.19)

is a singularity point of the free-boundary equation (3.1). This is easily observed through (3.13),
where Vg(π) → ∞ as π → B̂.
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Remark 3.2. If we fix B = B̂ from (3.19), according to (3.15) and the previous remark,
we see that V (π; B̂) = Vp,1(π; B̂) for π ∈ I1. The unique point satisfying the continu-
ous fit (3.3) is, therefore, λ(log p1 + c)/(λ log p1 + c log p0), which is equal to B̂ only if
c = log(p0/p1) − λ. So, for B = B̂ and c �= log(p0/p1) − λ, the free-boundary problem
(3.1)–(3.3) has no solution. However, this analytic fact has no relevance for the solution of the
optimal stopping problem (2.2)–(2.3).

Remark 3.3. The expressions (3.12)–(3.15) and some simple calculations demonstrate that
∂V (π; B)/∂π is not defined at π = B̂ (of course, when B ≥ B̂) and that the unique point
satisfying the smooth fit (3.5) is

B̃ := λ

λ + c
.

These facts imply that c = log(p0/p1) − λ (for which B̃ = B̂) is a breakage condition of the
smooth fit principle (3.5); in particular, since V (π; B̂) = Vp,1(π; B̂) for π ∈ I1, we have

∂V (π; B̂)

∂π

∣∣∣∣
π=B̂−

= − log p0

log p1
�= −1. (3.20)

It will be proved that B̃ coincides with the optimal stopping boundary B	 from (2.4) whenever
c ≥ log(p0/p1) − λ.

Let us now assume that p0 < p1. For a sufficiently small ε > 0, according to (3.7), we
determine the sequence of points ε =: ε0 < ε1 < · · · < εn < · · · , such that S(εn; 1) = εn−1,
n ≥ 1. Then, defining In := [εn−1, εn), n ≥ 1, we observe that εn is given by (3.10) and that
(3.11) holds, once B is replaced by ε in the corresponding expressions. Consider (3.1) on I1
and observe from (3.6), (3.7), and (3.8) that S(π; x) ∈ [0, ε), for x ≥ 1. According to the
normal entrance condition (3.4), we set V (π) = v for π ∈ [0, ε), where v is a given number
in (0, 1). In this way, we obtain a first-order linear differential equation whose unique solution
π �→ V (π; ε, v) on I1 is

V (π; ε, v) = c1(ε)Vg(π) + Vp,1(π; ε, v), π ∈ I1, (3.21)

where π �→ Vg(π) is a general solution given by (3.13), π �→ Vp,1(π; ε, v) is a particular
solution given by

Vp,1(π; ε, v) := c log p0

log p1(λ − log p0)
π − cλ

log p1(λ − log p0)
+ v, (3.22)

and the constant term c1(ε), given by

c1(ε) = − 1

Vg(ε)

(
c log p0

log p1(λ − log p0)
ε − cλ

log p1(λ − log p0)

)
, (3.23)

is obtained by imposing the continuity condition V (ε) = v. Using the same reasoning as in
the case of p0 > p1 when we consider (3.1) on In, n ≥ 1, because of (3.6)–(3.8), we note
that S(π; x) ∈ In−x , x = 1, . . . , n − 1, and S(π; x) ∈ [0, ε) for x ≥ n. Hence, setting
V (π), π ∈ In−i , equal to the solution found on In−i , i = 1, . . . , n− 1, and, according to (3.4),
V (π) = v, π ∈ [0, ε), we obtain a first-order linear differential equation, whose unique solution
π �→ V (π; ε, v) on In is

V (π; ε, v) = cn(ε)Vg(π) + Vp,n(π; ε, v), π ∈ In,

where π �→ Vg(π) is a general solution given by (3.13), π �→ Vp,n(π; ε, v) is a particular
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solution, and the constant term cn(ε) is obtained by imposing a continuity condition over
In−1 ∪ In at εn−1. Making use of the distance function (3.9), the general solution π �→
V (π; ε, v) to (3.1) and (3.4) can be expressed as

V (π; ε, v) =
{

v, π ∈ [0, ε),

cd(π;ε)(ε)Vg(π) + Vp,d(π;ε)(π; ε, v), π ∈ [ε, 1).
(3.24)

We observe that the free-boundary equation (3.1) has no singularity points in the case p0 < p1.

Remark 3.4. Let π �→ f1(π) and π �→ f2(π) be two maps satisfying (3.1) on [ε, 1) and
fi(π) = vi on [0, ε], i = 1, 2. Then, Lf1 − Lf2 = 0 on [ε, 1) and it is easy to verify that
Lf1 − Lf2 = Lf , with f := f1 − f2. Using the above arguments, we can straightforwardly
prove that (Lf )(π) = 0, for π ∈ [ε, 1), has as unique solution f (π) = v1 − v2, π ∈ [ε, 1).
This shows that the maps π �→ V (π; ε, vi), i = 1, 2, given by (3.24), never intersect on [0, 1),
whenever v1 �= v2. This result will be useful in the proof of Theorem 5.1.

4. Regularity of the boundary point

In this section we analyze when a given point B in the state space of the posterior probability
process (πt )t≥0 is regular for (B, 1). We recall that B ∈ (0, 1) is regular for (B, 1) if
Pπ=B(η = 0) = 1, where η := inf{t ≥ 0 : πt > B}. Generally speaking, B is regular
for (B, 1) if (πt )t≥0 starting at B immediately enters (B, 1). It is well known that the concept
of ‘regularity’ is strictly related to the smooth fit principle (see, e.g. Alili and Kyprianou (2005)
and Peskir and Shiryaev (2006, Chapters 3 and 4)).

Proposition 4.1. Let B ∈ (0, 1) be the starting point of (πt )t≥0. Then,

(i) if p0 > p1 and λ < log(p0/p1), B is regular for (B, 1), when B < B̂, while B is not
regular for (B, 1), when B ≥ B̂, with B̂ given by (3.19);

(ii) if p0 > p1 and λ ≥ log(p0/p1), B is regular for (B, 1);

(iii) if p0 < p1, B is regular for (B, 1).

Proof. For a small ε > 0, the relationship πt = ϕt/(1 + ϕt ) implies that

τB−ε := inf{t ≥ 0 : πt ≥ B, π = B − ε}
= inf

{
t ≥ 0 : ϕt ≥ B

1 − B
, ϕ0 = B − ε

1 − B + ε

}
. (4.1)

According to Sato (1999, Theorem 43.20, p. 323), X = (Xt )t≥0 from (2.1) satisfies

Pπ

[
lim
t↓0

t−1(aXt + bt) = b
]

= 1

for any π ∈ [0, 1] and any a, b ∈ R. Hence, for a sufficiently small t > 0, the quantity
log(q1/q0)Xt − t (log(p0/p1)−λ) behaves like −t (log(p0/p1)−λ). This fact and (2.5) allow
us to rewrite the inequality ϕt ≥ B/(1 − B) in (4.1) as

e−t (log(p0/p1)−λ)

(
B − ε

1 − B + ε
+ λ

∫ t

0
es(log(p0/p1)−λ) ds

)
≥ B

1 − B
, (4.2)
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for t > 0 small enough. Denote by

K(ε) := log

(
B/(1 − B) − B̂/(1 − B̂)

(B − ε)/(1 − B + ε) − B̂/(1 − B̂)

)
.

(i) From (4.2), B < B̂, and simple calculations we have

−t

(
log

(
p0

p1

)
− λ

)
≤ K(ε)(↑ 0, as ε ↓ 0); (4.3)

similarly, for B > B̂ (with ε sufficiently small so that B − ε > B̂) and B = B̂ we have,
respectively,

−t

(
log

(
p0

p1

)
− λ

)
≥ K(ε)(↓ 0, as ε ↓ 0); (4.4)

e−t (log(p0/p1)−λ) ≤ 0. (4.5)

Then, (4.3)–(4.5) show that τB−ε ↓ 0 Pπ -almost surely (a.s.) as ε ↓ 0 only when B < B̂.
(ii) When λ > log(p0/p1), B̂/(1 − B̂) < 0, so that from (4.2) we have

−t

(
log

(
p0

p1

)
− λ

)
≥ K(ε)(↓ 0, as ε ↓ 0); (4.6)

when λ = log(p0/p1), (4.2) reduces to

λt ≥ B

1 − B
− B − ε

1 − B + ε
.

In both the cases, τB−ε ↓ 0 Pπ -a.s. as ε ↓ 0.
(iii) It follows that B̂/(1 − B̂) < 0, so (4.2) boils down to (4.6). Then, τB−ε ↓ 0 Pπ -a.s.

as ε ↓ 0.

The above results can be interpreted in the light of the following conjecture due to Alili and
Kyprianou (2005, p.2̃078): ‘It would then be reasonable to work with the assumption that there
will be smooth pasting at the boundary if and only if the boundary is regular for the stopping
region’. It means that we should expect that the smooth fit principle (3.5) holds at B	 from
(2.4) when either p0 > p1 and B	 < B̂, or p0 < p1.

We note that Proposition 4.1 can be applied in a similar manner to the disorder problems
studied by Peskir and Shiryaev (2002) and Gapeev (2005) for formally proving the regularity
of the optimal boundary point.

5. Solution of the optimal stopping problem

We are now ready to state the main theorem of this paper, which summarizes the previous
results.

Theorem 5.1. In the Bayesian disorder problem (2.2) and (2.3) for a negative binomial process,
with p0, p1 ∈ (0, 1) and c, λ > 0 given and fixed, there exists a unique B	 ∈ (0, 1) such that
the stopping time τ 	

π defined in (2.4) is optimal in (2.2) and (2.3). We have the following cases.
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(i) If p0 > p1 and c > log(p0/p1) − λ,

B	 = B̃

(
:= λ

λ + c

)
. (5.1)

The smooth fit (3.5) holds at B	 and B	 < B̂, where B̂ is a singularity point of the
free-boundary equation (3.1) given in (3.19);

(ii) If p0 > p1 and c = log(p0/p1) − λ, B	 is still given by (5.1) and in this case B	 = B̂.
The smooth fit condition breaks down at B	 and is replaced by (3.20).

(iii) If p0 > p1 and c < log(p0/p1) − λ, then the smooth fit does not hold at B	 and the
latter is the unique solution in (B̂, 1) of the following equation:

c
d(B̂;B	)

(B	) = 0, (5.2)

where the map B	 �→ d(B̂; B	) is given through (3.9) and the map B �→ cn(B) is
expressed by (3.15) and (3.16). In particular, when c satisfies

q0 log p1(log(p0/p1) − λ)

q0 log p1 − (log p0 − λ)(p1 − p0)
≤ c < log(p0/p1) − λ, (5.3)

the following equations hold:

B	 = λ(log p1 + c)

λ log p1 + c log p0
, V ′(B	−) = log p0(c + log p1)

log p1(λ − log p0)
, (5.4)

with B	 that, in the case c = log(p0/p1) − λ, reduces to (5.1) again.
In all the above three cases, π �→ V (π) from (2.2) and (2.3) is given by (3.17) and
(3.18), with B replaced by B	 and V (0) = V (0+).

(iv) If p0 < p1, the smooth fit condition holds at B	; in particular, for a fixed ε > 0, there
exists a unique pair vε ∈ (0, 1) and B	

ε ∈ (0, 1) satisfying

V (B	
ε ; ε, vε) = 1 − B	

ε , V ′(B	
ε ; ε, vε) = −1, (5.5)

where the map π �→ V (π; ε, v) is given by (3.24). Then,

B	 = lim
ε↓0

B	
ε , V (π) =

⎧⎨⎩lim
ε↓0

V (π; ε, vε), 0 < π < B	,

1 − π, B	 ≤ π ≤ 1,
(5.6)

with V (0) = V (0+); see Figure 1.

Proof. We first note from (2.6) that

πt = π + λ

∫ t

0
(1 − πs−) ds + Mt,

where (Mt)t≥0 is a Pπ -martingale. Then, standard arguments based on Peskir and Shiryaev
(2002), Gapeev (2005) and the optional sampling theorem imply that

Eπ

[
1 − πτ + c

∫ τ

0
πt dt

]
= 1 − π + (λ + c)Eπ

[∫ τ

0
(πt − B̃) dt

]
,
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Figure 1: A plot of the map π �→ V (π) (bold line), as defined by (5.6) and coinciding with (2.2) and
(2.3). We set p0 = 0.3, p1 = 0.8, λ = 1, c = 1, and ε = 0.001. The unique solution to (5.5) is
vε = 0.6620 and B	

ε = 0.5575. The other curves are the maps π �→ V (π; ε, v), for v = 0.9, 0.4,
and 0.15.

from which we observe that it is never optimal to stop before (πt )t≥0 reaches B̃. Hence,

B	 ≥ B̃. (5.7)

(i) and (ii) According to Gapeev (2005, Lemma 3.1), the fact that (πt )t≥0 from (2.6) jumps
towards 1 whenever X jumps and has drift (1 − π) log(p0/p1)(B̂ − π), as well as that for
c ≥ log(p0/p1)−λ we have B̃ ≤ B̂, we see that once (πt )t≥0 leaves [0, B̂], it will never come
back to the propitious set [0, B̃). Therefore, B	 = B̃. Remark 3.3 and Proposition 4.1 prove that
the smooth fit holds at B	 when c > log(p0/p1)−λ and breaks down when c = log(p0/p1)−λ.

(iii) When c < log(p0/p1) − λ, B̂ < B̃, so that from (5.7) it follows that B	 ∈ (B̂, 1).
Since π �→ V (π) is bounded (V (π) ≤ 1 − π ) and B̂ is a singularity point of (3.1), from
(3.18) we see that B	 must satisfy (5.2). This is due to the fact that every particular solution
π �→ Vp,d(π;B	)(π; B	) in (3.18) is taken as bounded. The uniqueness of B	 can be proved
analogously as in Peskir and Shiryaev (2002, Theorem 4.1, case 3); the fact that the smooth fit
does not hold at B	 arises from Proposition 4.1.

We observe that B	 from (5.4) is the unique solution of c1(B
	) = 0; the latter, according to

the previous reasoning and the definition of d(π; B) from (3.9), characterizes B	 if and only if

0 <
log

(
(B	/(1 − B	))((1 − B̂)/B̂)

)
log(q1/q0)

≤ 1,

which proves (5.3). In this case, (3.12) reduces to (3.14), from which the expression of V ′(B	−)

in (5.4) follows.

(iv) We begin by proving that π �→ V (π; ε, v) from (3.24) is concave. For a fixed ε > 0,
let vε ∈ (0, 1) and B	

ε ∈ (0, 1) be such that the map π �→ V (π; ε, vε) smoothly hits the map
π �→ 1 −π at B	

ε . Let Vε(π) := V (π; ε, vε), 0 ≤ π ≤ B	
ε , and Vε(π) := 1 −π , B	

ε ≤ π ≤ 1.
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Then, it is clear that π �→ Vε(π) solves the following boundary problem:

(LVε)(π) = −cπ, π ∈ (ε, B	
ε ); (5.8)

Vε(π) < vε ∧ (1 − π), π ∈ (ε, B	
ε ), (5.9)

Vε(π) = vε ∧ (1 − π), π ∈ [0, ε] ∪ [B	
ε , 1], (5.10)

V ′
ε(B

	
ε ) = −1, (smooth fit), (5.11)

where L is given by (2.7) and the smooth fit condition (5.11) should hold according to Propo-
sition 4.1. Define

W(π) := inf
τ

Eπ

[
(vε ∧ (1 − πτ )) + c

∫ τ

0
πt dt

]
, (5.12)

where the infimum is taken over all the stopping times of (πt )t≥0. Then, the map π �→ Vε(π)

solving (5.8)–(5.11) equals the map π �→ W(π). In order to prove this claim, first observe that

(LVε)(π) ≥ −cπ, π ∈ [0, 1]. (5.13)

The above inequality is obviously satisfied by construction on the interval (ε, B	
ε ). For π ∈

[0, ε), (LVε)(π) = 0 because Lf = 0 if f (π) = k, k ∈ R. It remains to show that (5.13)
holds on [B	

ε , 1): it can be proved by adopting the same line of arguments as in Buonaguidi
and Muliere (2013a, Theorem 6.1), since B	

ε is a smooth fit point for the system (5.8)–(5.11);
see Figure 2.

Note that Vε is C1 on [0, ε) ∪ (ε, 1] and C0 at ε. Then, since the time spent by the process
(πt )t≥0 at ε is of Lebesgue measure 0, Itô’s equation can be applied in its standard form to Vε,

Vε(πt ) = Vε(π) +
∫ t

0
(LVε)(πs−) ds + M	

t , (5.14)

Figure 2: A plot of the map π �→ (LV )(π), where the infinitesimal operator L and V are given in
(2.7) and (5.6), respectively. From the plot we see that (LV )(π) ≥ −cπ , π ∈ [0, 1]: this is a key fact
used in the proof of Theorem 5.1, case (iv), for the equivalence between (5.6) and (2.2)–(2.3). The same

parameters from Figure 1 are used.
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where (M	
t )t≥0, with

M	
t :=

∫ t

0

∫ 1

0
(Vε(πs− + y) − Vε(πs−))(μπ − vπ)( dy, ds), (5.15)

is a martingale under Pπ , π ∈ [0, 1], and μπ and vπ are the measure of jumps and the corre-
sponding compensator of (πt )t≥0. Let τ be a stopping time of (πt )t≥0, such that Eπ [τ ] < ∞.
Therefore, by (5.14), the optional sampling theorem, and (5.13), we have

Eπ [Vε(πτ )] = Vε(π) + Eπ

[∫ τ

0
(LVε)(πt−) dt

]
≥ Vε(π) − Eπ

[
c

∫ τ

0
πt dt

]
, (5.16)

which, according to (5.9) and (5.10), implies that

Vε(π) ≤ Eπ

[
(vε ∧ (1 − πτ )) + c

∫ τ

0
πt dt

]
. (5.17)

It proves that Vε(π) ≤ W(π) for all π ∈ [0, 1] and any stopping time with finite expectation.
Now, let τε := inf{t ≥ 0 : πt /∈ (ε, B	

ε )}; as Eπ [τε] < ∞, from (5.8), the definition of τε, and
(5.10), the inequalities in (5.16) and (5.17) become equalities, leading to

Vε(π) = Eπ

[
(vε ∧ (1 − πτε )) + c

∫ τε

0
πt dt

]
. (5.18)

The expressions (5.17) and (5.18) show that Vε(π) = W(π), π ∈ [0, 1], as well as that τε is
optimal in (5.12). Observe that applying the previous reasoning step by step, we can prove that
the maps π �→ V (π; ε, v) from (3.24), for different values of v ∈ (0, 1), equal the function
(5.12) when h(v, π) := v∧ (1−π) is replaced by g(v, π) := v∧ (α+βπ). Since π �→ W(π)

from (5.12) is concave, the same holds for π �→ V (π; ε, v).
Now, we can prove that vε and the smooth fit point B	

ε are unique. Using (3.21)–(3.23), it is
easy to observe that V (π; ε, v) > 1 −π , for v close to 1 and some π > ε, and V (π; ε, v) < 0,
for v close to 0 and some π > ε. This fact, the established concavity argument, and Remark 3.4
show that moving v on (0, 1) there exists a unique solution vε ∈ (0, 1) and B	

ε ∈ (0, 1) to the
system of equations (5.5); see Figure 1.

Finally, the limits in (5.6) follow from the continuity of π �→ V (π) from (2.2) and (2.3),
and the normal entrance condition (3.4).

6. Conclusions

The quickest detection of a shift in the parameter p ∈ (0, 1) of a negative binomial process
has been analyzed. The negative binomial process, as any other compound Poisson process,
is of ‘finite jump activity’ in the sense that it has a finite number of jumps over a finite time
interval. Future studies could therefore concern the disorder problem for ‘infinite jump activity’
processes, which present an infinite number of jumps on any finite time interval. The gamma
process and the inverse Gaussian process are two examples. Even though a partial answer to
this problem was given by Gapeev (2005), a complete solution seems to be missing.
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