SOLUTION OF A GENERAL HOMOGENEOUS LINEAR DIFFERENCE EQUATION

V. N. SINGH

(Received 11 October 1979)
(Revised 23 January 1980)

Abstract

Solutions of a homogeneous $(r+1)$-term linear difference equation are given in two different forms. One involves the elements of a certain matrix, while the other is in terms of certain lower Hessenberg determinants. The results generalize some earlier results of Brown [1] for the solution of a 3 -term linear difference equation.

1. Introduction

In a recent paper, Brown [1] has given the solution of the three-term linear difference equation

$$
\begin{equation*}
a_{0}(n) u_{n}+a_{1}(n) u_{n-1}+a_{2}(n) u_{n-2}=0, \quad n \geqslant 2, \tag{1}
\end{equation*}
$$

with $a_{0}(n) \neq 0$ for all $n \geqslant 2$, in terms of certain tri-diagonal determinants. In this paper, we consider the general $(r+1)$-term homogeneous linear difference equation

$$
\begin{equation*}
a_{0}(n) u_{n}+a_{1}(n) u_{n-1}+\ldots+a_{r}(n) u_{n-r}=0, \quad n \geqslant r, \tag{2}
\end{equation*}
$$

with the condition that $a_{0}(n) \neq 0$ for all $n \geqslant r$. We obtain two forms of the general solution for this difference equation, namely a matrix form, given in Section 2, and a determinantal form, given in Section 3. An interesting determinantal relation is derived in Section 4.

We introduce the following notations :

$$
\begin{gathered}
a_{l}(n)=0 \quad \text { if } t \text { is a negative integer or a positive integer }>r . \\
p_{k}=\prod_{t=r}^{k} a_{0}(l), \quad q_{k}=\prod_{l=r}^{k} a_{r}(l) ; \text { empty products will be taken to be } 1 .
\end{gathered}
$$

$$
\begin{gathered}
A_{k}=\left[a_{i-j}(k r+i-1)\right], i, j=1, \ldots, r, k=1,2, \ldots \\
B_{k}=\left[a_{r-(j-i)}(k r+i-1)\right], i, j=1, \ldots, r, k=1,2, \ldots
\end{gathered}
$$

$N=[n / r], \quad$ where $[x]$ denotes the integral part of $x ; \quad N^{\prime}=n-N r+1$.

$$
\begin{aligned}
& A_{(n)}=\left[a_{i-j}(N r+i-1)\right], \quad i, j=1, \ldots, N^{\prime} . \\
& B_{(n)}=\left[a_{r-(j-i)}(N r+i-1)\right], \quad i=1, \ldots, N^{\prime}, \quad j=1, \ldots, r \text {. } \\
& U_{(r, n)}=\left[u_{r} u_{r+1} \ldots u_{n}\right]^{T} ; \quad U_{(k r,(k+1) r-1)} \equiv U_{k} . \\
& D_{m}^{n}(r, s)=\left|\begin{array}{ccccccc}
a_{s}(m) & a_{0}(m) & 0 & \ldots & 0 & \ldots & 0 \\
a_{s+1}(m+1) & a_{1}(m+1) & a_{0}(m+1) & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
a_{r}(m+r-s) & a_{r-s}(m+r-s) & . & \ldots & a_{0}(m+r-s) & \ldots & 0 \\
0 & . & \ldots & \ldots & . & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
. & a_{r}(m+r) & a_{r-1}(m+r) & \ldots & . & \ldots & 0 \\
. & 0 & a_{r}(m+r+1) & \ldots & . & \ldots & 0 \\
\vdots & \vdots & \vdots & & & \vdots & \\
\vdots & . & . & \ldots & . & \ldots & a_{0}(n-1) \\
. & . & . & \ldots & . & \ldots & a_{1}(n)
\end{array}\right|
\end{aligned}
$$

for $n \geqslant m+1 ; D_{m}^{m}(r, s)=a_{s}(m)$ and $D_{r}^{n}(r, s) \equiv D_{s}^{n}$.

2. Solution in terms of matrix elements

We shall first obtain a matrix solution of the linear difference equation (2).
If we put $n=k r, k r+1, \ldots,(k+1) r-1$ in (2), we get the matrix reduction formula

$$
\begin{equation*}
A_{k} U_{k}=-B_{k} U_{k-1}, \quad k \geqslant 1 . \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
U_{k}=(-1)^{k}\left\{\prod_{s=1}^{k}\left(A_{s}^{-1} B_{s}\right)\right\} U_{0}, \quad k \geqslant 1 \tag{4}
\end{equation*}
$$

as the matrices $A_{s}, s=1, \ldots, k$, being lower triangular, are non-singular because of the condition that $a_{0}(n) \neq 0$ for all $n \geqslant r$. Thus, if $n \equiv t(\bmod r)$, then $n=k r+t$, $0 \leqslant t \leqslant r-1$, and so, from (4), we obtain the following general solution for the difference equation (2) :

$$
\begin{equation*}
u_{k r+t}=\text { the }(t+1) \text { th element of the column matrix } U_{k}, 0 \leqslant t \leqslant r-1 \tag{5}
\end{equation*}
$$

3. Solution in terms of determinants

In this section, we obtain a solution of the linear difference equation (2) in terms of the determinants $D_{s}^{n}, s=1, \ldots, r$.

Let $n=r, r+1, \ldots, n$ in (2). Then

$$
A_{(r, n)} U_{(r, n)}=-\left[\begin{array}{c}
B_{1} \tag{6}\\
0_{n-2 r+1, r}
\end{array}\right] U_{0}
$$

where

$$
A_{(r, n)}=\left[\begin{array}{ccccccc}
A_{1} & 0_{r} & 0_{r} & \ldots & 0_{r} & 0_{r} & 0_{r, N^{\prime}} \\
B_{2} & A_{2} & 0_{r} & \ldots & 0_{r} & 0_{r} & 0_{r, N^{\prime}} \\
0_{r} & B_{3} & A_{3} & \ldots & 0_{r} & 0_{r} & 0_{r, N^{\prime}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0_{r} & 0_{r} & 0_{r} & \ldots & B_{N-1} & A_{N-1} & 0_{r, N^{\prime}} \\
0_{N^{\prime}, r} & 0_{N^{\prime}, r} & 0_{N^{\prime}, r} & \ldots & 0_{N^{\prime}, r} & B_{(n)} & A_{(n)}
\end{array}\right],
$$

with $0_{r, s}$ denoting the null matrix of dimension r by s, and with $0_{r, r} \equiv 0_{r}$.
Applying Cramer's rule to the linear non-homogeneous system (6), we get, in particular,

$$
\begin{equation*}
\left|A_{(r, n)}\right| u_{n}=C_{(r, n)} \tag{7}
\end{equation*}
$$

where

$$
C_{(r, n)}=\left[\begin{array}{cccccccc}
A_{1} & 0_{r} & 0_{r} & \ldots & 0_{r} & 0_{r} & 0_{r, N^{\prime}-1} & -B_{1} U_{0} \tag{8}\\
B_{2} & A_{2} & 0_{r} & \ldots & 0_{r} & 0_{r} & 0_{r, N^{\prime}-1} & 0_{r, 1} \\
0_{r} & B_{3} & A_{3} & \ldots & 0_{r} & 0_{r} & 0_{r, N^{\prime}-1} & 0_{r, 1} \\
\vdots & \vdots \\
0_{r} & 0_{r} & 0_{r} & \ldots & B_{N-1} & A_{N-1} & 0_{r, N^{\prime}-1} & 0_{r, 1} \\
0_{N^{\prime}, r} & 0_{N^{\prime}, r} & 0_{N^{\prime}, r} & \ldots & 0_{N^{\prime}, r} & B_{(n)} & A_{(n)}^{*} & 0_{r, 1}
\end{array}\right],
$$

the asterisk in the last row denoting the omission of the last column of the starred matrix. On expanding the determinant $C_{(r, n)}$ along the last column, we find that

$$
\begin{aligned}
C_{(r, n)} & =(-1)^{n-r+1} \sum_{t=0}^{r-1}(-1)^{t}\left\{\sum_{s=1}^{r-t} a_{s+t}(r+t) u_{r-s}\right\} p_{r+t-1} D_{r+t+1}^{n}(r, 1) \\
& =(-1)^{n-r+1} \sum_{s=1}^{r} u_{r-s}\left\{\sum_{t=0}^{r-s}(-1)^{t} a_{s+t}(r+t) p_{r+t-1} D_{r+t+1}^{n}(r, 1)\right\} .
\end{aligned}
$$

The last inner sum is seen to be the expansion, along the first column, of the
determinant D_{s}^{n}. Hence, by (7), we obtain the following determinantal solution of the linear difference equation (2) :

$$
\begin{equation*}
u_{n}=(-1)^{n-r+1} p_{n}^{-1} \sum_{s=1}^{r} D_{s}^{n} u_{r-s}, \quad n \geqslant r \tag{9}
\end{equation*}
$$

It is easy to see that, when $r=2$, this reduces to the solution given by Brown [1], equation (3.10) :

$$
u_{n}=(-1)^{n-1} L_{n-1}^{-1}\left\{u_{1} C_{1}^{n-1}+u_{0} F(1) C_{2}^{n-1}\right\}, \quad n \geqslant 3
$$

if one observes that

$$
C_{m}^{n}=D_{m+1}^{n+1}(2,1)=D_{m}^{n+1}(2,2) /\left\{a_{2}(m)\right\},
$$

so that

$$
\begin{equation*}
D_{1}^{n}=C_{1}^{n-1} \quad \text { and } \quad D_{2}^{n}=a_{2}(2) C_{2}^{n-1} \tag{10}
\end{equation*}
$$

4. A relation between determinants

We can easily obtain a determinantal relation connecting the determinants D_{s}^{n+t}, $t=0,1, \ldots, r-1, s=1, \ldots, r$.

Let

$$
E_{r}^{n} \equiv\left|D_{j}^{n+i-1}\right|, \quad i, j=1, \ldots, r
$$

denote the determinant formed from these r^{2} determinants. On expanding the determinant D_{s}^{n} along the last column, we have

$$
\begin{equation*}
D_{s}^{n}=\sum_{t=1}^{r}(-1)^{t-1}\left\{\prod_{l=1}^{t-1} a_{0}(n-l)\right\} a_{t}(n) D_{s}^{n-t}, \quad n \geqslant 2 r \tag{11}
\end{equation*}
$$

for $s=1, \ldots, r$. Making use of relation (11) in the last row of determinant E_{r}^{n}, we find that

$$
\begin{equation*}
E_{r}^{n}=\left\{\prod_{l=n}^{n+r-2} a_{0}(l)\right\} a_{r}(n+r-1) E_{r}^{n-1}, \quad n \geqslant r+1 \tag{12}
\end{equation*}
$$

We now need the following

Lemma.

$$
\begin{equation*}
E_{r}^{r}=\left\{\prod_{n=r}^{2 r-2} p_{n}\right\} q_{2 r-1} \tag{13}
\end{equation*}
$$

Proof. Let

$$
D_{r}^{*}=\left[D_{r-j+1}^{r+i-1}\right] \quad \text { and } \quad P_{r}=\left[(-1)^{i-1} p_{r+i-1} \delta_{j}^{i}\right]
$$

where $i, j=1, \ldots, r$ and δ_{j}^{i} is the Kronecker delta. Then the set of solutions (9) for $n=r, r+1, \ldots, 2 r-1$, can be written as

$$
\begin{equation*}
D_{r}^{*} U_{0}=-P_{r} U_{1} \tag{14}
\end{equation*}
$$

Since, by (4),

$$
U_{1}=-\left(A_{1}^{-1} B_{1}\right) U_{0}
$$

we have

$$
\begin{equation*}
\left(P_{r}^{-1} D_{r}^{*}\right) U_{0}=\left(A_{1}^{-1} B_{1}\right) U_{0} \tag{15}
\end{equation*}
$$

Denoting by E_{k} the r-dimensional unit vector having unity in the k th place and zeros everywhere else, and taking $U_{0}=E_{k}, k=1,2, \ldots, r$, successively in (15), we get

$$
P_{r}^{-1} D_{r}^{*}=A_{1}^{-1} B_{1},
$$

so that

$$
(-1)^{r(r-1) / 2} E_{r}^{r}=\left\{\prod_{n=r}^{2 r-1}(-1)^{n-r} p_{n}\right\} p_{2 r-1}^{-1} q_{2 r-1}
$$

whence (13) follows.
Using the reduction formula (12) and the value (13), after some rearrangement we finally get

$$
\begin{equation*}
E_{r}^{n}=\left\{\prod_{k=n}^{n+r-2} p_{k}\right\} q_{n+r-1}, \quad n \geqslant r . \tag{16}
\end{equation*}
$$

Thus, E_{r}^{n} vanishes if $a_{r}(l)=0$ for some $l, r \leqslant l \leqslant n+r-1$.
When $r=2$, (16) reduces to the corresponding relation given by Brown [1], equation (3.14), because of the relations (10).

Acknowledgements

The author wishes to thank the referees for their helpful suggestions and comments.

Reference

[1] A. Brown, "Solution of a linear difference equation", Bull. Austral. Math. Soc. 11 (1974), 325-331.

Department of Mathematics and Astronomy
University of Lucknow
Lucknow 226007
India

