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Abstract

Unification, or two-way pattern matching, is the process of solving an equation involving two

first-order terms with variables. Unification is used in type inference in many programming

languages and in the execution of logic programs. This means that unification algorithms have

to be written over and over again for different term types. Many other functions also make

sense for a large class of datatypes; examples are pretty printers, equality checks, maps etc.

They can be defined by induction on the structure of user-defined datatypes. Implementations

of these functions for different datatypes are closely related to the structure of the datatypes.

We call such functions polytypic. This paper describes a unification algorithm parametrised

on the type of the terms, and shows how to use polytypism to obtain a unification algorithm

that works for all regular term types.

1 Introduction

In simple pattern matching, a pattern (a string containing wild cards) is matched

with a normal string to determine if the string is an instance of the pattern. This

can be generalised in at least two directions: we can allow the second string to

contain wild cards too, thus making the matching symmetric; or we can allow more

complicated terms than strings. By combining these two generalisations we obtain

unification. A unification algorithm tries to find a most general unifier (mgu) of two

terms. The most general unifier of two terms is the smallest substitution of terms

for variables such that the substituted terms become equal.1 Use of unification is

widespread; it is used in type inference algorithms, rewriting systems, compilers,

etc. (Knight, 1989).

Descriptions of unification algorithms normally deal with a general datatype of

terms, containing variables and applications of constructors to terms, but each real

implementation uses one specific instance of terms and a specialised version of the

algorithm for this term type. This paper describes a functional unification program

1 If two first order terms are unifiable, their mgu is unique (Robinson, 1965).
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that works for all regular term types. The program is an example of a polytypic

function (Jeuring, 1995).

Function length :: List a -> Int, which counts the number of occurrences of

a’s in a list, and the similar function numOfElems :: Tree a -> Int, which counts

the number of occurrences of a’s in a tree are both instances of a more general

function size :: d a -> Int. Function size is not only polymorphic in a, but also

in the type constructor d. In the same way, we can generalise the function map ::

(a -> b) -> List a -> List b into a function pmap :: (a -> b) -> d a -> d b,

so that it too works for trees and other similar datatypes. We call such functions

polytypic functions. For an introduction to the basic ideas of polytypic functions see

Jeuring and Jansson (1996), and for a more theoretical treatment of polytypism see

Bird et al. (1996) and de Moor (1994).

In this paper we show that

• by parametrising the unification algorithm by the datatype for terms, we can

separate the core of the algorithm from the parts depending on the specific

datatype, and

• by abstracting away from the type constructor dependence in the datatype

dependent part we obtain a polytypic program.

Thus we have one implementation of unification that works for many different term

types leaving the specialisation to the compiler.

The core of the unification algorithm is written in Haskell and the polytypic part

is written in the Haskell extension PolyP (Jansson and Jeuring, 1997). The full code

is available from http://www.cs.chalmers.se/~patrikj/unify/.

2 Unification

In this section we will specify and implement a functional unification algorithm.

We start with an example. Consider the unification of the two terms f(x, f(a, b))

and f(g(y, a), y), where x and y are variables and f, g, a and b are constants. Since

both terms have an f on the outermost level, these expressions can be unified if x

can be unified with g(y, a), and f(a, b) can be unified with y. As these two pairs

of terms are unified by the substitution σ = {x 7→ g(y, a), y 7→ f(a, b)}, the original

pair of terms is also unified by applying the substitution σ, yielding the unified term

f(g(f(a, b), a), f(a, b)).

2.1 Terms

In the unification literature, a term is usually defined as either a variable or an

application of a constructor to zero or more terms. (Var is a set of variables and

Con is a set of constructor constants.)

T ::= v | c(T1, . . . , Tarity(c)), v ∈ Var, c ∈ Con

We instead focus on the three properties of the type of terms we need to define

unification. We need to know
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class Children t where children :: t → [t]

mapChildren :: (t → t) → t → t

class VarCheck t where varCheck :: t → Maybe Var

class TopEq t where topEq :: t → t → Bool

class (Children t, VarCheck t, TopEq t) ⇒ Term t

class Subst s where idSubst :: s t

modBind :: (Var,t) → s t → s t

lookupIn :: s t → Var → Maybe t

Fig. 1. Terms and substitutions.

data T = V Var | App Con [T]

instance Children T where children (V v) = []

children (App c ts) = ts

mapChildren f (V v) = V v

mapChildren f (App c ts) = App c (map f ts)

instance VarCheck T where varCheck (V v) = Just v

varCheck _ = Nothing

instance TopEq T where topEq (App c l) (App c’ l’) = c == c’ &&

length l == length l’

topEq (V v) (V w) = v == w

topEq _ _ = False

Fig. 2. T is an instance of Term.

• the children (immediate subterms) of a term and how to update them;

• whether or not a term is a variable, and if it is, which variable;

• when two terms are top-level equal. (Think of ‘top-level equal’ terms as terms

with ‘equal outermost constructors’.)

We define one type class for each of these properties and define the class of terms to

be the intersection of these three classes (see figure 1). As an example, the instances

for the type T above are given in figure 2.

2.2 Substitutions

A substitution is a mapping from variables to terms leaving all but a finite number

of variables unchanged. We define a class2 of substitutions parametrised on the type

of terms by the three class members idSubst, modBind and lookupIn. The value

idSubst represents the identity substitution, the call modBind (v,t) s modifies the

2 This class is not essential for the results in the paper, we could just as well have used some specific
type constructor for substitutions instead.
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substitution s to bind v to t (leaving the bindings for other variables unchanged) and

lookupIn s v looks up the variable v in the substitution s (giving Nothing if the vari-

able is not bound in s). Using lookupIn a substitution can be viewed as a function

from variables to terms. To use substitutions as functions from terms to terms we de-

fine appSubst:

appSubst :: (Subst s, Term t) => s t -> t -> t

appSubst s t = case varCheck t of

Nothing -> mapChildren (appSubst s) t

Just v -> case lookupIn s v of

Nothing -> t

Just t’ -> appSubst s t’

When calling appSubst s t, the substitution s is applied to all variables in the term

t and also recursively to all variables in the substituted terms.

A unifier of two terms is a substitution that makes the terms equal. A substitution

σ is at least as general as a substitution σ′ if and only if σ′ can be factored by σ,

i.e. if there exists a substitution ρ such that σ′ = ρ ◦ σ, where we treat substitutions

as functions. (In Haskell notation this means that s is at least as general as s’ iff

there exists r such that appSubst s’ = appSubst r . appSubst s.)

We want to define a function that given two terms finds the most general

substitution that unifies the terms or, if the terms are not unifiable, reports this.

2.3 The unification algorithm

Function unify takes two terms, and returns their most general unifier. It is im-

plemented in terms of unify’, which updates a current substitution that is passed

around as an extra argument. The unification algorithm starts with the identity sub-

stitution, traverses the terms and tries to update the substitution (as little as possible)

while solving the constraints found. If this succeeds the resulting substitution is a

most general unifier of the terms. The algorithm distinguishes three cases depending

on whether or not the terms are variables:

• If neither term is a variable we have two sub-cases; either the constructors

of the terms are different (that is, the terms are not top level equal) and the

unification fails, or the constructors are equal and we unify all the children

pairwise.
• If both terms are variables and the variables are equal we succeed without

changing the substitution. (If the variables are not equal the case below

matches.)
• If one of the terms is a variable we try to add to the substitution the binding

of this variable to the other term. This succeeds if the variable does not occur

in the term and if the new binding of the variable can be unified with the old

binding (in the current substitution).

A straightforward implementation of this description gives the code in figure 3

using the auxiliary functions in figure 4. We use some functions and types from the

Haskell prelude: functions return and (>>=) for the monad operations, the type

Maybe a and the function maybe for error handling and later the type Either and

the function either for disjoint sums.
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unify :: (Term t,Subst s) => t -> t -> Maybe (s t)

unify’ :: (Term t,Subst s) => t -> t -> s t -> Maybe (s t)

unify tx ty = unify’ tx ty idSubst

unify’ tx ty = uni (varCheck tx,varCheck ty) where

uni (Nothing,Nothing) | topEq tx ty = uniTerms tx ty

| otherwise = err

uni (Just i, Just j ) | i == j = ok

uni (Just i, ) = i |-> ty

uni ( , Just j ) = j |-> tx

uniTerms x y = threadList (zipWith unify’ (children x) (children y))

(|->) :: (Term t, Subst s) => Var -> t -> s t -> Maybe (s t)

(i |-> t) s = if occursCheck i s t then err s

else case lookupIn s i of

Nothing -> ok (modBind (i,t) s)

Just t’ -> mapMaybe (modBind (i,t)) (unify’ t t’ s)

Fig. 3. The core of the unification algorithm.

vars :: Term t => t -> [Var]

vars t = [ v | Just v <- map varCheck (subTerms t)]

subTerms :: Children t => t -> [t]

subTerms t = t : concat (map subTerms (children t))

occursCheck :: (Term t,Subst s) => Var -> s t -> t -> Bool

occursCheck i s t = i ‘elem‘ reachlist (vars t)

where

reachlist l = l ++ concat (map reachable l)

reachable v = reachlist (maybe [] vars (lookupIn s v))

threadList :: Monad m => [a -> m a] -> a -> m a

threadList = foldr (@@) return

(@@) :: Monad m => (a -> m b) -> (c -> m a) -> (c -> m b)

(f @@ g) x = g x >>= f

mapMaybe :: (a -> b) -> Maybe a -> Maybe b

mapMaybe f = maybe Nothing (Just . f)

ok, err :: a -> Maybe a

ok = Just

err = const Nothing

Fig. 4. Auxiliary functions in the unification algorithm.
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To use this unification algorithm on some term type T we must make T an instance

of the class Term by defining the four functions children, mapChildren, varCheck

and topEq. Traditionally, these instances would be handwritten for the type T and

when we need unification on a different type we would need new instances. But we

can do better than that; by making these functions polytypic we get one description

that automatically generates instances for all term types.

3 Polytypic unification

A polytypic function is a function parametrised on type constructors. Polytypic

functions are defined either by induction on the structure of user-defined datatypes,

or defined in terms of other polytypic (and non-polytypic) functions. We express

polytypic functions in the Haskell extension PolyP (Jansson and Jeuring, 1997).

To make the unification algorithm polytypic we define children, mapChildren,

topEq and varCheck for all term types d a, i.e. we express them as polytypic

functions. In the following subsections, we describe the polytypic functions we need

for unification and how they are expressed in PolyP.

3.1 Polytypic notation

To abstract away from the specific type constructors we view all datatypes as

fixpoints of functors, and extend the type language to include functor building

blocks. A category theoretic functor is a structure preserving mapping between two

categories, see, for example, Pierce (1991). In this paper, we take a more concrete

view of functors and use them only to model the structure of datatypes.

Functors are built up from the constants Par for the parameter, Rec for recursive

occurrences of the datatype and Const t for constant types (Int, Bool etc.) used in

the datatype definition, Empty and the combinator * for products, + for alternatives

and @ for type application. See figure 5 for some examples.

With a recursive datatype d a as a fixpoint, inn and out are the fold and unfold

isomorphisms showing d a ∼= Fd a (d a).

inn :: d a ← (FunctorOf d) a (d a)

out :: d a → (FunctorOf d) a (d a)

To construct values of type d a we use inn, which effectively combines all the

constructors of the datatype in one function, and conversely, to deconstruct values

data List a = Nil | Cons a (List a)

-- FunctorOf List = Empty + Par * Rec

data Tree a = Null | Node (Tree a) a (Tree a)

-- FunctorOf Tree = Empty + Rec * Par * Rec

data Type c = TyVar Var | Apply c (List (Type c))

-- FunctorOf Type = Const Var + Par*(List @ Rec)

Fig. 5. Datatypes and functors.
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of type d a we use out instead of pattern matching. PolyP defines inn and out for

all regular3 datatypes.

As we deal with recursive datatypes with one type parameter, the corresponding

functors are bifunctors. The bifunctors built from the constructors above map two

types to a type. We call the part of a bifunctor that maps two functions to a function

fmap. The operators (-*-) and (-+-) are the ‘fmaps’ for the pair type constructor

(,) and the sum type constructor Either:

(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f -*- g) (x,y) = (f x , g y)

(-+-) :: (a -> c) -> (b -> d) -> Either a b -> Either c d

(f -+- g) = either (Left . f) (Right . g)

The definition of fmap by induction over the structure of functors is given in figure 6.

(The subscripts indicating the type are included for readability and are not part of

the definition.) Using fmap we can define pmap, a polytypic variant of the Haskell

polytypic fmapf :: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> (fmapg p r) -+- (fmaph p r)

g * h -> (fmapg p r) -*- (fmaph p r)

Empty -> id

Par -> p

Rec -> r

d @ g -> pmapd (fmapg p r)

Const t -> id

Fig. 6. The polytypic fmap function.

function map :: Functor d => (a -> b) -> d a -> d b. Just like map, function pmap

applies its function argument to all elements in a structure without affecting the

shape of the structure. But unlike map, whose instances for different datatypes have

to be written by hand, instances for pmap are automatically generated by PolyP.

pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

instance Regular d => Functor d where map = pmap

The function mapChildren is also expressed in terms of fmap.

3.2 Functions children and mapChildren

Function children :: Children t => t -> [t] returns the immediate subterms

of a term. We find these subterms by unfolding the term one level, using out,

3 A datatype d a is regular if it contains no function spaces, and if the argument of the type constructor
d is the same on the left- and right-hand side of its definition.
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mapping the parameters to empty lists and the subterms to singletons using fmap

and flattening the result to a list using fflatten:

instance Regular d => Children (d a) where

children = fflatten . fmap nil singleton . out

mapChildren f = inn . fmap id f . out

nil x = []

singleton x = [x]

Function fflatten :: f [a] [a] -> [a] takes a value v of type f [a] [a], and

returns the concatenation of all the lists (of type [a]) occurring at the top level

in v. The polytypic definition of fflatten is given in figure 7. As an example, we

polytypic fflattenf :: f [a] [a] -> [a]

= case f of

g + h -> either fflatteng fflattenh
g * h -> \(x,y) -> fflatteng x ++ fflattenh y

Empty -> nil

Par -> id

Rec -> id

d @ g -> concat . flattend . pmapd fflatteng
Const t -> nil

flatten :: Regular d => d a -> [a]

flatten = fflatten . fmap singleton flatten . out

Fig. 7. The polytypic fflatten function.

unfold the definition of fflatten when used on the type List a (remember that

FunctorOf List = Empty+Par*Rec):

fflattenEmpty+Par∗Rec
= either fflattenEmpty fflattenPar∗Rec
= either nil (\(x,y) -> fflattenPar x ++ fflattenRec y)

= either nil (\(x,y) -> id x ++ id y)

= either nil (uncurry (++))

3.3 Function topEq

Function topEq :: TopEq t => t -> t -> Bool compares the top level of two

terms for equality. It is defined in terms of the polytypic equality functions fequal

and pequal (see figure 8). The first argument to fequal compares parameters for

equality, the second argument (that compares the subterms) is constantly true (to

get top level equality) and the third and fourth arguments are the two (unfolded)

terms to be compared:

instance (Regular d, Eq a) => TopEq (d a) where

topEq t t’ = fequal (==) (\_ _ -> True) (out t) (out t’)
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polytypic fequalf :: (a->b->Bool) -> (c->d->Bool) -> f a c -> f b d -> Bool

= \p r -> case f of

g + h -> sumequal (fequalg p r) (fequalh p r)

g * h -> prodequal (fequalg p r) (fequalh p r)

Empty -> \_ _ -> True

Par -> p

Rec -> r

d @ g -> pequald (fequalg p r)

Const t -> (==)

pequal :: (a->b->Bool) -> d a -> d b -> Bool

pequal eq x y = fequal eq (pequal eq) (out x) (out y)

sumequal :: (a->b->Bool) -> (c->d->Bool) -> Either a c -> Either b d ->Bool

sumequal f g (Left x) (Left v) = f x v

sumequal f g (Right y) (Right w) = g y w

sumequal f g _ _ = False

prodequal :: (a->b->Bool) -> (c->d->Bool) -> (a,c) -> (b,d) -> Bool

prodequal f g (x,y) (v,w) = f x v && g y w

Fig. 8. The polytypic fequal function.

The polytypic function pequal is useful in its own right as we can use it to define

Haskell’s ‘derived’ equality function for all regular datatypes:

instance (Regular d, Eq a) => Eq (d a) where

x == y = pequal (==) x y

3.4 Function varCheck

Function varCheck :: VarCheck t => t -> Maybe Var checks whether or not a

term is a variable. A polytypic varCheck must recognise the datatype constructor

that represents variables, using only information about the structure of the datatype.

We have for simplicity chosen to represent variables by the first constructor in the

datatype, which should have one parameter of type Var.

instance Regular d => VarCheck (d a) where

varCheck = fvarCheck . out

polytypic fvarCheck :: f a b -> Maybe Var

= case f of

(Const Var) + g -> either ok err

g -> err

3.5 Summary

We have now made all regular datatypes instances of the class Term. Thus, by

combining the unification algorithm from section 2 with the polytypic instance

declarations from this section, we obtain a unification algorithm that works for all

regular term types.
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