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ON A 1-DIMENSIONAL PLANAR CONTINUUM WITHOUT 
THE FIXED POINT PROPERTY 

JOHN R. MARTIN 

Introduction. In [5 ; 6] the author considers the following two problems 
posed by Professor Lloyd Tucker. 

Problem 1. Does there exist a 1-dimensional continuum X without the fixed 
point property such that every retract of X has the fixed point property with 
respect to one-to-one maps? 

Problem 2. In Problem 1 replace "one-to-one" by "onto." 

In [5] the author shows that an example of G. S. Young [8, p. 884] is an 
arcwise connected continuum which answers Problem 1 in the affirmative. In 
[6] the author gives an example of an arcwise connected continuum which 
answers both Problems 1 and 2 simultaneously. The purpose of this paper is to 
given an example of a 1-dimensional planar continuum X which answers both 
problems simultaneously and thus provide an affirmative answer to Problem 1 
in [6]. 

We remark that the construction of X is a modification of a continuum in [6] 
which involves removing the interior of a triod and adding countably many 
"sin 1/x arcs/ ' 

The closure of a subset A of a topological space shall be denoted by Cl A. 

1. Construction of the cont inuum X. Let G denote the continuum in 
the right half xy-plane which is the union of two segments [dx, d2], [d2j d3], and 
the closure of the graph of y = — 5 + sin (TT/X), 0 < x ^ 1, where the points 
di, d2, dz have coordinates (0, 6), (1, 6), (1, —5) respectively. Let G be the 
image of G under the rotation of the origin 0 through an angle of T. NOW let 
A be an infinite ray lying in the xy-plane with endpoint a = (2, 6) such that A 

(1) is disjoint from G U G and 
(2) "converges" to G U G in such a way that 

(a) there is a sequence of arcs Si, S2, 53, . . . filling up A such that 
Si G Sj = 0 for j 7e i — 1, i + 1, and is an endpoint of each for 
j = i — l , i + l , and 

(b) G = lim 52j_i, G = lim S2j. 
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I t may be assumed tha t A has been contructed so tha t the intersection of each 

Si with the set {(x, y)\ — 5 ^ y ^ 5} is a vertical line segment with length 10 

such tha t S2j-i passes through p2j-i = (1 + 1/j, 0) , and S2j passes through 

pti= ( - 1 - l / j , 0 ) . 

Let ^Ui-i denote the curve whose equation is 

y = ^-. T sin I - T T - p f T p — T T I for 1 + " T T < x = l + ~ • 
2; - 1 \j(j+l)(x - I) -J/ 7 + 1 J 

Thus ^2 j - i is a s i n ( l / x ) curve whose closure joins the point p2j-i to the limiting 
interval in S2j+i whose length is 2 / ( 2 ; — 1) and whose midpoint is p2j+i. Let 
^42j be the image of A2j-i under the rotation of the x^-plane about the origin 0 
through an angle of IT. 

Let g be a homeomorphism on Cl(U?=i^2z) which preserves x-coordinates 
such tha t the image of Cl(UT=i^2i) under g lies in the set {(x, y)\ — 2 ^ x ^ 
— 1, — 3x — 3 ^ y ^ — 5x — 5}. We define B2i(q2i) to be the image of 
A2i(p2i) under the homeomorphism g. Then the intersection of Cl(U?=i^2*) 
and Cl(U?=i^2i) consists of the single point q = ( — 1, 0) . 

Define I = C i U C 2 U i U (UT=i^z) ^ ( U ? = i i ^ ) . Then X is a 1-dimen­
sional (indeed, rational) planar continuum. 

We define a fixed point free m a p / : X —-> X as follows. Restricted to C\ U C2, 
/ is a rotat ion in the x^-plane about 0 through an angle of T. A l s o / is a continu­
ous function mapping the pa th component X — C\ \J C2 into itself such tha t 
for each i,f maps St onto Si+i, and the restrictions/ |yl i,f\B2i homeomorphically 
map the sets Au B2i onto the sets Ai+il A2i+1 respectively. The only other 
precaution tha t we must take to insure the continuity of / is to make certain 
tha t as a point moves far out on A, its image u n d e r / is very near its reflection 
through the origin 0. 

2. Proof t h a t every retract of X h a s t h e fixed p o i n t property w i t h 
respect to o n e - t o - o n e m a p s and w i t h respect to o n t o m a p s , (i) First 
we show tha t X itself has the fixed point property with respect to one-to-one 
maps and with respect to onto maps. 

Suppose h: X —» X is a one-to-one map. Then h is a homeomorphism of X 
into itself. Moreover, X is locally connected a t q = ( — 1,0) and there is a 
connected neighborhood Voî q such tha t V — {q} consists of four components. 
Since no other point in X has this property, it follows tha t h(q) = q. 

Now suppose tha t h: X —» X is an onto map. We claim tha t h(X — C\ \J 
C2) = X - d U C2. To see this, suppose h(X - d U C2) H (Ci W C2) ^ 0. 
Since pa th components must be preserved, it follows tha t h(X — d \J C2) C 
C\ U C2. Therefore h(X) C C\ W C2 which is a contradiction. 

The remaining argument parallels a portion of the argument found in case 
(ii) of [6]. Let ^ be a homeomorphism from A onto the non-negative real 
numbers . Since h (A) can contain no A ?- or B2i, there is a retraction r: h (A) VJ 
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A —> A defined by 

!

x if x G A, 
pi if x 6 A u 

q2i if x G B2i. 

Define a map # from A into the real numbers R by H(x) = erh(x) — e(x) 
for all x in A. If ft(^4i) contains an infinite subarc of Ai, it follows that h has a 
fixed point in Cl Ai. Hence, since h is onto, we may assume that an infinite 
subarc of A\ must lie in h(A {) or h(B2j) for some i > 1 or 2/ > 1. Assume that 
it is A(i4 0. Then h(pi+2) G Cl 4 i and hence H(pi+2) < 0. If A (a) ^ a, then 
H (a) > 0. Since i? is a continuous function from A into R, it follows that 
there is a point c in A such that i?(c) = 0. Thus rh(c) = c. If h(c) G ^4, then 
h(c) = c. Hence suppose h(c) lies in the interior of some A f or B2j. Assume that 
h(c) £ Int A{ and thus c = pt. If fe maps Cl Ai into itself, then h has a fixed 
point. Otherwise, regard Ai as a directed arc with initial point pu and let a* 
be the first point in At such that h(cii) = p f . It then follows that there is a 
point in 4̂ t between pt and a4 which is fixed under h. 

(ii) We now consider the cases where F is a proper retract of X. The argu­
ments for these cases are similar to those used in case (iii) of [6], and we shall 
not repeat them in detail. 

First we consider the case of a proper retract Y which contains an infinite 
subarc of A. Then, as in [6, p. 181], it is easy to see that F must be a continuum 
which contains all but finitely many of the A t and B2i. Consequently, the 
argument for this case is completely analogous to that used for X itself. 

It is easy to show that the only retracts of X lying in C\ ^J C2 are singleton 
points or compact arcs (see [6, p. 181]). 

Finally, we consider the case of the retracts of X which lie in the path com­
ponent X — Ci U C2. Any dendrite D in X — C\ U C2 has the fixed point 
property and is a retract of X [2, p. 138]. Also any arcwise connected continuum 
F consisting of a compact subarc of A and finitely many A t and B2i is a retract 
of X which has the fixed point property [6, p. 182]. Consequently, any con­
tinuum of the form D U F is a retract of X which has the fixed point property, 
and this completes (ii). 

Remarks. 1) In [5] the author asks if a planar and arcwise connected example 
can be found. Of course, such an example could not contain a simple closed 
curve. In fact, no such example can exist. This is a consequence of C. L. 
Hagopian's recent announcement that every arcwise connected planar con­
tinuum containing no simple curve has the fixed point property (see question 
4 o f [ l ] ) . 

2) By a simply connected space we mean an arcwise connected space whose 
fundamental group is trivial. In [6] the author asks if there exists a simply 
connected 1-dimensional continuum X which does not have the fixed point 
property with respect to homeomorphisms. 
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We claim that such a space X could contain no simple closed curve. To see 
this, suppose C is a simple closed curve in X. Since X is 1-dimensional and 
C is homeomorphic to the unit circle S1, it follows that C is a retract of X 
[4, p. 83]. If p £ C, then the inclusion map i: C —> X induces a monomorphism 
i*: 7ri(C, />) —> 7ri(X, />) of the corresponding fundamental groups [3, p. 150]. 
Since iri(C, p) is infinite cyclic, it follows that X is not simply connected. 

Lee Mohler has shown that no such example can exist by solving the follow­
ing more general problem. In [7] he shows that every arcwise connected con­
tinuum containing no simple closed curve has the fixed point property with 
respect to homeomorphisms. 
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