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We study the influence of fringing magnetic fields on turbulent thermal convection in
a horizontally extended rectangular domain. The magnetic field is created in the gap
between two semi-infinite planar magnetic poles, with the convection layer located near
the edge of the gap. We employ direct numerical simulations in this set-up for fixed
Rayleigh and small Prandtl numbers, but vary the fringe width by controlling the gap
between the magnetic poles and the convection cell. The magnetic field generated by
the magnets is strong enough to cease the flow in the high magnetic flux region of the
convection cell. We observe that as the local vertical magnetic field strength increases,
the large-scale structures become thinner and align themselves perpendicular to the
longitudinal sidewalls. We determine the local Nusselt and Reynolds numbers as functions
of the local Hartmann number (based on the vertical component of the magnetic field),
and estimate the global heat and momentum transport. We show that the global heat
transport decreases with increasing fringe width for strong magnetic fields but increases
with increasing fringe width for weak magnetic fields. In the regions of large vertical
magnetic fields, the convective motion becomes confined to the vicinity of the sidewalls.
The amplitudes of these wall modes show a non-monotonic dependence on the fringe
width.

Key words: Bénard convection, magneto convection

1. Introduction

Flows that are driven by buoyancy forces are a common occurrence in nature as well as
in technological applications. The driving mechanism is the temperature dependence of
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the fluid density, which leads to density variations when heat is transported through the
fluid. A simplified paradigm for such flows is Rayleigh–Bénard convection (RBC), which
consists of a fluid layer that is heated from below and cooled from above (Chandrasekhar
1981). While the understanding of RBC has increased substantially in the past decades
(see, for example, Ahlers, Grossmann & Lohse 2009; Chillà & Schumacher 2012; Verma
2018), it must be noted that a multitude of additional forces, such as those generated
by rotation and magnetic fields, can affect buoyancy-driven convection in nature or in
industrial applications. The effects of these forces have been relatively less explored. The
present study deals with magnetoconvection, that is, thermal convection of electrically
conducting fluids under the effect of magnetic fields.

In magnetoconvection, flows are acted upon by buoyancy as well as by Lorentz forces
generated due to a magnetic field (Weiss & Proctor 2014). Convection in the Sun and
planetary dynamos are examples of magnetoconvection occurring in nature where the
magnetic field is maintained by the flow. In technological applications, the magnetic field
is usually not caused primarily by the flow but is imposed externally. Examples are liquid
metal batteries for renewable energy storage, growth of semiconductor monocrystals, flow
control of hot metal melts by electromagnetic brakes in metallurgy, and heat transfer in
blankets in nuclear fusion reactors.

Magnetoconvection is governed by the equations for conservation of mass, momentum
and energy as well as Maxwell’s equations and Ohm’s law. The governing
non-dimensional parameters of magnetoconvection are (i) the Rayleigh number Ra,
the ratio of buoyancy to dissipative forces, (ii) the Prandtl number Pr, the ratio of
kinematic viscosity to thermal diffusivity, (iii) the Hartmann number Ha, the ratio
of Lorentz to viscous forces, and (iv) the magnetic Prandtl number Pm, the ratio of
kinematic viscosity to magnetic diffusivity. Instead of the Hartmann number, the free-fall
interaction parameter Nf = Ha2√Pr/Ra, also called the Stuart number, can be used as a
governing parameter (Liu, Krasnov & Schumacher 2018; Zürner et al. 2020; Xu, Horn
& Aurnou 2022). The free-fall interaction parameter represents the ratio of magnetic
and buoyant forcing in the fluid. The important non-dimensional output parameters of
magnetoconvection are (i) the Nusselt number Nu, which quantifies the global heat
transport, (ii) the Reynolds number Re, the ratio of inertial forces to viscous forces, and (iii)
the magnetic Reynolds number Rm, the ratio of induction to diffusion of the magnetic field.
For sufficiently small magnetic Reynolds numbers, the induced magnetic field is negligible
compared to the applied magnetic field and is therefore neglected in the expressions of
Lorentz force and Ohm’s law (Roberts 1967; Davidson 2017; Verma 2017, 2019). In such
cases, referred to as quasi-static magnetoconvection, the induced magnetic field adjusts
instantaneously to the changes in velocity. In the quasi-static approximation, there exists a
one-way influence of the magnetic field on the flow only.

Magnetoconvection has been studied theoretically in the past (e.g. Chandrasekhar 1981;
Houchens, Witkowski & Walker 2002; Busse 2008) as well as with the help of experiments
(e.g. Nakagawa 1957; Fauve, Laroche & Libchaber 1981; Cioni, Chaumat & Sommeria
2000; Aurnou & Olson 2001; Burr & Müller 2001; King & Aurnou 2015; Vogt et al.
2018, 2021; Zürner et al. 2020; Grannan et al. 2022) and numerical simulations (e.g.
Liu et al. 2018; Yan et al. 2019; Akhmedagaev et al. 2020a,b; Nicoski, Yan & Calkins
2022). A horizontal magnetic field has been found to cause the large-scale rolls to become
quasi-two-dimensional and align in the direction of the field (Fauve et al. 1981; Busse &
Clever 1983; Burr & Müller 2002; Yanagisawa et al. 2013; Tasaka et al. 2016; Vogt et al.
2018, 2021). These self-organized flow structures reach an optimal state characterized
by a significant increase in heat transport and convective velocities (Vogt et al. 2021).
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Fringing magnetic fields in thermal convection

In contrast, strong vertical magnetic fields suppress convection (Chandrasekhar 1981;
Cioni et al. 2000; Akhmedagaev et al. 2020a,b; Zürner et al. 2020), with the flow ceasing
above a critical Hartmann number. At this threshold, the flow in the centre is fully
suppressed with convective motion only in the vicinity of sidewalls (Busse 2008; Liu et al.
2018; Akhmedagaev et al. 2020a,b; Zürner et al. 2020) if they exist. These so-called wall
modes, which are also present in confined rotating convection (Zhong, Ecke & Steinberg
1991; Ecke, Zhong & Knobloch 1992; Goldstein et al. 1993, 1994; Liu & Ecke 1999;
King, Stellmach & Aurnou 2012), are particularly relevant in technical applications in
closed vessels. Hurlburt, Matthews & Proctor (1996) and Nicoski et al. (2022) studied
convection with tilted magnetic fields. The results of Hurlburt et al. (1996) suggest that
the mean flows tend to travel in the direction of the tilt. Nicoski et al. (2022) reported
qualitative similarities between convection with a tilted magnetic field and that with a
vertical magnetic field in terms of the behaviour of convection patterns, heat transport and
flow speed.

It must be noted that all the aforementioned works on magnetoconvection have been
restricted to a uniformly imposed magnetic field, which is an idealized approximation.
However, in engineering applications such liquid metal batteries (Kelley & Weier
2018), cooling blankets in fusion reactors (Mistralengo et al. 2021), electromagnetic
stirring (Davidson 1999), electromagnetic brakes (Davidson 2017) and non-contact flow
measurements involving Lorentz force velocimetry (Thess, Votyakov & Kolesnikov 2006),
the imposed magnetic fields are localized and thus vary in space. Further, strong
homogeneous fields in large regions of space can be generated only by magnets of large
size, which are difficult to design and very costly to build and operate (Barleon, Mack
& Stieglitz 1996). Thus it is important to understand the impact of spatially varying
magnetic fields on magnetohydrodynamic flows. Although there are several studies on
the channel flow of liquid metals under the influence of non-homogeneous magnetic fields
(see, for example, Sterl 1990; Votyakov & Kassinos 2009; Moreau, Smolentsev & Cuevas
2010; Albets-Chico et al. 2013; Klüber, Bühler & Mistrangelo 2020), no similar work on
magnetoconvection has been conducted so far, to the best of our knowledge.

Convection flows in horizontally extended domains are often organized into prominent
and coherent large-scale patterns that persist for very long times and can extend over
scales in the lateral direction that are much larger than the domain height. These so-called
superstructures have a strong influence on the turbulent transport properties of the flow.
A prominent example of such superstructures is the granulation at the surface of the Sun
(Schumacher & Sreenivasan 2020). While the understanding of the process of formation
and evolution of these superstructures and their characteristic scales in the absence of
magnetic fields has improved significantly over recent years (see, for example, Pandey,
Scheel & Schumacher 2018; Stevens et al. 2018; Krug, Lohse & Stevens 2020), the case
with inhomogeneous magnetic fields still leaves several questions open as the physical
complexity is increased.

In the present work, we attempt to fill some of these gaps and study the effect of
strong spatially varying magnetic fields in turbulent convection under the quasi-static
approximation. The effects of localized magnetic fields on turbulent superstructures
and their impact on the local and global turbulent heat and momentum transport are
explored. We consider a Rayleigh–Bénard cell with fringing magnetic fields generated
by semi-infinite magnetic poles. The strength of the magnets is such that convection in
the regions of strong magnetic fields is fully suppressed in the bulk. Thus in a single
convection cell, we obtain different local regimes of magnetoconvection, ranging from the
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turbulent regime in the regions of weak magnetic flux to wall-attached convection in the
regions of strong magnetic flux. As mentioned earlier, the superstructures are formed in
horizontally extended domains, hence the convection cell employed in our present study
has a large aspect ratio. We study the spatial variation of size and orientation of turbulent
superstructures along with the turbulent transport inside the convection cell. We also study
wall-attached convection in the regions of strong magnetic flux regions, the wall modes.
Although the set-up is a simple way to study the influence of spatially varying magnetic
fields on convection, it permits us to carry out such a parametric study systematically. This
is the main motivation of the present work. Future studies can be conducted in a similar
manner for more complex arrangements.

The outline of the paper is as follows. Section 2 describes the magnetoconvection set-up
along with the governing equations of magnetoconvection and the spatial distribution of
the magnetic field. The details of our numerical simulations are also discussed in § 2. In
§ 3, we present the numerical results, detailing the behaviour of large-scale structures, the
spatial distribution of heat and momentum transport along with their variations with the
magnetic field, the dependence of the global heat and momentum transport on the fringe
width, and wall-attached convection. We conclude in § 4 with a summary and an outlook.

2. Numerical model

2.1. Problem set-up and equations
We consider a horizontally extended convection cell of size lx × ly × H that is under the
influence of a magnetic field generated by two semi-infinite permanent magnets. The north
pole of one magnet faces the bottom of the convection cell, and the south pole of the
second magnet faces the top of the convection cell. These magnets extend from −∞ to
∞ in the x-direction, from ly/2 to ∞ in the y-direction, from near the top wall to ∞ in
the positive z-direction, and from near the bottom wall to −∞ in the negative z-direction.
A schematic of a vertical section of the arrangement is provided in figure 1(a). Using the
model of Votyakov, Kassinos & Albets-Chico (2009) for permanent magnets, we obtain
the following relations for the non-dimensional imposed magnetic field B0 = {Bx, By, Bz}
generated in the above configuration:

Bx = 0, (2.1)

By = − 1
4π

Bz,max ln
[
( y − yc)

2 − {(z − zc) − (H/2 + δ)}2

( y − yc)2 + {(z − zc) + (H/2 + δ)}2

]
, (2.2)

Bz = − 1
2π

Bz,max arctan
[

2(H/2 + δ)( y − yc)

( y − yc)2 + (z − zc)2 − (H/2 + δ)2

]
, (2.3)

where yc and zc are the y- and z-coordinates, respectively, of the cell-centre, Bz,max is the
maximum limiting value of the vertical component of the magnetic field at y → ∞, and
δ is the gap between the permanent magnet and the top/bottom wall (see figure 1). The
aforementioned magnetic field distribution satisfies ∇ × B0 = 0 and ∇ · B0 = 0. In the
above configuration, the magnetic field is almost absent in nearly half of the RBC cell (for
y � ly/2), increases steeply about the midplane (y ≈ ly/2), and then becomes strong in the
other half of the cell (for y � ly/2). A three-dimensional view of the convection cell used
in our study with the density contours of the vertical component of the imposed magnetic
field is shown in figure 1(b). The region where the gradient of the magnetic field is large is
called the fringe zone; we provide a mathematical definition of the fringe zone later in this
subsection. Henceforth, the region of the convection cell that is outside the gap between
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Convection cell
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(xc, 0, 0)
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Figure 1. (a) Schematic of the vertical section at x = xc = lx/2 of the proposed magnetoconvection
arrangement. The semi-infinite permanent magnets (in grey) generate the localized magnetic field represented
by the vector plots drawn in the convection cell. The magnetic field distribution is described by (2.1)–(2.3).
(b) A three-dimensional view of the convection cell used in our study, with the density contours of the vertical
component of the normalized imposed magnetic field for δ/H = 0.01. Here, O refers to the point at the origin,
and δ is the gap between the magnetic pole and the convection cell.

the magnets will be referred to as the weak magnetic flux region, and the one inside the
gap will be referred to as the strong magnetic flux region.

Equations (2.2) and (2.3) imply that the spatial distribution of the magnetic field is
strongly dependent on the gap width (δ) between the magnetic poles and the convection
cell. In figures 2(a) and 2(b), we plot, respectively, the profiles of the normalized mean
vertical magnetic field, 〈Bz/Bz,max〉x,z, and the normalized mean horizontal magnetic field,
〈|By|/Bz,max〉x,z, versus the normalized lengthwise coordinate y/H. In the above, |·| and
〈·〉x,z, respectively, represent the absolute value and averaging over x and z. As is evident
in figure 2(a), the gradient of the vertical magnetic field decreases as δ is increased. In the
present set-up, we define the fringe zone as the region in which 0.1 < B̂z < 0.9, where

B̂z = 〈Bz〉x,z − Bz,min,D

Bz,max,D − Bz,min,D
. (2.4)

In the above, Bz,max,D and Bz,min,D are, respectively, the maximum and minimum values of
the vertical magnetic field in the convection cell. (It must be noted that Bz,max,D /= Bz,max;
Bz,max,D is the maximum value of Bz inside the convection cell, and Bz,max is the maximum
limiting value of Bz at y → ∞.) In figures 2(a,b), the curves describing the magnetic field
profiles are represented as dashed lines in the fringe zone and as solid lines outside the
fringe zone. The figures clearly show that the width of the fringe zone increases with an
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Figure 2. Distribution of the profiles of (a) vertical magnetic field and (b) absolute value of the horizontal
magnetic field, both averaged over x and z, along the lengthwise direction (normalized by the height H of the
cell) for different values of the normalized gap (δ′ = δ/H) between the magnetic poles and the thermal plates.
The magnetic fields are normalized by the maximum value of the vertical magnetic field (B′

z = Bz/Bz,max and
B′

y = By/Bz,max). The curves are represented as dashed lines in the fringe zone, and as solid lines outside the
fringe zone.

increase in δ. Further, the horizontal component of the magnetic field on the lateral vertical
midplane at y = ly/2 increases with a decrease in δ. These variations in the magnetic field
profile affect the convection patterns along with the associated global heat transport, and
will be studied in detail in the later sections.

The study will be conducted under the quasi-static approximation, in which the induced
magnetic field is neglected as it is very small compared to the applied magnetic field. This
approximation is fairly accurate for magnetoconvection in liquid metals (Davidson 2017).
The non-dimensionalized governing equations are

∇ · u = 0, (2.5)

∂u
∂t

+ u · ∇u = −∇p + Tẑ +
√

Pr
Ra

∇2u + Ha2
z,max

√
Pr
Ra

( j × B̃), (2.6)

∂T
∂t

+ u · ∇T = 1√
Ra Pr

∇2T, (2.7)

j = −∇φ + (u × B̃), (2.8)

∇2φ = ∇ · (u × B̃), (2.9)

where u, j, p, T and φ are the fields of velocity, current density, pressure, temperature
and electrical potential, respectively, and B̃ is the applied magnetic field normalized by
Bz,max. The governing equations are made dimensionless by using the cell height H,
the imposed temperature difference Δ, and the free-fall velocity U = √

αg �H (where
g and α are, respectively, the gravitational acceleration and the volumetric coefficient
of thermal expansion of the fluid). The non-dimensional governing parameters are the
Rayleigh number (Ra), the Prandtl number (Pr), the Hartmann number (Haz,max) based
on Bz,max, and the normalized gap (δ′) between the thermal plates and the magnetic poles.
These parameters are defined as follows:

Ra = αg �H3

νκ
, Pr = ν

κ
, Haz,max = Bz,maxH

√
σ

ρν
, δ′ = δ

H
, (2.10a–d)
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Fringing magnetic fields in thermal convection

where ν is the kinematic viscosity, κ is the thermal diffusivity, ρ is the density, and σ

is the electrical conductivity of the fluid. For the sake of brevity, we henceforth omit the
prime from δ′. In the next subsection, we describe the simulation details.

2.2. Numerical method
We conduct direct numerical simulations of our magnetoconvection set-up described in
§ 2.1. The spatial distribution of the magnetic field is given by (2.1)–(2.3). We use a
second-order finite difference code developed by Krasnov, Zikanov & Boeck (2011) and
Krasnov et al. (2023) to solve numerically (2.5)–(2.9). The Prandtl number Pr is chosen
to be 0.021, which is the same as that of mercury. The Rayleigh number is fixed at
Ra = 105. For our chosen Pr, the aforementioned value of Ra causes significant turbulence
in the regions of weak magnetic flux. For Ra = 105, the critical Hartmann number (above
which the bulk convection is suppressed) computed using the linear stability analysis of
Chandrasekhar (1981) for a uniform vertical magnetic field is

Haz,c = 88.7. (2.11)

In order to include the wall-attached convection regime in our analysis, we choose the
maximum Hartmann number to be Haz,max = 120, which is slightly higher than the critical
Hartmann number.

As mentioned in § 1, we intend to study the behaviour of turbulent superstructures in
our present work. For our chosen values of Ra and Pr, the typical length scales of the
superstructures are 3–4 times the height of the domain (Pandey et al. 2018). Therefore, in
order to obtain good statistics, we choose the horizontal extent of our domain to be around
5 times the expected length scale of the superstructures. Furthermore, in order to capture
more effectively the variation of the superstructures and the global heat transport with
magnetic field strength, it is preferred that the domain is elongated along the y-direction,
that is, along the gradient of the magnetic field. Therefore, we choose the domain size to
be lx × ly × H = 16 × 32 × 1.

We employ a grid resolution of 4800 × 9600 × 300 points. The mesh is non-uniform
in the z-direction, with stronger clustering of the grid points near the top and bottom
boundaries. The elliptic equations for pressure, electric potential and temperature are
solved based on applying cosine transforms in the x- and y-directions, and using a
tridiagonal solver in the z-direction. The diffusive term in the temperature transport
equation is treated implicitly. The time discretization of the momentum equation uses the
fully explicit Adams–Bashforth backward-differentiation method of second order (Peyret
2002). A constant time step size of 1 × 10−4 free-fall time units was chosen for our
simulations, which satisfied the Courant–Friedrichs–Lewy (CFL) condition for all runs.

All the walls are rigid and electrically insulated such that the electric current density
j forms closed field lines inside the cell. The top and bottom walls are held fixed at T =
−0.5 and T = 0.5, respectively, and the sidewalls are adiabatic with ∂T/∂η = 0 (where
η is the component normal to the sidewall). All the simulations are initialized with the
linear conduction profile for temperature (which is a function of the z-coordinate only)
and a random noise of amplitude A = 0.001 along the z-direction for velocity. We run the
simulations initially on a coarse grid of 480 × 960 × 30 points for 100 free-fall time units
in which they converge to a statistically steady state. Following this, we refine the mesh
successively to the required resolution of 4800 × 9600 × 300 grid points, and allow the
simulations to converge after each refinement. Once the simulations reach the statistically
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Run δ Reglobal Nuglobal tN

1 0.01 763 ± 2 1.80 ± 0.01 20
2 0.3 767 ± 5 1.82 ± 0.01 20
3 1 715 ± 4 1.75 ± 0.01 21
4 3 644 ± 3 1.72 ± 0.01 20
5 9 474 ± 3 1.60 ± 0.01 20

Table 1. Parameters of the simulations: the gap (δ) between the magnetic poles and the conducting walls, the
global Reynolds number (Reglobal), the global Nusselt number (Nuglobal), and the number of free-fall time units
(tN ) run by the solver after attaining statistically steady state. Here, Reglobal and Nuglobal are averaged over tN
time frames, and the errors are the standard deviations of the above quantities. The Rayleigh number, Prandtl
number and maximum Hartmann number are fixed at Ra = 105, Pr = 0.021 and Haz,max = 120, respectively.

steady state at the highest resolution, they are run for a further 20–21 free-fall time units,
and a snapshot of the flow field is saved after every free-fall time unit.

Table 1 lists the important parameters of our simulation runs. In this table, we also report
the turbulent momentum transfer quantified by the global Reynolds number (Reglobal) and
the turbulent heat transport quantified by the global Nusselt number (Nuglobal). These
quantities are given by

Reglobal = urms
√

Ra/Pr, (2.12)

Nuglobal = 1 +
√

Ra Pr 〈uzT〉V,tN , (2.13)

where 〈·〉 represents averaging, urms =
√

〈u2
x + u2

y + u2
z 〉V,tN with V being the volume of

the convection cell, and tN (also reported in table 1) is the number of free-fall times run
by the solver after attaining a statistically steady state.

In turbulent magnetoconvection with vertical magnetic fields, four boundary layers are
formed: (1) viscous boundary layers near all the walls, (2) thermal boundary and (3)
Hartmann layers near the top and bottom walls, and (4) Shercliff layers near the sidewalls.
Figure 3 exhibits a sketch of the different types of boundary layers. In order to obtain
accurate results, it is important that all these layers are resolved adequately. In our cases,
although the imposed magnetic field has a horizontal component as well, it is very small
compared to the vertical component near the sidewalls. Hence the sidewalls have been
considered to contain only the Shercliff layers and no Hartmann layers. It must also be
noted that the thicknesses of all the boundary layers vary along the y-direction because
they depend on the local Hartmann number, which, in turn, affects the Reynolds and
Nusselt numbers. Thus for a conservative resolution analysis, the minimum thickness of
these boundary layers has been considered. These are given by

δT,min = 1
2 Numax

, (2.14)

δu,min = 1
4
√

Remax
, (2.15)

δH,min = 1
Haz,max

, (2.16)

δS,min = 1√
Haz,max

, (2.17)
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B

(a)

(b)

(c)

g

Cold surface

Thermal boundary layers

Hot surface

Cold surface

Viscous boundary layers

Hot surface

Cold surface

Hartmann layersShercliff layers Shercliff layers

Hot surface

Figure 3. Sketches of the vertical (x–z) cross-section of a Rayleigh–Bénard convection cell (with aspect ratio
similar to ours) under a vertical magnetic field, showing (a) thermal boundary layers, (b) viscous boundary
layers, and (c) Hartmann and Shercliff layers.

where δT,min, δu,min, δH,min and δS,min are the minimum thicknesses of thermal boundary
layers, viscous boundary layers, Hartmann layers and Shercliff layers, respectively. Here,
we also remark that although the relation for the viscous boundary layer thickness given
by δu ∼ Re−1/2 is not very accurate (see, for example, Breuer et al. 2004; Scheel, Kim &
White 2012; Bhattacharya, Verma & Samtaney 2021), it provides a reasonable estimate
for small Prandtl number convection. Further, Numax and Remax, respectively, denote the
Nusselt and Reynolds numbers in the regions where the magnetic fields are weak. They
are computed as follows. For all our simulation cases, we identify the regions where
B̂z < 0.1 and compute the time-averaged Nusselt and Reynolds numbers integrated over
these regions for every case. The maximum values of the above Nusselt and Reynolds
numbers (which turned out to be for the case with δ = 0.3) are taken to be Numax and
Remax, respectively, and are observed to be Numax = 2.66 and Remax = 1115. Based on the
above values, we have a minimum of 12 points, 76 points and 12 points, respectively, in the
viscous boundary layers, thermal boundary layers and Hartmann layers adjacent to the top
and bottom walls, and 28 points in the Shercliff layer adjacent to the sidewalls. Thus our
simulations are well resolved and also satisfy the resolution criterion of Grötzbach (1983)
and Verzicco & Camussi (2003). In the next section, we discuss our results in detail.

3. Results

In this section, we discuss the characteristics of the large-scale convection patterns,
the spatial profile of the large-scale momentum and the global heat transport, and the
wall-attached convection in the regions of strong magnetic flux. For our analysis, we
introduce the local vertical Hartmann number Haz( y), which is defined as

Haz( y) = Haz,max
〈Bz〉x,z

Bz,max
, (3.1)

where Bz is the vertical component of the local magnetic field. Thus Haz( y) quantifies the
strength of Bz averaged over the corresponding x–z plane. We will discuss the variations
of the heat and momentum transport with Haz( y), and their resulting impact on the global
dynamics.
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Figure 4. Contour plots of time-averaged fields on the horizontal midplane for different fringe widths of the
imposed magnetic field. Plots of the temperature field for (a) δ = 0.01, (b) δ = 0.3, (c) δ = 1, (d) δ = 3, and
(e) δ = 9. Plots of the vertical velocity field for ( f ) δ = 0.01, (g) δ = 0.3, (h) δ = 1, (i) δ = 3, and (j) δ = 9. The
flows are organized into large-scale patterns that extend over scales larger than the domain height. The positions
corresponding to Haz( y) = Haz,c, Haz( y) = 0.8Haz,c, and the edge of the magnetic poles are represented by
purple, blue and black horizontal lines, respectively, in decreasing order of thickness. The magnetic poles
extend from y = 16 to y = ∞.

3.1. Large-scale structures
We use our numerical data to analyse the flow structures in the convection cell for
different fringe widths. Figures 4(a–e) exhibit the contour plots of temperature field on
the horizontal midplane for δ = 0.01–9. The corresponding contour plots of the vertical
velocity field are shown in figures 4( f –j). The data for these plots are averaged over 20–21
time frames (see table 1). The figures show that bulk convection is suppressed completely
in the regions of strong magnetic fields. The region of suppressed bulk convection becomes
smaller as δ is increased. This is expected because for large δ, the gradient of the magnetic
field is small and hence the region with Haz( y) above the critical Hartmann number is
also small.

Figures 4(a–j) also show that in the regions Haz( y) < Haz,max, the flow gets organized
into superstructures. The superstructures observed in these figures in the weak magnetic
flux regions are qualitatively similar to those observed by Pandey et al. (2018) for Pr =
0.021. Further, the superstructures are relatively isotropic in the regions of weak magnetic
flux, that is, they do not show any preference towards specific orientations. However, as
the strength of the vertical magnetic field increases, the superstructures become more
elongated and align themselves perpendicular to the sidewalls. The change in spatial
structure of the flow is more clearly visible for δ = 9, in which the vertical magnetic field
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changes gradually. The transition in the orientation of the superstructures begins to occur
for Haz( y) ≈ 0.8Haz,c, where the flow is dominated by ascending and descending planar
jets originating from the sidewalls. The flow structures in this regime are very similar
to those observed by Akhmedagaev et al. (2020b) in their simulation data of RBC in
a cylindrical cell under a strong uniform vertical magnetic field. They can be attributed
to quasi-two-dimensional vortex sheets, which are often found in magnetohydrodynamic
flows with strong magnetic fields (Zikanov & Thess 1998). As one moves further towards
the stronger magnetic flux region, the structures originating from the sidewalls extend less
into the bulk, until for Haz( y) � Haz,c, the flow is confined only near the sidewalls. These
wall-attached flows will be discussed in detail in § 3.3.

It can be observed visually that the size of the convection patterns decreases along
the direction of increasing magnetic field. We focus specifically on the results for δ = 9
because the increase of magnetic field along y is gradual in this case, thus enabling us
to obtain better statistics for analysing the variations of the structures with the magnetic
field strength. In order to analyse quantitatively the evolution of the size of the structures
along y, we divide the horizontal midplane into 10 subslices along the y-direction, and
estimate the characteristic length scale of these structures in each subslice using the
vertical velocity data. Each subslice spans the entire width of the convection cell. Since the
structures are large in the low magnetic flux region, the first two subslices (corresponding
to 0 < y < 5.34 and 5.34 < y < 10.67) are larger than the rest of the subslices; the larger
subslices have width 5.34 units, and the smaller subslices are 2.67 units wide. We employ
the procedure outlined in Pandey et al. (2018) to estimate the length scale, as elaborated
below. For each subslice, we compute the Fourier transform of the vertical velocity field at
each snapshot to obtain ûz(k, φk, t), where k is the magnitude of the wavevector, and φk is
the corresponding azimuthal angle in the wavenumber space. We calculate the azimuthally
averaged kinetic energy spectra, which are obtained as

Eu(k, t) = 1
2π

∫ 2π

0
|ûz(k, φk, t)|2 dφk. (3.2)

These computed kinetic energy spectra are averaged over 20 snapshots. The wavenumber
kmax corresponding to where the spectrum is maximum is the characteristic wavenumber.
(In case the kinetic energy spectrum has multiple maxima, the characteristic wavenumber
is given as the average of the wavenumbers corresponding to the maxima weighted by the
kinetic energy contained in these wavenumber shells.) The characteristic length scale λ is
computed as

λ = 2π

kmax
. (3.3)

The contour plot of uz is redrawn in figure 5(a), and the computed characteristic length
scale for each subslice is plotted versus y in figure 5(b). Figure 5(b) shows that λ decreases
with the increasing magnetic field strength along y, which is consistent with the visual
observation that the size of the patterns decreases along y. Note that the characteristic
length scale in the weak magnetic flux region is λ = 5.5, which is of the same order as
the value λ ≈ 4 computed by Pandey et al. (2018) using their numerical data for Ra = 105

and Pr = 0.021. Figure 5(b) also shows that the characteristic length scales computed
using our data are larger than the critical wavelength λc (Chandrasekhar 1981) at the onset
of convection for the corresponding Hartmann number. In the wall-attached convection
region where Haz( y) > Haz,max, the computed length scale ranges from λ ≈ 1.5 to λ ≈ 2
and denotes the characteristic size of the wall modes. These values are fairly close to the
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Figure 5. Pattern analysis for δ = 9. (a) Contour plot of the time-averaged vertical velocity field on the
horizontal midplane. Solid lines are replotted from figure 4. (b) The evolution of the characteristic horizontal
length scale of the superstructures (red circles) and the critical wavelength λc (black curve) at the onset of
convection along the horizontal y-direction. The length scale of the convection patterns becomes smaller along
the direction of the increasing magnetic field, and is larger than the critical wavelength.

analytically derived value of λc,w = √
2 for wall modes in magnetoconvection with one

sidewall (Busse 2008).
We now examine the convection structures on different vertical planes along y for δ = 9.

In figures 6(a–c), we show the density plots of vertical velocity on the planes at y = 3.4,
y = 11.9 and y = 19.7. The local Hartmann numbers at these locations are Haz( y =
3.4) = 25, Haz( y = 11.9) = 45 and Haz( y = 19.7) = 75. The velocity fluctuations are
strong at y = 3.4 where the flow is highly turbulent. At y = 11.9, the flow structures consist
of quasi-two-dimensional upward and downward streams occupying the entire plane. The
velocity fluctuations become weak at y = 19.7, and the flow structures become elongated
along the x-direction, consistent with the observation from figures 4(e,j). We plot the mean

horizontal velocity
〈√

u2
x + u2

y

〉
x
, the mean absolute vertical velocity 〈|uz|〉x, and the mean

temperature 〈T〉x versus z on the above three planes in figures 7(a–c), respectively. These
figures further reinstate that the velocity fluctuations decrease along y. Moreover, the
temperature approaches the linear conduction profile as the local magnetic field strength
increases.

We now analyse quantitatively the isotropy of the flow using our numerical data.
Towards this objective, we compute the following ratios: the local vertical anisotropy
parameter 2Ez( y)/Eh( y), the local horizontal anisotropy parameter Ey( y)/Ex( y), and the
ratio of the kinetic energies along the z- and y-directions. In these, Ez( y) = 0.5〈u2

z 〉x,z,
is the vertical kinetic energy, Eh( y) = 0.5〈u2

x + u2
y〉x,z is the horizontal kinetic energy,

Ex( y) = 0.5〈u2
x〉x,z is the kinetic energy along the x-direction, and Ey( y) = 0.5〈u2

y〉x,z is
the kinetic energy along the y-direction, all averaged over the x–z plane. To understand the
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Figure 6. Contour plots of the time-averaged vertical velocity field for δ = 9 in vertical planes at (a) y =
3.4 (Haz( y) = 25), (b) y = 11.9 (Haz( y) = 45), and (c) y = 19.7 (Haz( y) = 75). The velocity fluctuations
decrease with the increasing magnetic field strength along y.
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Figure 7. Profiles for δ = 9 of (a) the mean horizontal velocity
〈√

u2
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y

〉
x
, (b) the mean absolute vertical

velocity 〈|uz|〉x, and (c) the mean temperature along the vertical z-direction, at y = 3.4 (black dotted curves),
y = 11.9 (red dashed curves), and y = 19.7 (blue solid curves). As the magnetic field strength increases along
y, the velocity fluctuations decrease and the temperature approaches the linear conduction profile.

variation of flow anisotropy with magnetic field strength, the aforementioned anisotropy
factors are plotted versus Haz( y)/Haz,c for different δ in figures 8(a–e). In these plots, we
focus on the regions where 0.25Haz,c < Haz( y) < Haz,c because, as discussed later, in
§ 3.2, the flow undergoes significant changes in this parameter interval. Further, we add
horizontal tick labels with the coordinates of y on the top of each plot to better understand
the evolution of anisotropy along the horizontal direction.

The above plots show that the flow is roughly isotropic in the regions of weak vertical
magnetic field corresponding to Haz( y) < 0.3Haz,c. However, with increasing Haz( y), the
vertical velocity fluctuations become more dominant compared to the horizontal ones. This
property is consistent with the anisotropy observed by Yan et al. (2019) and Akhmedagaev
et al. (2020b) for strong Hartmann number convection with uniform magnetic fields, and
is reminiscent of the stable cellular regime described by Zürner et al. (2020). The increase
of anisotropy with Haz( y) becomes more pronounced as the fringe width, governed by δ,
increases. This is because as the fringe width increases, the span of y falling in the regime
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Figure 8. Mean profiles of the local vertical anisotropy parameter 2Ez( y)/Eh( y) (solid green curves), the local
horizontal anisotropy parameter Ey( y)/Ex( y) (dashed red curves), and the ratio of the kinetic energy along the
z- and y-directions Ez( y)/Ey( y) (dotted blue curves), versus the normalized Hartmann number Haz( y)/Haz,c
based on the mean vertical magnetic field Bz( y), for (a) δ = 0.01, (b) δ = 0.3, (c) δ = 1, (d) δ = 3, and
(e) δ = 9. Both the vertical and horizontal anisotropy parameters increase with the local vertical magnetic
field strength.

0.25Haz,c < Haz( y) < Haz,c also increases, as exhibited in figures 8(a–e). Thus we get
better statistics, and hence clearer trends in this regime for large δ.

Figures 8(a–e) also show that for strong magnetic fields, there is anisotropy among
the horizontal components of velocity as well. For Haz( y) > 0.65Haz,c, Ey( y) begins
to dominate Ex( y), implying that the velocity fluctuations in the y-direction are stronger
compared to those in the x-direction. This is also consistent with figures 4(a–j), which
show that for moderately strong Hartmann numbers, the superstructure rolls orient
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Figure 9. Variations of the local planar Nusselt and Reynolds numbers with the longitudinal direction y . For
δ = 0.01–9: (a) local Nusselt number Nu( y), and (b) local Reynolds number Re( y), versus y.

themselves perpendicular to the longitudinal sidewalls. In the next subsection, we discuss
the effects of the fringing magnetic fields on the local as well as global momentum and
heat transport.

3.2. Heat and momentum transport
We analyse the spatial variation of the large-scale heat and momentum transport in our
numerical set-up. Towards this objective, we first compute the local planar Reynolds
number Re( y) and Nusselt number Nu( y) for every δ. These are given by

Re( y) =
√

Ra
Pr

〈u2
x + u2

y + u2
z 〉1/2

x,z,tN , Nu( y) = 1 +
√

Ra Pr 〈uzT〉x,z,tN . (3.4a,b)

It must be noted that in order to avoid clutter, Nu( y) and Re( y) are computed for every
120th x–z plane. Moreover, Nu( y) exhibits strong spatial fluctuations even after averaging
over all the time frames; these fluctuations are smoothed by computing the moving average
of Nu( y) using a window size of 5 x–z planes.

We plot Nu( y) and Re( y) versus y in figures 9(a) and 9(b), respectively. Figure 9(a)
shows that Nu( y) fluctuates between 2.0 and 4.0 in the region of weak magnetic flux, drops
steeply in the fringe zone, and becomes close to unity in the strong magnetic flux region.
Figure 9(b) shows that Re( y) follows a similar trend; it is large in the weak magnetic
flux region, drops steeply in the fringe zone, and becomes negligibly small in the strong
magnetic flux region. The gradients of both Re( y) and Nu( y) curves in the fringe zone
decrease with an increase of δ. This is expected because Bz, which suppresses kinetic
energy and heat transport in the fluid, has steeper gradients for small δ.

We now look for a universal dependence of the local heat and momentum transport on
the local magnetic field strength. Taking inspiration from the recent experimental work of
Zürner et al. (2020) on thermal convection under uniform vertical magnetic fields, we plot
the normalized local Nusselt number Ñu( y) versus the normalized local vertical Hartmann
number Haz( y)/Haz,c. The normalized local Nusselt number is given by

Ñu( y) = Nu( y) − 1
Numax − 1

, (3.5)

where Numax = 2.66 (see § 2.2). Figure 10(a) shows that for all δ, the points collapse
well into a single curve, thus showing a universal dependence of Nu( y) on Haz( y).
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Figure 10. Variations of the normalized local Nusselt and Reynolds numbers with the normalized local vertical
magnetic field strengths. For δ = 0.01–9: (a) normalized local Nusselt number Ñu( y) versus the normalized
local Hartmann number Ha( y)/Hac, based on vertical magnetic field strength; and (b) normalized local
Reynolds number R̃e( y) versus the local free-fall interaction parameter Nf ( y). The best-fit curves for the above
data are also shown.

The plot shows that for Haz( y) � 0.3Haz,c, the Nusselt number does not change
significantly and remains close to its maximum value. This regime corresponds to the
turbulent and isotropic regime. For Haz( y) � 0.3Haz,c, the flow transitions into the
cellular regime (as per the nomenclature of Zürner et al. 2020) and the local Nusselt
number starts to drop sharply as Haz( y) increases. For Haz( y) < 0.85Haz,c, the best-fit
curve for our data is

Ñu( y) =
[

1 + χ1

{
Haz( y)
Haz,c

}γ1
]−1

, (3.6)

where γ1 = 2.1 ± 0.3 and χ1 = 4.0 ± 0.7. Interestingly, the values of χ1 and especially
γ1 are close to those observed by Zürner et al. (2020), who reported γ1 = 2.03 ± 0.06 and
χ1 = 5.9 ± 0.3 for uniform magnetic fields. For Haz( y) > 0.85Haz,c, Ñu( y) decreases
more steeply than (3.6) and is described by the power law

Ñu( y) = 0.028
{

Haz( y)
Haz,c

}−10.5±0.9

. (3.7)

This regime corresponds to the wall-mode regime in which the flow gets further
suppressed and begins to confine itself near the sidewalls. It must be noted that Zürner
et al. (2020) could not obtain a best-fit expression for Nu in the wall-mode regime due to
lack of data close to the wall.

We conduct a similar analysis for Re( y). We compute the normalized Reynolds number
given by

R̃e( y) = Re( y)
Remax

, (3.8)

where Remax = 1115 (see § 2.2). The results of Zürner et al. (2020) suggest that R̃e( y)
should scale as Haz( y)/

√
Haz,c instead of Haz( y)/Haz,c. Let us now consider the local
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free-fall interaction parameter Nf ( y), which is given by

Nf ( y) = Ha2
z ( y)

√
Pr
Ra

. (3.9)

For large Rayleigh numbers, the critical Hartmann number can be approximated as
Haz,c ≈ √

Ra/π (Chandrasekhar 1981). Using this relation, we get

Nf ( y) = Ha2
z ( y)

π√
Ra

√
Pr
π

≈ Ha2
z ( y)

Haz,c

√
Pr
π

∼ Ha2
z ( y)

Haz,c
. (3.10)

This relation shows that Nf ( y) is proportional to Ha2
z ( y)/Haz,c, implying that R̃e( y)

scales with Nf ( y). Thus we plot R̃e( y) versus Nf ( y). The plot in figure 10(b) shows that,
similar to the Nusselt number, the data points for all δ collapse into a single curve. For
Nf ( y) < 0.17, which corresponds to Haz( y) < 0.22Haz,c, the Reynolds number retains its
maximum value (Remax). At higher Nf ( y), the Reynolds number starts to fall sharply with
the interaction parameter. For Nf ( y) < 3.2, which corresponds to Haz( y) < 0.95Haz,c,
the best-fit curve for our data is given by

R̃e( y) = [
1 + χ2

{
Nf ( y)

}γ2
]−1

, (3.11)

with χ2 = 1.40 ± 0.03 and γ2 = 1.01 ± 0.03. The value of γ2 is again close to that
observed by Zürner et al. (2020), who reported γ2 = 0.87 ± 0.03 for uniform magnetic
fields. For Haz( y) > 0.95Haz,c, which corresponds to the wall-attached convection
regime, R̃e( y) falls even more steeply than (3.11) and is described by the power law

R̃e( y) = 18{Nf ( y)}−4.0±0.2. (3.12)

We now analyse the impact of the local heat and momentum transport on the evolution of
the viscous and thermal boundary layers near the top and bottom walls of our convection
cell. Again, we concentrate on δ = 9 to obtain better statistics and a clearer picture of
the evolution. The thermal boundary layer thickness δT is the depth where a linear fit
of the mean temperature profile near the wall intersects with the mean bulk temperature
(T = 0.5). The viscous boundary layer thickness is the depth where a linear fit of the
horizontal velocity (uh = 〈(u2

x + u2
y)

1/2〉x) profile near the wall intersects with its local
maximum. See Breuer et al. (2004), Ahlers et al. (2009) and Scheel et al. (2012) for a
detailed procedure to compute the boundary layer thicknesses. We compute the thermal
and viscous boundary layer thicknesses at different y-coordinates for δ = 9, and plot them
versus the corresponding local Hartmann number Haz( y) in figures 11(a,b), respectively.

Figure 11(a) shows that the thermal boundary layer thickness increases with Haz( y).
This is expected because the thermal boundary layer thickness is inversely proportional to
the local Nusselt number Nu( y), which decreases with increasing Haz( y). The viscous
boundary layer, on the other hand, exhibits an interesting behaviour. As is evident in
figure 11(b), the boundary layer thickness δu decreases with Haz( y), with the decrease
becoming steeper at large Haz( y). To gain insight into this behaviour, we take inspiration
from the work of Lim et al. (2019), and using dimensional analysis on the momentum
equation, we obtain the following scaling for δu:

δu ∼ 1√
Re( y) + Ha2

z ( y)
. (3.13)

This scaling suggests that for Haz( y) � √
Re( y), δu follows the Prandtl–Blasius-type

scaling δu ∼ Re−1/2, in which the boundary layer thickness should increase with the
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Figure 11. Boundary analysis for δ = 9: (a) local thermal boundary layer thickness δT ( y), and (b) local viscous
boundary layer thickness δu( y), near the top and bottom walls, versus the local Hartmann number Haz( y). The
thermal boundary layer thickness increases with the increase of Haz( y). The viscous boundary layer thickness
decreases with increasing Haz( y) and approaches the Hartmann-type scaling δu ∼ Ha−1

z at large Hartmann
numbers.

decrease of Re( y), and hence with the increase of Haz( y). However, we do not observe
such a regime in our convection cell. When Haz( y) ∼ √

Re( y), the boundary layer
thickness varies marginally with y, as observed for Haz( y) < 50 from our data. For
Haz( y) � √

Re( y), the boundary follows the Hartmann type scaling δu ∼ Ha−1
z , hence

δu decreases sharply with Haz( y). From figure 11(b), it can be seen that δu approaches the
Hartmann type scaling at Haz( y) ≈ 70.

Having studied the local variations of heat and momentum transport along with their
associated boundary layers, we now analyse the global Reynolds and Nusselt numbers
(Reglobal and Nuglobal, respectively) and their dependence on δ. These global quantities are
computed numerically using (2.12) and (2.13) from our simulation data, and are plotted
versus δ in figures 12(a,b) as black squares. The figures show that both Reglobal and
Nuglobal decrease as δ increases. This result is counter-intuitive because for large δ, bulk
convection is completely ceased only in a small region (as seen in figure 4), hence one
would expect the overall heat and momentum transport to be stronger. However, a careful
look at figure 2(a) reveals that the vertical magnetic field is stronger in the weak magnetic
flux region for large fringe widths, which, in turn, weakens convection in that region. The
increase in convection in the strong magnetic flux region is unable to compensate the
suppression of convection in the weak magnetic flux region, resulting in a decrease of
overall heat and mass transport for large fringe widths.

The above results, however, do not indicate whether such a variation of global Reynolds
and Nusselt numbers with δ holds for all Haz,max. To explore this aspect, we need to
estimate Reglobal and Nuglobal for given values of Haz,max and δ. Towards this objective,
we make use of the best-fit relations for Nu( y) and Re( y) given by (3.6), (3.7), (3.11) and
(3.12) obtained earlier, and integrate them numerically over the entire domain to estimate
global Reynolds and Nusselt numbers as

Reglobal = 1
ly

∫ ly

0
Re( y) dy = 1

ly

∫ ly

0
Re(Haz( y)) dy, (3.14)

Nuglobal = 1
ly

∫ ly

0
Nu( y) dy = 1

ly

∫ ly

0
Nu(Haz( y)) dy, (3.15)
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Figure 12. Plots versus δ of (a) the global Reynolds number Reglobal (black squares for Haz,max = 120 and
purple circles for Haz,max = 30), computed from our numerical data using (2.12), and (b) the global Nusselt
number Nuglobal (black squares for Haz,max = 120 and purple circles for Haz,max = 30), computed from our
numerical data using (2.13). Also shown in the plots are the estimates (solid curves) of Reglobal and Nuglobal
computed using (3.14) and (3.15) for different values of Haz,max.

where we recall that

Haz( y) = Haz,max
〈Bz〉x,z

Bz,max
, (3.16)

and Bz = Bz(x, y, z, δ) is given by (2.3). Thus for given Haz,max and δ, one can estimate
Reglobal and Nuglobal using (3.14) and (3.15). We compute these estimates for Haz,max =
120, 60, 50 and 30, and for δ ranging from 0.005 to 9.1 in increments of 0.01. The estimated
values of Reglobal and Nuglobal are plotted versus δ in figures 12(a,b) as solid curves. The
curves for Haz,max = 120 fit the data points of directly computed Reglobal and Nuglobal
(black squares) very well, implying that (3.14) and (3.15) provide fairly accurate estimates.
In the process of computing the estimates of Reglobal and Nuglobal for Haz,max < 120,
we assume that the equations and coefficients given in (3.6), (3.7), (3.11) and (3.12)
remain unchanged as the maximum Hartmann number is varied. We also assume that
the values Haz( y) = 0.85Haz,c and Nf ( y) = 3.2, which were observed to separate the two
components of the piecewise functions for Nu( y) and Re( y) for Haz,max = 120, remain the
same for all values of Haz,max. These assumptions are based on the fact that the dependence
of Nu( y) and Re( y) on Haz( y) is suggested to be universal since the normalized local
Nusselt and Reynolds number curves for different δ collapse as shown in figures 10(a,b).

Figure 12(a) also shows that the decrease of Reglobal with δ becomes less apparent
with a decrease of Haz,max. In fact, for Haz,max = 30, Reglobal increases marginally with
δ. Figure 12(b) indicates that Nuglobal increases with δ for Haz,max = 60, 50 and 30,
with this increase becoming more apparent with the decrease of Haz,max. To test the
correctness of the above predictions, we conduct two more direct numerical simulations of
our magnetoconvection set-up for Haz,max = 30, and δ = 0.01 and 9. The grid size and the
numerical schemes are the same as those described in § 2.2. We run the simulations for 10
free-fall time units after attaining a statistically steady state. We compute the time-averaged
global Reynolds and Nusselt numbers using the above simulation data, and plot them
in figures 12(a) and 12(b), respectively. The figures show that the simulation results are
in close agreement with the predictions, thereby reinforcing our theory. It is therefore
clear that for smaller maximum magnetic field strengths, the overall heat and momentum
transport increases with the increase of fringe width. This implies that for small values of
Haz,max, the suppression of convection in the weak magnetic flux region is small compared
to the increase of convection in the strong magnetic flux region. Thus we can conclude that
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(a) (b)

Figure 13. Isosurfaces of uz = 0.01 (red) and uz = −0.01 (blue) for (a) δ = 1 and (b) δ = 9. In the regions
with strong magnetic fields, convective motions are confined near the sidewalls.

the variation of Reglobal and Nuglobal with the fringe width depends critically on Haz,max.
Finally, we discuss the dynamics of wall-attached convection in the strong magnetic flux
region in the next subsection.

3.3. Wall-attached convection
We plot the time-averaged isosurfaces of uz = 0.01 (red) and uz = −0.01 (blue) for δ = 1
and δ = 9 in figures 13(a) and 13(b), respectively. The figures show that in the strong
magnetic flux region, the flow in the bulk is completely suppressed, with alternating
upwelling and downwelling flow regions attached to the sidewalls. The structure of the
wall modes is consistent with that observed by Liu et al. (2018) in their simulations of
thermal convection in a rectangular domain with uniform vertical magnetic field. However,
unlike for rotating convection (Horn & Schmid 2017; Zhang et al. 2020) or convection in
cylindrical domains (Akhmedagaev et al. 2020b), the wall modes do not oscillate or move
along the sidewalls (Grannan et al. 2022; Schumacher 2022).

The wall modes are dense and uniformly distributed along the sidewalls for δ = 9.
However, for δ = 1, they are visibly thinner, with isosurfaces clustering more towards the
corners instead of being uniformly distributed along the sidewalls. The clustering occurs
because of weaker Lorentz force in the corners, which, in turn, results due to the electric
current getting further constrained by the two insulated sidewalls in proximity to each
other. The above trend in the local differences of the wall modes is also observed for
δ = 0.01, 0.3 and 3, as shown later in this section.

For each sidewall in the strong magnetic flux region, we compute the mean distance δ̄w
of the wall modes from the sidewall. This distance is computed as

δ̄w =

∫
δw uz,max dl∫

uz,max dl
, (3.17)

where dl = dy for the longitudinal sidewall, and dl = dx for the lateral sidewall. In the
above, δw is the shortest distance between the sidewall and the point of maximum absolute
velocity uz,max adjacent to the sidewall, and the summations are over the regions where
Haz( y) > Haz,c. Thus δ̄w is the weighted average of the shortest distance between the
point of maximum absolute velocity and the sidewall, with the maximum absolute velocity
being the weights. We also compute the mean distance averaged over all the sidewalls. We
plot the mean distance for each sidewall, as well as the overall mean distance versus δ, in
figure 14. The figure shows that the wall modes are in general more attached to the lateral
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Figure 14. The average distance between the wall modes and the sidewalls versus δ in the regions
Haz( y) > Haz,c. The wall modes are more attached to the lateral sidewalls than to the longitudinal sidewalls.

sidewall (y = 32) compared to the longitudinal sidewalls (x = 0 and x = 16). There is,
however, no clear trend regarding the variation of δ̄w with the fringe width.

We further analyse the amplitudes of the wall modes along the three sidewalls for our
runs. Towards this objective, we measure the vertical velocity field at every point on the
horizontal midplane at distance δ̄w from the sidewalls. We plot this vertical velocity profile
along every sidewall in figure 15. The figure shows that with the exception of δ = 9,
the amplitudes of the wall modes are stronger near the corners, and become weaker as
one moves away from the corners. This behaviour in the amplitudes is consistent with
figure 13(a), which shows that the wall modes are clustered in the corners. As explained
earlier, these local differences in amplitudes occur due the current being more constrained
in the corners, resulting in weaker convection-suppressing Lorentz forces in these regions.
Figure 15 also shows that near the corners, the amplitudes of the wall modes grow with an
increase of δ. However, in the regions away from the corners, the amplitudes decrease as
δ is decreased from 9 to 1, and then increase with a further decrease of δ. For δ = 0.3 and
1, the amplitudes become negligibly small away from the corners. However, for δ = 0.01,
although the amplitudes of the modes away from the corners are smaller than those near
the corners, they are larger than the amplitudes of wall modes away from the corners for
δ = 0.3 and 1.

The reason for the non-monotonic behaviour of wall modes with δ away from the corners
is not yet clear. A possible explanation is that in addition to the vertical component of the
magnetic field Bz, the horizontal component By also plays a role in stabilizing convection
near the sidewalls. From figure 2(b), it can be seen that for small δ or fringe width, although
By is strong in y = ly/2 midplane, it falls sharply and becomes very small as one moves
away from the midplane. Thus for δ = 0.01, By is too weak to stabilize convection near the
sidewalls at y � ly/2, resulting in sustained wall-attached convection. On the other hand,
for large δ, By in the regions away from y = ly/2 midplane is not as weak as that for small
δ. Thus as δ is increased up to δ = 1, By becomes stronger and suppresses wall-attached
convection. On further increasing δ, although By grows only marginally, Bz becomes too
weak to suppress wall-attached convection. Hence we get prominent wall modes again for
δ = 3 and 9. The non-monotonic behaviour of wall modes will be explored in detail in a
future study.
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Figure 15. Vertical velocity uz,w measured on the horizontal midplane at distance δ̄w from the sidewalls in
the regions Ha( y) > Haz,c (non-shaded regions) for (a) δ = 0.01 (black curve), (b) δ = 0.3 (purple curve),
(c) δ = 1 (blue curve), (d) δ = 3 (green curve), and (e) δ = 9 (red curve). The shaded regions correspond to
Haz( y) < Haz,c, where the flow is not fully suppressed in the bulk. The amplitudes of the wall modes in the
regions away from the corners exhibit a non-monotonic dependence on δ. Note that these plots are resolved by
a total of at least 9000 grid points in the horizontal direction.

4. Summary and conclusions

In this paper, we performed detailed numerical simulations of turbulent convection
of a horizontally extended domain under the influence of fringing magnetic fields.
The magnetic field is generated in the gap between semi-infinite poles of permanent
magnets, with the convection domain located near the edge of the gap. The quasi-static
approximation of magnetohydrodynamics is applied. We kept the Rayleigh number,
Prandtl number and maximum Hartmann number fixed at Ra = 105, Pr = 0.021 and
Haz,max = 120, respectively, and varied the fringe width by controlling the gap δ

between the magnetic poles and the thermal plates. We analysed the spatial distribution
of large-scale convection patterns, heat and momentum transport, and wall-attached
convection, and their variations with the magnetic field profiles.

The convection patterns are found to be comprised of structures whose horizontal
dimensions are larger than the domain height. These structures do not exhibit any preferred
orientation in regions of weak magnetic field, but become aligned perpendicular to

964 A31-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.364


Fringing magnetic fields in thermal convection

the longitudinal sidewalls in the fringe zone. Further, the flow progressively becomes
anisotropic towards the vertical direction in the fringe zone.

We obtained the best-fit relations for local Reynolds and Nusselt numbers as functions
of the local Hartmann number that are valid for any fringe width. We integrated these
relations over the entire domain to estimate the global Reynolds and Nusselt numbers for
different values of Haz,max. The variation of these global quantities with fringe width was
shown to depend on Haz,max and is governed by the balance between the convective motion
in the weak magnetic flux region outside the gap between the magnets, and suppression of
convection in the strong magnetic flux region inside the gap between the magnets. As
the fringe width increases, the magnetic field becomes weaker in the strong magnetic
flux region; it becomes stronger in the weak magnetic flux region. For large Haz,max, the
increase of convection in the strong magnetic field region is unable to compensate for the
suppression of convection in the weak magnetic flux region, resulting in a decrease of
the global heat and momentum transport with increasing fringe width. However, for small
Haz,max, the increase of convection in the strong magnetic field region is more than the
decrease of convection in the weak magnetic flux region, resulting in an increase of global
heat and momentum transport with increasing fringe width.

We further analysed wall-attached convection in the regions of strong magnetic flux. We
showed that the amplitudes of the wall modes away from the corners decrease when δ is
decreased from 9 to 1, but begin to increase on further reduction of δ. We believe that the
horizontal components of the magnetic field play a crucial role in the stability of the wall
modes. A detailed study on the this behaviour will be conducted in a future work.

Here, we also remark that the initial conditions play a minor role in the evolution of the
large-scale structures. In the Appendix, therefore, we compare some of our results for δ =
9 with another simulation of the same set-up with identical parameters, but different initial
conditions. We observe that although there is a marginal difference in the alignment of the
superstructures, the other results, such as the global Nusselt and Reynolds numbers, and
the variations of anisotropy and the local heat transport along y, remain largely unchanged.

Our present work provides important insights into the dynamics of thermal convection
under spatially varying magnetic fields, which may find applications in several industrial
and astrophysical flows. It should therefore be considered as a first step towards
understanding thermally driven flows in applications where non-homogeneous magnetic
fields are encountered. For example, our results are expected to help in designing
engineering applications such as cooling blankets in fusion reactors. Although we worked
on a small set of parameters, we expect our results to hold for higher Rayleigh numbers
as well. In the future, we plan to conduct a similar analysis for fluids at different Prandtl
numbers.
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Appendix. Effect of initial conditions

In this appendix, we explore the impact of initial conditions on the solutions in our
convection set-up as described in § 2. In the present work, all the simulations were
initialized with the conduction profile for temperature and a small perturbation of
amplitude A = 0.001 in the z-direction for velocity. Here, we consider another simulation
of our set-up for δ = 9, Haz,max = 120, but with the pure convective state solution (i.e. the
solution for Haz,max = 0) as the initial condition. Like the previous runs, this simulation
was initially run on a coarse grid of 480 × 960 × 30 points for 100 free-fall time units in
which it converged to a statistically steady state. Following this, the mesh was refined
successively to the resolution 4800 × 9600 × 300 grid points, and the simulation was
allowed to converge after each refinement. Once the simulation reached the statistically
steady state at the highest resolution, it was run for a further 21 free-fall time units, and a
snapshot was saved after every free-fall time unit. Henceforth, we refer to this simulation
as IC 2, and the earlier simulation for δ = 9 (with the quiescent state being the initial
condition) as IC 1.

In figures 16(a–c), we show contour plots of vertical velocity uz on the horizontal
midplane for IC 2 at three different snapshots corresponding to t = 0, 9 and 18,
respectively; here, t is measured from the time stamp of the first snapshot. In figure 16(d),
we show the density plot of uz averaged over 21 free-fall time units. For comparison, we
also exhibit the contour plot of vertical velocity on the horizontal midplane for IC 1. In
figures 16(e–g), the plots correspond to the snapshots at t = 0, 9 and 18, respectively,
where t is measured from the time stamp of the first snapshot. Figure 16(h) exhibits the
density plot of vertical velocity averaged over 20 free-fall time units. All the figures
show that the large-scale patterns are qualitatively similar in the weak magnetic flux
region for both IC 1 and IC 2. In the fringe zone, however, there is a difference in the
alignment of the superstructures, with the reorientation of the patterns perpendicular to
the longitudinal sidewalls being more prominent for IC 1. Further, in the region where
Haz ≈ Haz,c, convection is suppressed completely in the bulk for IC 1, but some traces
of convection are still present for IC 2. We remark that minor effects of initial conditions
on magnetohydrodynamic flows have already been observed in the past; see, for example,
Sukoriansky, Zilberman & Branover (1986) and Zikanov et al. (2019).

We compute the planar kinetic energy (E( y) = 0.5〈u2
x + u2

y + u2
z 〉x,z), the local

vertical anisotropy parameter (2Ez( y)/Eh( y)), the local horizontal anisotropy parameter
(Ey( y)/Ex( y)), and the ratio of the kinetic energies along the z- and y-directions for IC 1
and IC 2. The aforementioned anisotropy parameters are defined in § 3.1. We plot the above
quantities versus the local Hartmann number in figures 17(a–d). Figure 17(a) shows that
the E( y)–Haz( y) curves for IC 1 and IC 2 collapse, implying that the local variations of
kinetic energy do not change with the initial conditions. From figures 17(b–d), it is clear
that although the curves of the anisotropy factors for the two different initial conditions
do not collapse, they still follow the same trend. Similar to IC 1, the vertical velocity
fluctuations for IC 2 become stronger compared to the horizontal ones with the increase of
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Figure 16. Contour plots of vertical velocity uz for δ = 9 in the horizontal midplane for different initial
conditions. For the simulation IC 2, contour plots of uz at (a) t = 0, (b) t = 9, and (c) t = 18, where t is
measured from the time stamp of the first snapshot saved at statistically steady state. For the simulation IC 1,
contour plots of uz at (e) t = 0, ( f ) t = 9, and (g) t = 18, where t is measured from the time stamp of the first
snapshot saved at statistically steady state. Contour plots of time-averaged vertical velocity for (d) IC 2 and
(h) IC 1. The positions corresponding to Haz( y) = Haz,c, Haz( y) = 0.8Haz,c and the edge of the magnetic
poles are represented by purple, blue and black horizontal lines, respectively, in decreasing order of thickness.
The magnetic poles extend from y = 16 to y = ∞.

Haz( y). Further, for both IC 1 and IC 2, the velocity fluctuations in the y-direction become
stronger compared to those in the x-direction as Haz( y) increases.

We plot the normalized local Nusselt number Ñu( y) versus the normalized local vertical
Hartmann number Haz( y)/Haz,c for both sets of initial conditions in figure 18(a). For the
above data, we also plot the normalized Reynolds number R̃e( y) versus the local free-fall
interaction parameter Nf ( y) in figure 18(b). The quantities Ñu( y), R̃e( y) and Nf ( y) are
defined in (3.5), (3.8) and (3.10), respectively. Figures 18(a,b) show that both Ñu( y) and
R̃e( y) for the two different initial conditions collapse well, showing that the dependence
of the above quantities on the local magnetic field is independent of the initial conditions.
The time-averaged global Nusselt and Reynolds numbers for IC 2 are calculated to be
Nuglobal = 2.60 and Reglobal = 479. These values are nearly identical to those for IC 1,
where Nuglobal = 2.60 and Reglobal = 474.
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Figure 17. For δ = 9 and different initial conditions: mean profiles of (a) the local kinetic energy E( y), (b) the
local vertical anisotropy parameter 2Ez( y)/Eh( y), (c) the local horizontal anisotropy parameter Ey( y)/Ex( y),
and (d) the ratio of the kinetic energy along the z- and y-directions, versus the Hartmann number, Haz( y),
based on the mean vertical magnetic field Bz( y). For both sets of initial conditions, the variations of E( y) with
Haz( y) are identical, and the anisotropy parameters increase with the local vertical magnetic field strength.
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Figure 18. Variations of the normalized local planar Nusselt and Reynolds numbers with the normalized local
vertical magnetic field strengths. For IC 1 and IC 2: (a) normalized local Nusselt number Ñu( y) versus the
normalized local Hartmann number Ha( y)/Hac, based on vertical magnetic field strength; and (b) normalized
local Reynolds number R̃e( y) versus the local free-fall interaction parameter Nf ( y).

Our results show that although the initial conditions can have some impact on the size
and alignment of the convection patterns in the fringe zone, they do not alter the global
heat and momentum transport, the local variations of heat and momentum transport, and
the trend in the variations of local anisotropy.
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