ON A 1-DIMENSIONAL PLANAR CONTINUUM WITHOUT THE FIXED POINT PROPERTY

JOHN R. MARTIN

Introduction. In $[\mathbf{5} ; \mathbf{6}]$ the author considers the following two problems posed by Professor Lloyd Tucker.

Problem 1. Does there exist a 1-dimensional continum X without the fixed point property such that every retract of X has the fixed point property with respect to one-to-one maps?

Problem 2. In Problem 1 replace "one-to-one" by "onto."

In [5] the author shows that an example of G. S. Young [8, p. 884] is an arcwise connected continuum which answers Problem 1 in the affirmative. In [6] the author gives an example of an arcwise connected continuum which answers both Problems 1 and 2 simultaneously. The purpose of this paper is to given an example of a 1-dimensional planar continuum X which answers both problems simultaneously and thus provide an affirmative answer to Problem 1 in [6].

We remark that the construction of X is a modification of a continuum in [6] which involves removing the interior of a triod and adding countably many " $\sin 1 / x$ arcs."

The closure of a subset A of a topological space shall be denoted by $\mathrm{Cl} A$.

1. Construction of the continuum X. Let C_{1} denote the continuum in the right half $x y$-plane which is the union of two segments $\left[d_{1}, d_{2}\right],\left[d_{2}, d_{3}\right]$, and the closure of the graph of $y=-5+\sin (\pi / x), 0<x \leqq 1$, where the points d_{1}, d_{2}, d_{3} have coordinates $(0,6),(1,6),(1,-5)$ respectively. Let C_{2} be the image of C_{1} under the rotation of the origin O through an angle of π. Now let A be an infinite ray lying in the $x y$-plane with endpoint $a=(2,6)$ such that A
(1) is disjoint from $C_{1} \cup C_{2}$ and
(2) "converges" to $C_{1} \cup C_{2}$ in such a way that
(a) there is a sequence of $\operatorname{arcs} S_{1}, S_{2}, S_{3}, \ldots$ filling up A such that $S_{i} \cap S_{j}=\emptyset$ for $j \neq i-1, i+1$, and is an endpoint of each for $j=i-1, i+1$, and
(b) $C_{1}=\lim S_{2 j-1}, \quad C_{2}=\lim S_{2 j}$.

Received January 12, 1977 and in revised form, June 28, 1977. This research was supported in part by NRC Grant A8205.

It may be assumed that A has been contructed so that the intersection of each S_{i} with the set $\{(x, y) \mid-5 \leqq y \leqq 5\}$ is a vertical line segment with length 10 such that $S_{2_{j-1}}$ passes through $p_{2_{j-1}}=(1+1 / j, 0)$, and $S_{2_{j}}$ passes through $p_{2 j}=(-1-1 / j, 0)$.

Let $A_{2 j-1}$ denote the curve whose equation is

$$
y=\frac{1}{2 j-1} \sin \left(\frac{\pi}{j(j+1)(x-1)-j}\right) \quad \text { for } 1+\frac{1}{j+1}<x \leqq 1+\frac{1}{j} .
$$

Thus $A_{2_{j-1}}$ is a $\sin (1 / x)$ curve whose closure joins the point $p_{2_{j-1}}$ to the limiting interval in $S_{2_{j+1}}$ whose length is $2 /(2 j-1)$ and whose midpoint is $p_{2 j+1}$. Let $A_{2_{j}}$ be the image of $A_{2_{j-1}}$ under the rotation of the $x y$-plane about the origin O through an angle of π.

Let g be a homeomorphism on $\mathrm{Cl}\left(\cup_{i=1}^{\infty} A_{2_{i}}\right)$ which preserves x-coordinates such that the image of $\mathrm{Cl}\left(\cup_{i=1}^{\infty} A_{2 i}\right)$ under g lies in the set $\{(x, y) \mid-2 \leqq x \leqq$ $-1,-3 x-3 \leqq y \leqq-5 x-5\}$. We define $B_{2 i}\left(q_{2 i}\right)$ to be the image of $A_{2 i}\left(p_{2 i}\right)$ under the homeomorphism g. Then the intersection of $\mathrm{Cl}\left(\cup_{i=1}^{\infty} A_{2 i}\right)$ and $\mathrm{Cl}\left(\cup_{i=1}^{\infty} B_{2 i}\right)$ consists of the single point $q=(-1,0)$.

Define $X=C_{1} \cup C_{2} \cup A \cup\left(\cup_{i=1}^{\infty} A_{i}\right) \cup\left(\cup_{i=1}^{\infty} B_{2 i}\right)$. Then X is a 1-dimensional (indeed, rational) planar continuum.

We define a fixed point free map $f: X \rightarrow X$ as follows. Restricted to $C_{1} \cup C_{2}$, f is a rotation in the $x y$-plane about O through an angle of π. Also f is a continuous function mapping the path component $X-C_{1} \cup C_{2}$ into itself such that for each i, f maps S_{i} onto S_{i+1}, and the restrictions $f\left|A_{i}, f\right| B_{2 i}$ homeomorphically map the sets $A_{i}, B_{2 i}$ onto the sets $A_{i+1}, A_{2 i+1}$ respectively. The only other precaution that we must take to insure the continuity of f is to make certain that as a point moves far out on A, its image under f is very near its reflection through the origin O.

2. Proof that every retract of X has the fixed point property with respect to one-to-one maps and with respect to onto maps. (i) First

 we show that X itself has the fixed point property with respect to one-to-one maps and with respect to onto maps.Suppose $h: X \rightarrow X$ is a one-to-one map. Then h is a homeomorphism of X into itself. Moreover, X is locally connected at $q=(-1,0)$ and there is a connected neighborhood V of q such that $V-\{q\}$ consists of four components. Since no other point in X has this property, it follows that $h(q)=q$.

Now suppose that $h: X \rightarrow X$ is an onto map. We claim that $h\left(X-C_{1} \cup\right.$ $\left.C_{2}\right)=X-C_{1} \cup C_{2}$. To see this, suppose $h\left(X-C_{1} \cup C_{2}\right) \cap\left(C_{1} \cup C_{2}\right) \neq \emptyset$. Since path components must be preserved, it follows that $h\left(X-C_{1} \cup C_{2}\right) \subset$ $C_{1} \cup C_{2}$. Therefore $h(X) \subset C_{1} \cup C_{2}$ which is a contradiction.

The remaining argument parallels a portion of the argument found in case (ii) of [6]. Let e be a homeomorphism from A onto the non-negative real numbers. Since $h(A)$ can contain no A_{i} or $B_{2 i}$, there is a retraction $r: h(A) \cup$
$A \rightarrow A$ defined by

$$
r(x)= \begin{cases}x & \text { if } x \in A \\ p_{i} & \text { if } x \in A_{i} \\ q_{2 i} & \text { if } x \in B_{2 i}\end{cases}
$$

Define a map H from A into the real numbers \mathbf{R} by $H(x)=\operatorname{erh}(x)-e(x)$ for all x in A. If $h\left(A_{1}\right)$ contains an infinite subarc of A_{1}, it follows that h has a fixed point in $\mathrm{CI} A_{1}$. Hence, since h is onto, we may assume that an infinite subarc of A_{1} must lie in $h\left(A_{i}\right)$ or $h\left(B_{2_{j}}\right)$ for some $i>1$ or $2 j>1$. Assume that it is $h\left(A_{i}\right)$. Then $h\left(p_{i+2}\right) \in \mathrm{Cl} A_{1}$ and hence $H\left(p_{i+2}\right)<0$. If $h(a) \neq a$, then $H(a)>0$. Since H is a continuous function from A into \mathbf{R}, it follows that there is a point c in A such that $H(c)=0$. Thus $r h(c)=c$. If $h(c) \in A$, then $h(c)=c$. Hence suppose $h(c)$ lies in the interior of some A_{i} or $B_{2 j}$. Assume that $h(c) \in \operatorname{Int} A_{i}$ and thus $c=p_{i}$. If h maps $\mathrm{Cl} A_{i}$ into itself, then h has a fixed point. Otherwise, regard A_{i} as a directed arc with initial point p_{i}, and let a_{i} be the first point in A_{i} such that $h\left(a_{i}\right)=p_{i}$. It then follows that there is a point in A_{i} between p_{i} and a_{i} which is fixed under h.
(ii) We now consider the cases where Y is a proper retract of X. The arguments for these cases are similar to those used in case (iii) of [6], and we shall not repeat them in detail.

First we consider the case of a proper retract Y which contains an infinite subarc of A. Then, as in [$\mathbf{6}, \mathrm{p} .181]$, it is easy to see that Y must be a continuum which contains all but finitely many of the A_{i} and $B_{2 i}$. Consequently, the argument for this case is completely analogous to that used for X itself.

It is easy to show that the only retracts of X lying in $C_{1} \cup C_{2}$ are singleton points or compact arcs (see [6, p. 181]).

Finally, we consider the case of the retracts of X which lie in the path component $X-C_{1} \cup C_{2}$. Any dendrite D in $X-C_{1} \cup C_{2}$ has the fixed point property and is a retract of $X[\mathbf{2}, \mathrm{p} .138]$. Also any arcwise connected continuum Y consisting of a compact subarc of A and finitely many A_{i} and $B_{2 i}$ is a retract of X which has the fixed point property [$\mathbf{6}, \mathrm{p} .182$]. Consequently, any continuum of the form $D \cup Y$ is a retract of X which has the fixed point property, and this completes (ii).

Remarks. 1) In [5] the author asks if a planar and arcwise connected example can be found. Of course, such an example could not contain a simple closed curve. In fact, no such example can exist. This is a consequence of C. L. Hagopian's recent announcement that every arcwise connected planar continuum containing no simple curve has the fixed point property (see question 4 of [1]).
2) By a simply connected space we mean an arcwise connected space whose fundamental group is trivial. In [6] the author asks if there exists a simply connected 1-dimensional continuum X which does not have the fixed point property with respect to homeomorphisms.

We claim that such a space X could contain no simple closed curve. To see this, suppose C is a simple closed curve in X. Since X is 1 -dimensional and C is homeomorphic to the unit circle S^{1}, it follows that C is a retract of X [$4, \mathrm{p} .83]$. If $p \in C$, then the inclusion map $i: C \rightarrow X$ induces a monomorphism $i_{*}: \pi_{1}(C, p) \rightarrow \pi_{1}(X, p)$ of the corresponding fundamental groups [3, p. 150]. Since $\pi_{1}(C, p)$ is infinite cyclic, it follows that X is not simply connected.

Lee Mohler has shown that no such example can exist by solving the following more general problem. In [7] he shows that every arcwise connected continuum containing no simple closed curve has the fixed point property with respect to homeomorphisms.

References

1. R. H. Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969), 119-131.
2. K. Borsuk, Theory of retracts (Warszawa 1967).
3. S. T. Hu, Homotopy theory (Academic Press, New York, 1959).
4. W. Hurewicz and H. Wallman, Dimension theory (Princeton Univ. Press, Princeton 1941).
5. J. R. Martin, On 1-dimensional continua without the fixed point property, Colloq. Math. 31 (1974), 203-205.
6. - On a simply connected 1-dimensional continuum without the fixed point property, Fund. Math. 91 (1976), 179-182.
7. L. Mohler, The fixed point property for homeomorphisms of 1-arcwise connected continua, Proc. Amer. Math. Soc. 52 (1975), 451-456.
8. G. S. Young, Fixed point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), 880-884.

University of Saskatchewan, Saskatoon, Saskatchewan

