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SIMPLE TYPE III SELF-INJECTIVE RINGS AND 
RINGS OF COLUMN-FINITE MATRICES 

K. C. O'MEARA 

1. Introduction. Relatively little is known about simple, Type III, right 
self-injective rings Q. This is despite their common occurrence, for 
example as Qm2iX(R) for any prime, nonsingular, countable-dimensional 
algebra R without uniform right ideals. (In particular Q can be 
constructed with a given field as its centre.) As with their directly finite, 
SP(\), right self-injective counterparts, division rings, there are few 
obvious invariants apart from the centre. 

One reason perhaps why little interest has been shown in their structure 
is that the usual construction of such Q, namely as a suitable <2max(^), iS 

not concrete enough; in general R sits far too loosely inside Q and not 
enough information transfers to Q from R. Thus, for example, taking R to 
be a non-right-Ore domain and Q = Qmax(R) tells us little about Q 
(although it has been conjectured that all Q arise this way). 

The purpose of this paper is twofold. Firstly we wish to draw attention 
to the easily established fact that some of these Q can be constructed as a 
ring of fractions of the ring R^ of all (countably infinite) column-finite 
matrices over very concrete R. For example, suppose R is a countable-
dimensional non-right-Ore domain or an SP(\) regular ring, but not a 
division ring, with only countable direct sums of right ideals (such as 
certain direct limits of infinite-dimensional full linear rings). Then R^ has 
a ring of fractions, relative to its (unique) maximum Ore set of regular 
elements, which is a simple Type III right self-injective ring. Secondly, we 
raise the possibility of describing a general Q in terms of certain natural 
infinite-dimensional full linear subrings T = F^ over the centre F of Q. 
These subrings, which we term (Mull-linear subrings, behave somewhat 
analogously to «-dimensional full linear subalgebras over F( = Fn for fixed 
n ), with centre F, of a given central simple finite-dimensional algebra over 
F: any two are conjugate and they satisfy the double centralizer condition 
T = CQ(CQ(T) ). Also a large part of Q is covered by their union. For 
example, if Q = Qm£LX(R) where R is any "locally finite-dimensional 
semisimple" algebra over an algebraically closed field F, then the union of 
these g-full-linear subrings contains R. This raises the question of just 
how "locally full linear" is a general Q with an algebraically closed 
centre. 
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2. Preliminaries and background. Rings are assumed to be associative 
with identity. Our notation for the left annihilator of a set X in a ring R is 
lR(X). Similarly rR(X) denotes the right annihilator. 

The injective hull of a module A is denoted by F (A). For a cardinal 
a (finite or infinite), a A denotes the direct sum of a copies of A. We 
write A ^ B to indicate a module A is subisomorphic to a module B, and 
A < e 5 t o indicate the submodule A is essential in the module B. 

For background on (right) nonsingular rings and the maximal right 
quotient ring of such rings, the reader is referred to [2]. We denote the 
maximal right quotient ring of a right nonsingular ring R by Qmax(R). As 
is well-known, ômax(^) 1S a regular, right self-injective ring. For the 
general theory of regular, right self-injective rings, and the associated 
theory of types, see [3]. 

Generally our notation and terminology follow [2] and [3]. References 
[4] and [6] are the original sources of some important results for prime, 
regular, right self-injective rings (although these results are now in [3] ). 

We remind the reader that any regular, right self-injective ring Q is 
uniquely a direct product of rings of Types I, II, III. A good deal is known 
about regular, right self-injective rings of Type I or II, especially if Q is 
simple; in the Type I case, Q is then simple Artinian, while in the Type II 
case for example, Q is directly finite and possesses a rank function. In the 
simple Type III case, which is characterized by the property that Q is not 
a division ring but satisfies the SP(l) condition (strongly prime with 
one insulator) 

aQ = Q VO * a e g, 

not much is known beyond the properties which hold in any directly 
infinite, prime, regular, right self-injective ring. Yet this case occurs 
frequently. For as shown in [7], if R is any countable-dimensional, prime, 
nonsingular algebra without uniform right ideals, then Qmax(R) *s a l w a v s 

simple Type III. 
By a countable-dimensional full linear ring over afield F we mean the ring 

End FV of all linear transformations of a countably-infinite dimensional 
vector space F over F (with transformations written on the left of vectors). 
This ring is prime, regular, and right self-injective. Of course, End FV is 
isomorphic to the ring i ^ of all countably infinite, column-finite matrices 
over F. 

Now let Q be a simple, Type III, right self-injective ring (which is 
necessarily regular). The directly finite counterpart of Q is of course 
a division ring. In the case where the division ring is finite-dimensional 
over its centre, the classical theory tells us a lot about its structure in 
terms of its subfields, particularly its maximal subfields. Is there an 
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analogue of this (albeit much weaker) for Q, or at least for some Ql In 
place of the finite-dimensional restriction we could insist that Q have only 
countable direct sums of nonzero right ideals. In place of a subfield, we 
should perhaps pick out a directly infinite, prime, regular, right 
self-injective subring which is well-behaved and well-understood. A 
countable-dimensional full linear subring over a field immediately springs 
to mind. Just how these can arise as subrings of Q, is considered in Section 
4. There it also becomes clear that their existence does not depend on the 
countability restriction. If Q does contain uncountable direct sums of right 
ideals, then probably the appropriate full linear subring to consider is one 
whose dimension matches the "dimension" of Q. We have not followed 
this line. Instead, although most of our results apply without the 
countability restriction, the particular case we have in mind is when Q 
does have only countable direct sums of right ideals (that is /x(g) = S j , 
where /x is the Goodearl-Boyle [5] infinite dimension function). This covers 
the principal motivating case Q = Qmax(R) where R is any countable-
dimensional, prime, nonsingular algebra without uniform right ideals, 
such as 

R = lim F2n 

for a field F. 

3. Self-injectivity and column-finiteness. Throughout Q denotes a 
regular, right self-injective ring. We term a set {^}^° of nonzero ortho­
gonal idempotents of Q complete if 

lQ{e,)T = 0, 
equivalently 

oo 

®e,Q 

is a large right ideal of Q. One very powerful consequence of right 
self-injectivity when applied to a complete set is the (well-known) property 
of being able to string together arbitrary "columns" of elements 

a,, a2, . . . , « „ , . . . , 

where each at e Qeh to obtain a (unique) element x e Q. 

PROPOSITION 1. Let {^}^° be a complete set of orthogonal idempotents of 
Q. Given at G Qet for i = 1 , 2 , . . . , there exists a unique x G Q with 
xet = ai V/'. Consequently 

oo 

QQ = I I Qe, 
l 
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Proof. Right self-injectivity of Q ensures that the map 

is given by left multiplication by a suitable x G Q. Then 

*£>; = i//(^f.) = «.*?,. = a , Vz'. 

Uniqueness of x follows from /gfo-} = 0. 

For the class of regular rings R in which each large right ideal is an 
essential extension of some countably generated right ideal, the property 
in Proposition 1 actually characterizes injectivity of RR. For suppose 
L <e RR and \p:L —> R is an R-map. Choose a complete set {^}^° of or­
thogonal idempotents of R with 

oo 

0 e,R <e L. 

By the "column-stringing" property of R, there exists x e R with 

xei = \p(ej) G Ret Vz, 

and this x clearly induces \p. 
In view of Proposition 1, a natural question to ask is: when can we 

string together "rows" of elements fi]9 /?2, . . . , fifV . . . with each /?z e etQ, 
that is when does there exist x e Q with etx = fit Vz? The answer is that 
the matrix ( / ta) must be "almost column-finite": 

PROPOSITION 2. Let {et}™ èe a complete set of orthogonal idempotents 
of Q. Given /3i e etQ for i = 1, 2, . . . , « , . . . rTzere em/s x G Q with 
etx = /?z Vz if and only if for each j = 1, 2, . . . r7ze ng/z/ /Vfea/ 

A- = {a ^ Q:pte:a = 0 /or almost all i} 

is large in Q. 

Proof Although this proposition can be deduced from Propositions 1 
and 3, the following argument is more enlightening. 

(=>) Fixy. Let 0 ¥= y e Q. If JC^J = 0 then y e ^4. because 

fifty = epcejy = 0 Vz. 

Suppose *e-.y ^ 0. Since 

oo 

1 

we have 
oo 

xe.yQ n 2 e,Ô * 0, 
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say 
n 

0 ¥* xe-yz e 2a ?iQ-
l 

Then for all k > n, 

(Pkej)yz = ek(xejyz) = °» 

whence 0 ¥* yz e A . Hence yL < e & 

(<=) Fix j and assume L = A: is large. Set 

Lw = {a e g : ^ = 0 V/ > / i } 

so that 

oo 

L - UL„ and L, ç L2 Q . . . . 

Define a map i//:L —» g by 

This i// is a well-defined g-homomorphism, so by the right injectivity of Q 
there exists w e Q with 

\p(a) = wa Va Œ L. 

Let a- = we. Let a e L. Fix z and choose « > / such that a e L,r 

Then 

(̂ •«7 ~ &<y> = eflja - hep 

= e^wieja) ) - ^e}a 

= ^-(jS, + . . . + jBJe/i - ^ 

(since e-a e Lw) 

= / J ^ - A - jS^tf 

= 0. 

Hence 

(efltj - Pfij)L = 0, 

whence 

eiaj ~ fej = 0 

because L <e Q and Z ( g n ) = 0. Thus for each7, there exists a- e gey 
with 

eflj = faj Vi. 
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By Proposition 1, there exists x e Q with xe- = a. V/. Now V/ 

(e-x - # > y = epej - fifi = epj - ^e} = 0. 

By completeness of {^-}?°, 

^x - A = 0 

and so etx = /?,-. 

An easy corollary of Propositions 1 and 2 is the well-known fact that a 
regular, two-sided injective ring Q cannot contain an infinite independent 
family of nonzero pairwise isomorphic right ideals (and in particular Q 
is directly finite). Otherwise there exists a complete set {^}^° with 
exQ ^ etQ for infinitely many /, and thus elements /?,- e etQex with 

rçifij) n exQ = 0 for infinitely many /. 

According to the left-sided version of Proposition 1 (note ^{^-} = 0 
because rg{et} n 2 £/(? = 0), the left injectivity of Q implies there exists 
x G Q with 

etx = A Vz, 

whereas the right injectivity of Q and Proposition 2 say x cannot exist 
because .4] Pi exQ = 0. 

Using a two-sided Peirce decomposition we can give a truly column-
finite interpretation of Proposition 2. 

PROPOSITION 3. Let {^}^° be a complete set of orthogonal idempotents 
of a regular, right self injective ring Q, and let /?z e etQ be given for 
i = 1 , 2 , . . . . Then there exists x e Q with etx = /?,- V/ if and only if there 
is a complete set {f}^ of orthogonal idempotents such that the matrix 

is column-finite. 

Proof. (<=) This follows by applying Proposition 1 to 

at = 2 M e Qf for / = 1, 2 
j 

(=») The map 

oo 

l 

is a g-monomorphism. (Note ^{e,-} = 0 because 

re{^-} O ( 0 ^ 0 ) = 0 and 0 etQ <e Q.) 

Since 
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Q = E(Y eio) 

we must have 

*KQ) = t n e injective hull of (external) © etQ 

within the nonsingular injective I I efQ 

= ^-closure of © etQ in I I etQ 

= {y e I I etQ \ yh Q © etQ for some L <e Q} 

= { (y,-) e n ^ | { j ; e e l W = 0 V'i} < e g } . 

Thus for the given /},-, 

^ = {.V e g I fi,y = 0 V'i} 

is a countably generated large right ideal of Q and we can choose a 
complete set {f}^° Q L of orthogonal idempotents of (X Since for each 

j , fijj = 0 for almost all /', the matrix (Pifj) is column-finite. 

This (admittedly tenuous) link between right self-injectivity and 
column-finiteness of Peirce decompositions makes the following (known) 
corollary a little unexpected. 

COROLLARY 4. For a right nonsingular ring R, the ring R^ of all 
(countably infinite) column-finite matrices over R is right self-injective if and 
only if R is semisimple Artinian. (Note: 

R^ = Endfi ( ( § * ) . ) 

Proof Although this follows easily from Proposition 3, there is in fact a 
stronger result in the literature. In [8], Shanny showed that R^ is regular if 
and only if R is semisimple Artinian. See also [9]. 

Remark. An unpublished related result due to D. Handelman (Ph.D. 
thesis, 1975) asserts that if R is a right SP(\) ring but not an Ore domain, 
then there exists an infinite cardinal S such that End^(Si^) is right but not 
left SP(\). If there are no uncountable direct sums of nonzero right ideals 
in R, then S = S0 will work. 

Suppose JCJ, . . . , xn9... is a sequence of elements in a regular, right 
self-injective ring R, and suppose the sequence is "almost finite" in the 
sense that 

L = {y <= R | Xiy = 0 V'/} 

is essential in RR (equivalently (x b x2, . • • , xn, . . . ) is in the ^closure 
of © ^ R within 1 1 ^ R). Then it makes sense to talk about the "sum" 
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oo 

1 

as the unique element x G R which induces the R-map 

\p:L -+ R, y i-> (xx + . . . + xn)y if x(y = 0 Vi > AI. 

Inspired by Proposition 2 we could consider the set R^ of those 
countably-infinite matrices over R whose columns are almost finite. This 
Rçn becomes a ring under the obvious addition, and an extended matrix 
product AB based on the fact that the inner product of a row (ax, a2, . . . ) 
of^ G R^ and a column (bx, b2,. . . ) of B G R^ makes sense as 2 ^ aibi 

(because axbx, a2b2, . . . is almost finite). The ring R^ is regular, right 
self-injective, but it is not new. It is a matrix representation of 

EndR\^E\® R 

and is also ômaxC^oo)- (Recall that the endomorphism ring of a non-
singular injective module is regular, right self-injective.) 

Recall that a ring S is a ring of fractions of a ring R if elements of S are 
expressible as ac~ for suitable a, c G R. A regular {right) Ore set for R is 
any (non-empty) multiplicatively closed set C of regular elements of R 
with the common right multiple property: for each c G C, r G i?, 3c] G C, 
rx G # with CTJ = rcj. With each ring of fractions S we have a regular Ore 
set C = S* n i? (here S* is the group of units of S). Conversely, given a 
regular Ore set C there exists a unique ring S = RC~ of fractions of Z? 
such that C Q S* n R and each i G 5 i s expressible as 

x = ac a G R, c G C. 

Since then S is also a right quotient ring of R, if R is right nonsingular 
we have 

RQ S Q Qmax(R) and 

C c g * ^ * ) n ^ { / G *:/•*( >0 = 0,yR <e RR}. 

All this is very well-known. Less well-known is the following: 

PROPOSITION 5. Each ring R (with identity) has a unique largest regular 
Ore set M (which contains all other regular Ore sets), and the corresponding 
ring of fractions RM is the (unique) largest ring of fractions ofR. 

Proof R possesses regular Ore sets, for example C = {1} or C = R*. 
Let M be the multiplicative semigroup generated by all the regular Ore 
subsets of R. Let c G M, r G R. We can suppose c = cxc2 . . . cn where 
cl G C, for some regular Ore set Ct. Choose dx G C b rx G R such that 

cxrx = rdx. 
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Choose d2 e C2, r2 ^ R such that 

c2r2 = r ^ 2 

and so on up to d„ Œ Cn9 rn & R such that 

crw = cxc2...cnrn 

= q r , ^ . . . </J 

= r{dxd2 ...dn) 

which establishes the common right multiple property. 

We denote RM~] by Qm2LX.c\{R) a n ^ r e^ e r t o ^ a s t n e maximal {right) 
classical ring of fractions of R. 

Remark. A ring R without identity need not have any regular Ore sets 
let alone maximal (non-empty) ones, even if R has regular elements. For 
example consider R = F[x]x, where F[x] is the skew polynomial ring 
consisting of all polynomials a0 + axx 4- . . . + anx

n with multiplication 
determined from 

xa = o{a)x 

for a fixed monomorphism o:F —> F which is not a surjection. 

In view of Corollary 4, one expects to lose injective-related properties 
in going from R to R^. But viewed from their maximal quotient 
rings, sometimes R^ is more tightly embedded than R (even if 
Ô m a x ( ^ ) = Ômax(^oo) )• °*ie SUCh Case i s : 

THEOREM 6. Suppose R is a right nonsingular ring containing only 
countable direct sums of nonzero right ideals {for example, a countable-
dimensional algebra), but not finite-dimensional {on the right), and satisfies 
R ^ aR for all nonzero a ^R. Then R^ has a ring of fractions, relative to 
its maximum regular Ore set, which is a simple, Type III, right selfinjective 
ring. 

Remark. The restriction on countable direct sums could be weakened to 
the existence of a right ideal 

oo 

J = © a,R <e R 
l 
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such that for each x e Qmax(R), t n e r e exists 

oo 

© btR <e {r Œ J \ xr <E J}. 

Proof. Because of our countable direct sum restriction, each right ideal 
K of R is an essential extension of some ©^° C;R with each cfR = R. Fix 
a large right ideal of R of the form 

oo 

J = (B a,R 

with each atR = R. Let Q = Qmax(R) and let 

Y = {y Œ Q\yJ QJ}. 

Since QR is injective and nonsingular, and each atR = R, we have 

Y = End JR 

oo 

= End © afR 

oo 

= End © R 
l 

Thus it suffices to establish the claims for the ring Y. 
Let x G Q. Choose a large right ideal 

oo 

L = © /3Z# ç j9 
1 ' 

with each btR = R, such that xL Q J (recall inverse images of large 
submodules are large). Since atR = btR Vz, we can construct an 
^-isomorphism 

yP'J - > L. 

This \p is induced by some c e Q because QR is injective. Now 

cJ Q L Q J and 

(xc)J = x(cJ) Q xL Q J, 

which shows both c and xc are in Y. Also ry(c) = 0 and J <e QR imply 
^ ( c ) = 0, while LQ c cQ and LQ <e Q imply 

cQ = Q and /^(c) = 0. 

Thus c is regular in Q and hence a unit in £). Since x = {xc)c~ and 
xc, c G y, this shows g is a ring of fractions of Y relative to the regular 
Ore set C = Y n Ç*- Now 

https://doi.org/10.4153/CJM-1987-042-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-042-2


858 K. C. O'MEARA 

C = {c G Y I rY(c) = 0 and cY <e Y} 

so necessarily C is the maximum regular Ore set of Y. 

Given 0 ^ JC G g, choose 0 i^ a <E xQ n R. Then 

implies Q ^ xg . Hence g is an SP(\), right self-injective ring, but not a 

division ring (otherwise R is finite-dimensional), whence Q is a simple, 

Type III, right self-injective ring. 

The following two corollaries are immediate. 

COROLLARY 7. Let R be an integral domain which is countable or 
countable-dimensional (on the right) over a subdivision ring, but not right 
Ore. Then R^ has a ring effractions, relative to its maximum regular Ore 
set, which is a simple Type III right self-injective ring. (Note: here 

Qmzx-c\(Roo) = Qmzx(R)') 

Remark. For the classical example of such R, namely the skew poly­
nomial ring (F[x], a) over a field F with 

1 < [F:o(F) ] ^ N0, 

the maximum regular Ore set of R itself is just F*, so that 

Ômax-cl(^) = R-

This contrasts sharply with <2max_ci(^oo)-

COROLLARY 8. The conclusions of Corollary 7 also hold for any SP(\) 
regular ring R which has only countable direct sums of right ideals, but is not 
a division ring. 

The maximal ring of fractions provides us with a much more concrete 
and satisfying construction of a simple, Type III, regular right self-
injective ring Q with a given field F as centre than does the maximal 
quotient ring of, say, even lim_^ F2« (see Introduction). This is because a 
ring of fractions (of some known ring) gives a much closer fit than does 
a general quotient ring. The construction is in three steps. First we form a 
direct limit 

U = lim Tt 

of a countable sequence of full linear rings T{ = F^ where each 
embedding Tf —> Ti+X induces an isomorphism of the centres and splits 
primitive idempotents of Tx into infinitely many primitives of 
Tl + j , that is 

SOC(T;+1) n Tt = o. 
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(If 7J+1 is also nonsingular over Tt, then the embedding Tt 

actually equivalent to the diagonal embedding 
f/ + i is 

a H* 

of F^ into (F^)^ Q F^.) Next form the ring U^ of column-finite matrices 
over U. Since U is a regular SP(\) ring with only countable direct sums of 
right ideals, by Corollary 8 if we now let 

Q = Gmax-ddU 

be the maximal ring of fractions of U^, then Q is a simple, Type III right 
self-injective ring. Also 

Q = Q™*(U) 

and U is simple with centre F, so the centre of Q is F. (One can show, 
however, that U^ is not a right order in Q, so that some regular elements 
of L̂ o are not invertible in Q. In other words, the maximum regular Ore 
set of U^ is not the complete set of its regular elements.) 

Remarks. (1) Note that for R as in Theorem 6 (or Corollaries 7, 8), 
the unique maximum right Ore set of regular elements of the ring 
A = R^is 

{a G A | rA (a) = 0 and aA <e A }. 

(2) By Camillo's recent theorem [1], if R and S are not Morita 
equivalent rings then R^ ^t S^. Thus we can produce many non-
isomorphic R^ in Corollaries 7 and 8. Nevertheless we are still faced with 
the question of when their corresponding maximal rings of fractions are 
isomorphic (which is analogous to the difficult question of when right Ore 
domains have isomorphic division rings of fractions). 

(3) Observe that if R and S are countable-dimensional algebras over the 
same field F, then as rings 

floo^Soo and S o o ^ o o -

This is because both R and S embed in T = F^ and both R^ and S^ 
contain a copy of T, whence R^ ^ 7 ^ ^ T ^S S^ implies R^ ^ S^. 
Similarly S^ ^ R^. (By a similar argument R^ ^ U^ and U^ ^ R^ for 
U the countable direct limit of full linear rings above.) Thus we can expect 
R^ and S^ (and perhaps their rings of fractions) to have similar local 
properties. 
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(4) The particular embedding R^ ^ S ^ described above need not 
extend to an embedding of (?max-ci(^oo) m t o (?max-ci(̂ oo) because regular, 
non-unit, elements of R^ can become zero-divisors in T and hence in S^. 
In general a ring homomorphism 

for R and S satisfying the conditions of Theorem 6, will extend to a ring 
homomorphism 

^ômax-clC^oo) ~~> ômax-cl(^oo) 

if and only if \p maps the maximum regular Ore set of R^ into the 
maximum regular Ore set of S^. 

4. Full linear subrings of simple type III self-injective rings. Let Q be a 
prime, regular, right self-injective ring with centre F (a field). We make the 
following: 

Definition 9. A subring T of Q is a Q-full-linear subring if 

centre (T) = centre (Q) = F, 

T = F^, and 

QT is nonsingular. 

If Q is simple Type III, then g-full-linear subrings arise quite naturally 
from complete sets of orthogonal idempotents and g-isomorphisms 
between the associated principal right ideals, as a consequence of the 
injectivity of QQ and the fact that 

eQ=fQ V0 * e, f e Q. 

For let {et}^ be a complete set of (nonzero) orthogonal idempotents. 
Choose (^-isomorphisms 

exQ-^e2Q^e^Q-^... 

induced by mi + Xi e ei+]Qei9 and for / > j derive the isomorphisms 

mi/-ejQ ~* e & mij e eiQej-

Set mu = ei and for /' < j let 
l 

m,, = mi; " G eyQe. 

Then M = {m-}^ is a complete set of matrix units of Q. Set 

CO 

Cj = 2J Fmn (the zth "column space") 
7 = 1 

for / = 1 , 2 , . . . . Since g *s right self-injective, by Proposition 1 we can 
string the Ci together to get a subring 
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T = {x G Q\xel G Cz V/} 

oo 

= i l Ct (as an additive group) 
i 

= Foo (as a ring). 

Also 

centre (T) = F and soc(T) = 2 e^ . 
1 

If x G Z ( g r ) , then x (soc(r) ) = 0 whence 

xei = 0 V/' 

and so x = 0 because {e7} is complete. Thus <2r is nonsingular and T is 
therefore a g-full-linear subring. 

Conversely, every Q-full-linear subring T arises this way: choose a 
complete set of matrix units {mtj}^° for T with each mit a primitive 
idempotent of T, and let ^ = mit for / = 1 ,2 , . . . . The above construction 
then recovers T. 

The following lemma is useful for determining when two (Mull-linear 
subrings are equal or conjugate. 

LEMMA 10. Let Q be a prime, regular, right self-injective ring. Then: 
(1) A Q-full-linear subring T is completely determined by any complete 

set {et}™ of orthogonal primitive idempotents of T and any system of 
Q-isomorphisms 

m-,] m^ 
exQ^Le2Q^e3Q^... 

induced by mi + ] t G ei + xTet for i = 1, 2, . . . . 
(2) Suppose S is any other Q-full-linear subring with {f}^ a complete 

set of orthogonal primitive idempotents of S and 

a system of Q-isomorphisms induced by ni + ] i G fi+]Sf. Then any c G Q 
which (by its left multiplication) makes the diagram 
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commutative and all vertical maps isomorphisms, is a unit and satisfies 
S = Tc ( = cTc~]). 

(3) When S = T in (2) withf = et and ni_^_]i = mi + ]i for all /', then any 
such c must centralize S. 

Proof (1) Since T = F^ and centre (T) = F, we have that eiTeJ is 
1 -dimensional over F for all /, j , and so 

etTej = Fatj for any 0 ^ ^ <E ^ T ^ . 

From the given m / + , ^ we can produce 0 T̂  mz/ G ^Te- in the obvious 
way: 

for j = /', set mH = ei 

for j < i, set mi} = mi4_xmi_u_2 • • • "V+i,y 

for7 > /, set m- = mÇ (= the unique element in etQej 

which induces the inverse of the map etQ—>-eQ). 

Then 

e{Te} = Fmtj V/,y. 

Since {^}^° is a complete set of orthogonal primitive idempotents 
of T, 

oo 

soc(jf) = 2 etT. 
l 

Hence for each y, 

oo oo 

Te• = soc(T)e = 2J ei^ej = ^ ^mij-
/ = l / = l 

By Proposition 1 applied to T, 

OO OO / OO \ 

which, by Proposition 1 applied to Q, shows T is completely determined 
by {«..}?> and {ml + ]j}?. 

(2) Clearly c is a unit because 

OO OO 

®e,Q<e Q and 0 / £ < e Ô-

Also ce; G f:Q Vz, whence 

( / c - flce,)ej = 0 V/ 
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and so ff — f^e^ = 0. Hence ff = ficej = cet and 

cejC^ = y; e s . 
From commutativity of the diagram, 

Hence S and Tc are g-full-linear subrings sharing a common complete set 
{fi)T °f primitive orthogonal idempotents and isomorphisms 

so S = f by (1). 
(3) From the proof of (2), it is clear that 

w / / = mij V ' W , 

where the m- are the matrix units of T derived as in the proof of (1). Then 
c centralizes each 

oo 

Te- = 2 Fntij. 
i = \ 

For a general x e 71, we have 

(ex — xc)^ = c(xej) — x(cej) = xe-c — xe-c = 0 V/ 

whence ex — xc = 0 because {e } is complete. Thus ex = xc, showing 
c centralizes S. 

The next proposition shows there are three classes of regular, right 
self-injective rings which contain many countable dimensional full linear 
subrings. We recall that for a prime, regular, right self-injective ring Q, the 
Goodearl-Boyle [5] infinite dimension function /i, defined on the class of 
nonsingular, injective, right g-modules, is given by [i(A) = 0 if A = 0 , 
while if A ¥* 0 then 

li(A ) = smallest infinite cardinal a such that aA is not subisomorphic 
\o A 

(see [3, Chapter 12] ). In terms of /A, Goodearl's description of the 
(two-sided) ideals of Q is that they take the form 

H(a) = {x G QitixQ) ^ a] 

for infinite cardinals a [3, Proposition 12.19]. In particular / /(S0) is the 
ideal consisting of all x for which xQ is directly finite, and when it is 
nonzero, / /(S0) is the unique minimum ideal of Q. 

PROPOSITION 11. For a regular, right self-injective ring Q, the following 
are equivalent: 
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(1) Each idempotent e Œ Q belongs to some count ably-infinite dimensional 
full linear subring T with QT nonsingular. 

(2)Q = E(X0(eQ)) VO * e e Q. 
(3) Q is prime and Q/H(tf0) is simple. 
(4) Either 
Q is a count ably-infinite dimensional full linear ring {over a division ring) 

or 
Q is simple, Type III 

or 
Q is prime, Type 11^ with Q/H(tt0) simple. 

Proof (1) =* (2). Let 0 ¥= e = e e Q and suppose e e T for some 
countably-infinite dimensional full linear subring T with QT nonsingular. 
Since T = E(tf0(eT) ), there is a complete set {e ,}^ of orthogonal idem-
potents of T with 

CO 

® eT < T and eT = eT Vi. 
l ' e l 

Now QT nonsingular implies /^{^}^° = 0, whence 

CO 

© e,Q < e Q. 

Also etT ~ eT implies etQ = eQ Vz, so 

Q = E(®e,Q) = E(X0(eQ) ). 

(2) =̂> (3). First note that //(N0) ¥= Q because Q is directly infinite from 
(2). Let e ¥= 0, 1 be an idempotent of Q. Then E(tf0(eQ) ) = Q implies 

HomQ(n(eQ), (1 — e)Q) ^ 0 for some n 

and hence 

Hom e (e0 , (1 - e )g ) * 0. 

Thus (1 — e)Qe ¥= 0 which shows Q is prime. Now suppose e £ //(N()). 
Then n(eQ) > S0, whence by [3, Theorem 12.16] 

li(Q) = tiE(*o(eQ))) = ma*(Ni> KeQ)) = l*eQ). 

Hence Q = eQ (since Q is prime and directly infinite; see [3, Corollary 
12.11] ) and thus Q = QeQ. This shows Q/H(K0) is simple. 

(3) => (2). Let e <= Q. If <? £ //(N0) t h e n> s i n c e Q/H(X0) is simple, 
/x(é>g) = /i(g). Hence 

M^(«o(^Ô))) = max{K„ ix{eQ) } = ix(eQ) = ix(Q) 

and so E(tt0(eQ) ) = Q because Q is prime and directly infinite. On the 
other hand, if e <E / / (S0) and e ¥* 0, then 
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E(K0(eQ) ) S fQ for some / e Q, f £ tf (N0), 

whence 

E(«o(eQ)) = fQ = £(«o(/G)) = G-

(2) => (1). Let é? e Q. If 1 - e g i/(K0), then by the argument in 
(2) => (3), 

(1 - e )g = G = £(K0(*Ô)) 

and so there is a complete set {et}^° of orthogonal idempotents of 
Q with 

e = e} and ^-g = ejQ ViJ. 

By the construction outlined at the beginning of this section, e G T for 
some G-fuh-linear subring T. On the other hand, if 1 — e e / /(S0) then 
e £ i/(N0), a n d the above argument produces T with 1 — e e r and 
hence e ^ T. 

(3) <̂=> (4). When G is prime and directly infinite, Q is of Type 1^, 11^, 
or III. In the Type 1^ case, Q/H(tf0) is simple if and only if Q is a 
countably-infinite dimensional full linear ring over a division ring. 

Of the three classes in (4), the class of simple Type III self-injective 
rings can be distinguished as in either of the following two corollaries. 

COROLLARY 12. Let Q be a regular, right self-injective ring but not 
a division ring. Then Q is simple Type III / / and only if each idempotent 
e e G> with e ^ 0, 1, is a primitive idempotent of some countably-infinite 
dimensional full linear subring T with QT nonsingular. 

Proof (=>) This is shown in the proof of (2) =^> (1) of Proposition 11. 
(<=) Suppose 7/(S0) ¥= 0. Observe that H(X0) ¥= Q by Proposition 

11(3). Choose an idempotent e e #(No)> e ¥= 0. Let T be a full linear 
subring containing 1 — e as a primitive idempotent. Then 

(1 - e)T< eT 

But now this implies (1 — e)Q ^ eQ, which is a contradiction because 
(1 — e)Q is directly infinite whereas eQ is directly finite. We conclude 
7/(S0) = 0. By Proposition 11, Q is simple Type III. 

COROLLARY 13. Let Q satisfy the conditions of Proposition 11. Then Q is 
simple Type III / / and only if all Q-full-linear subrings are conjugate in Q. 

Proof Assume all G-full-linear subrings are conjugate. Suppose 
/ /(S0) ¥= 0. Then we can find nonzero orthogonal idempotents 
/ , g G / / (S0) . Let e = f + g. As shown in the proof of (2) => (1) of 
Proposition 11, since 

I - e (£ / / (S0) and 1 - / € H(X0% 
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there exist (Mull-linear subrings Tx, T2 in which e is a primitive 
idempotent of Tj and / is a primitive idempotent of T2. By assumption 
T2 = T\ for some unit c e Q. Since cec~ must be primitive in T2 we 
have 

(cec-])T2 = fT2 

and hence 

eQ = ( c ^ c - ^ e = / g , 

which implies eg is directly infinite, a contradiction. Hence //(N0) = 0 
and this makes Q simple Type III. 

Conversely, assume Q is simple Type III. Let Tx, T2 be (Mull-linear 
subrings, and let {m-}^ and {n-}^ be complete sets of matrix units 
for r,, T2 respectively such that the mu and nu are primitive idempotents 
of 7j, T2 respectively. Let ei = mu, f = nu for / = 1, 2, . . . . Since Q is 
right self-injective and eQ = fQ for all nonzero e, f e g, we can choose 
c e Q such that, under left multiplication by c, the following diagram is 
commutative and the vertical maps are isomorphisms: 

By Lemma 10(2), c is a unit and T2 = T\. 

Of course we could have derived similar (but less natural) characteriza­
tions of a simple Type III Q if, instead of taking an F^ subring in our 
definition of a (Mull-linear subring, we had considered Fn for a fixed 
integer n ^ 2. However not all elements of Q lie in a copy of Fn, and not 
all finitely generated subrings can be embedded in F}V whereas at least 
every countable subring of Q is isomorphic to a subring of F^ ; so one 
expects the (Mull-linear subrings to cover much of Q. For example: 

PROPOSITION 14. Suppose Q is a simple, Type III, right self-injective ring 
with an algebraically closed centre F. Then any semisimple, finite dimension­
al F-subalgebra A of Q is contained in some Q-full-linear subring. 

Proof We have 

A = Ax ® A2 0 . . .® Ar 

for some ideals Ai of A, with Ai = Fn for some positive integers nr For 
k = 1, . . . , r, let 
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be a fixed set of matrix units for Ak. Since xQ = yQ for any nonzero 
x, y e g, we can insert "links" S l 5 . . . , 8r_] to obtain the following 
system of g-isomorphisms: 

(where e{p = m|f}). 
From this we can derive in the usual way a set of matrix units 

where / = nx + . . . + nn such that the subalgebra 

5 = 2 Fny = Ft 

contains all the m]j\ Then B 3 A. Further infinite splittings of each 
nuQ, using 

nuQ = E(X0(nnQ)) 

and the maps 

ni\:nuQ-* *uQ> 

then lead to a (Mull-linear subring T containing B and hence A. (Alterna­
tively, for this second stage, we can start with any (Mull-linear subring Tx 

and choose a subalgebra Bx Q Tx with centre (Bx) = F and Bx = Fj. Then, 
as in Corollary 13, B = B\ for some unit c e Q, whence T = T\ is a 
g-full-linear subring containing B.) 

Remarks. (1) If Q = Qmax(A) for 

A = lim F2n9 —» 

then there cannot exist a g-full-linear subring T containing A, otherwise 

Q = Ômax(D = T. 
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Thus Proposition 14 cannot be extended to F-subalgebras which are 
countable direct limits of semisimple, finite dimensional algebras. 

(2) One important difference between a simple, Type III, right self-
injective ring Q and its directly finite analogue, namely a division ring, is 
that Q has an abundance of idempotents; enough to generate Q as a ring 
[3, Theorem 13.16]. This property ensures that, at the very least, Q is 
always generated by the family of (Mull-linear subrings (see Proposition 
11). By Corollary 13, Q is in fact generated by 

U cTc~x 

for any fixed Q-full-linear subring T. In contrast, the analogous property 
of a division ring D being generated by its centre (which is the only 
candidate for a full linear subring, over a field, having the same centre as 
D) obviously fails when the ring is not commutative. (If, however, D 
is finite-dimensional over its centre, then by the Cartan-Brauer-Hua 
Theorem, D is generated by the conjugates of any subfield which properly 
contains the centre.) 

Example 15. Let Q = QmSiX(R) where R is a countable-dimensional, 
prime, nonsingular algebra over an algebraically closed field F. Assume 
further that soc(7?) = 0 but that R is "locally finite-dimensional 
semisimple", that is every finite subset of R is contained in some 
finite-dimensional semisimple subalgebra. (For instance this is true of 
the group algebra R = F[G] where G is a countable, prime, locally 
finite group, and char(F) = 0.) Then Q is a simple, Type III, right 
self-injective ring whose centre contains F, whence by the same argument 
used in the proof of Proposition 14, the union of the g-full-linear subrings 
contains R. (In the group algebra example, the centre of Q is F so 
Proposition 14 applies directly.) 

For a subset X of Q, let 

CQ(X) = [a Œ Q\ax = xa Vx G X} 

be the centralizer of X in Q. 

PROPOSITION 16. Let Q be a simple, Type III, right self-injective ring, 
and let T be a Q-full-linear subring. Then T has the double centralizer 
property: 

CQ(CQ(T) ) = T. 

Proof. Let F be the centre of Q. Let M = {m^}™ be a complete set of 
matrix units for T with centralizer F (so that 

OO / OO \ \ 

r=n(2F^.)), 
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and let el = mit for i = 1 , 2 , . . . . Then 

CQ(T) = CQ(M) = DQ(M) 

where DQ(M) is the "diagonal of Q relative to M", that is 

DQ(M) = {y e= Q:yet = ^{exyex)
 v 0 

where \pl:exQex —> ^Qez is the isomorphism 

A H-» miXamXi. 

(Note, by Proposition 1, DQ(M) is naturally isomorphic to exQex.) Let 

w G CQ(CQ(T) ), 

so that w e CQ(DQ(M) ). Let 

w- = e,-vve • for z, 7 = 1 , 2 , . . . . 

Then for all a e ^ j ^ i 

e^jia) = ^t(a)wej 

=> (mhu^rayl)<2 = aim^m^), 

whence mXiwijmjX e centre (exQex) = Fex and thus vî  G Fm^. 
Now for 0 ^ c G F, 

rô(c/w/7) O eye = 0 

because m zm- = e.. Hence for a given y, if infinitely many w- ^ 0, then 
the right ideal 

Aj = {a G gru^-a - 0 V'z} 

is not large in g, contrary to Proposition 2. Hence wtj ¥= 0 for only finitely 
many /', whence 

oo 

we: G ^ Fm- = Te Q T. 
i = \ 

Hence (by Proposition 1) w e T, showing CQ(CQ(T) ) Q T. 

The properties of Q-full-linear subrings in Corollary 13 and Proposition 
16, namely that any two are conjugate and they satisfy the double 
centralizer condition, are reminiscent of the two corresponding properties 
of «-dimensional full linear subalgebras over F ( = Fn for fixed n), with 
centre F, of a given central simple finite-dimensional algebra over F. (The 
latter properties follow from the classical Noether-Skolem and Double 
Centralizer Theorems for such algebras.) 
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5. Chains of full linear subrings. Throughout this section Q denotes a 
simple, Type III, right self-injective ring with centre F. 

The manner in which one countably-infinite dimensional full linear ring 
over F embeds in another is well-known (see Lemma 10(2) ). 

PROPOSITION 17. Let F be a field and let T = F^ be a countable-
dimensional full linear ring over F. 

( 1 ) The conjugacy classes of T-full-linear subrings are 

%9 ^ , . . . ,&„, . . . , ^ 0 

where ^n consists of those S in which primitive idempotents of S split into 
n primitives in T. 

(2) For S e c&n (n = 1, 2, . . . , oo) the embedding S ^ T is equivalent to 
the diagonal embedding of F^ into (F00)fJ Q F^ 

s h-> 

f7. 
n blocks 

An alternative view of (2) is that S ^ T is a ^ embedding if and only if 
there exists a complete set N 
T such that 

{n-:i, j = 1, . . . , « } of « matrix units of 

S = CT(N) = DT(N) (diagonal of T relative to N). 

Here, by "complete" we mean {nii}
rl is a complete set of orthogonal 

idempotents of T. 
The following lemma proves very useful when we examine chains of 

Q-full-linear subrings. 

LEMMA 18. Suppose S, Tx, T2 are Q-full-linear subrings with S Q Tx, 
S Q T2 and such that both embeddings 

S<^Tl9 S^T2 

are in class ^^ 
Q 
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Then there exists a unit c G Q such that c centralizes S and T\ = T2. 

Proof. Let M = {mij}ij = l^ ^ b e a complete set of matrix units for S 
with each et = mu a primitive idempotent of S. Since S ^ Tx and S ^ T2 

are C^ embeddings, there exist orthogonal primitive idempotents f- of Tx 

and orthogonal primitive idempotents g-- of T2 such that 

etTx = E(@X fyTx), e,T2 = E{^ glJT2) 

and 

mjiifikT\) = fjkT\> mMkTi) = ZjkT2 Vi,y, k. 

We can find isomorphisms 

«ïï-fikTx -» fuTu ^gikT2 -* g„T2 

with 

Ai) akk 
. f /?(') _ Q AOAO _ Ai) /?(')/?(<) - fl(0 
• Jifr Pkk - 8ik> ajl alk ~ ajk » Pjl Plk - Pr 

such that the diagrams 

Ai) alk 
fikT\ **fuT\ 8ikT2 

\)k 

f® 
~8ilT2 

m J< 

gjkT2 
M 

-*~gjlT2 

commute Vz, j , k, I. (This amounts to a free choice for a2\\ a^2\ • • •, 
a^Vi / • • • a n d 02\> $32' • • • > $;+i,/> • • • > a n d the rest are then determined.) 
Since 

*Ô = yQ v o ^ ^ j e g, 

we can obtain isomorphisms 

such that the diagram 

46- -ftftG 

m 7' 

y „0') 
-W//Ô 

o(0 
Plk 

yji 

-giiQ 

•gpQ 
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commutes Vz, j \ k, I. This amounts to a free choice for 

y\\\fuQ -* g\\Q 

and a determination of the other y-. from the following commutative 
network of maps: 

A 

Since Q is right self-injective, there exists c e Q which induces the y's, 
that is 

<fij = y ij ViJ-

N o w ifi/}ij = \,...,oo a n d {^}/j=i,...,oo a r e respectively complete sets of 
orthogonal primitive idempotents for Tx and T2, and the diagrams 

UQ- -A* + iÔ /*i<2-
m A + U 

•+*fk + uQ 

glkQ 
W k + 1 ,A 

5a + n &iG-
r|* + l,£ 

- • & + i , i 6 

are commutative, whence by a simple variation of Lemma 10 (2) (note that 
from the above maps we can canonically derive ^-isomorphisms between 
any two f-Q and between any two g^Q), c is a unit of Q and T2 = T\. 
Also, from commutativity of 
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we conclude from Lemma 10(3) that c centralizes S. 

Remark. A similar proof shows that the lemma also holds when the 
embeddings S ^ Tj and S *—• T2 are in class %v for the same finite n. 

THEOREM 19. Suppose 

Tx ç T2 Q ... Q TnQ ... 

Sx Q S2 Q ... Q S„ Q ... 

are two chains of Q-full-linear subrings with each Tt ^ Ti + ], Sf ^ Sf + j 
a ^ embedding (or a ^n embedding for the same nt). Then there exist units 
c1? c2, • . - , cn, . . . G Q such that for all n, cn centralizes Sn^l and 

rpcxc2...c„ _ o 
1 n — »V 

In particular the two chains are equivalent as chains (although they can sit in 
Q quite differently). 

Proof. By Corollary 13, there exists a unit cl e Q with 

7? = S,. 

Assume q , . . . , cw have been constructed. By Lemma 18 applied to 
the diagram 

there is a unit cw + 1 e Q which centralizes Sn and satisfies 

V7 ,7+1 J — ^ / î + 1 -

Hence the cn can be constructed inductively. 
Now the map 

^ : U 7 ; ^ USi9 x H> x
ClC2-•c" if x e rw, 
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is a well-defined ring isomorphism with 

MTn) = S„ Vn. 

Thus the two chains are equivalent. 

Remark. U Tt and US,- need not be conjugate in Q. 

COROLLARY 20. Let F be a given field and let 

R = lim Tt and S = lim 5Z-

be any countable direct limits of count ably-infinite dimensional full linear 
rings over F where the maps Tt —» Ti+X, Si —* Sz + 1 are monomorphisms 
making Tt (resp. St) a Ti + X (resp. St+X)-full-linear subring in class ^n for all 
i (with ni finite or infinite}. Then R = S. 

Proof. We can assume 

oo oo 

R = U F and S = U S, 
l ' l l 

where each 7J (resp. St) is a Ti + X (resp. S /+^-full-linear subring in class 
%r, and that infinitely many nt > 1. Let 

Q\ = &»«(*) . Ô2 = fimax(S). 

Then <2j and (22
 a r e simple, Type III, right self-injective rings (because R 

and S are right quotient rings of countable-dimensional, prime, non-
singular algebras without uniform ideals; see [7] ). Moreover 

centre (Q\) = centre (R) = F and centre (Q2) = centre (S) = F. 

Since (Q\)R and RT are nonsingular, and the Tt are right Utumi rings, it 
follows that each (QX)T is nonsingular. Hence each Ti is a Qx-full-linear 
subring. Similarly, each St is a <22-full-hnear subring. 

Fix a Qj-full-linear subring A, SL Q 2"^ u^" n n e a r subring B, and a ring 
isomorphism xp:A —* B. From Proposition 17(2), it is clear that we can find 
a chain A x Q A2 Q . . . of A -full-linear subrings with each^z ^ Ai+X a % 
embedding. By the above argument this is also a chain of Q x -full-
linear subrings, whence by Theorem 19 

oo oo 

U T: = U A,. 
1 l 1 l 

Also ^(Ax) Q \p(A2) Q . . . is a chain of g-full-linear subrings with each 

a %>n embedding, so another application of Theorem 19 yields 
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oo oo 

y s, = y WAt). 
Hence, since 

oo oo 

y At = y MAi\ 

we have 
oo oo 

R = u T. = U S,- = S. 
1 z 1 ' 

In general, if Tx Q T2 Q . . . Q Tn Q . . . is a chain of Q-full-linear 
subrings with each Tt I

e * Ti+X a ^ embedding, how does the subring 
U^°7; sit in g? If, for example, Q = Qmax(U) where 

U = lim Ti9 

then Q is a right quotient ring of U^° Tt (and by Corollary 8, Q is a ring 
of fractions of L^). However, such a countable union of a chain of 
g-full-linear subrings can never equal Q. This follows from the 
(presumably well-known) : 

PROPOSITION 21. Let 

R = lim Rt 

i<.cô 

be a countable direct limit of prime, right self-injective rings Rh where the 
maps Rt —-> Rt + \ are monomorphisms. Then R is right self-injective if 
and only if the Rt are simple Artinian of bounded length or the embeddings 
Rt —> Rl•, + ] are isomorphisms for almost all i. 

Proof (<=) This is clear. 
(=>) Observe that if a right self-injective ring A is a subring of a prime 

ring B, and Af = Bf for some 0 ^ / G ,4, then ^ = B\ for Bf=Af^A 
implies AA <e BA, whence A = B. Now suppose neither of the two 
stated conditions holds. Then, by relabeling if necessary, we can assume 
Rx c R2 c . . . and R contains a right ideal 

oo 

/ = e J]R 

where 0 ¥= f e Rt. Now using the above observation, for each n we can 
choose an e Rn + X such that anfn £ Rnfn- Consider the R-map 

;//:/-> R 

determined by 

Hfn) = anfn-
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Clearly \p is not induced by left multiplication by any a e Rn because 

This contradicts the injectivity of RR. 

A similar argument applies to a direct limit 

R = lim Ra 

—> 

of prime, regular, right self-injective rings Ra: R is right self-injective if 
and only if R contains no uncountable direct sums of nonzero right ideals 
or the embeddings Ra —» Ra+\ are isomorphisms for all but countably 
many a. It seems possible that for some Q, Q = UTa for a suitable chain 
T} Q T2 Q . . . Q Ta Q . . . of g-full-linear subrings, that is, a suitable 
direct limit of full linear rings F^ may be right self-injective. 

COROLLARY 22. If Q = Qmâx(R) for some countable ring R (or 
countable-dimensional algebra R), then 

for any chain of Q-fulI-linear subrings Ta. 

Proof Let the index set fi be totally ordered by ^ . 
First suppose there exists a countable I Q Q such that / is unbounded. 

Then 

u T = u r 

«eft a / e / l 

is not right self-injective by Proposition 21 unless it is full linear. Hence 

in this case. 
Next suppose all countable subsets of 0 are bounded, and that 

Let 

R = {aua2, . . . , tf„, . . . }. 

Choose n, such that as ^ T„ and choose an ^ n; Vz. Then R Q Tn so 

Q = Qmax(R) = emax(7;o) = r v 

which is impossible. Thus 

u ^ Ta * Q 
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holds here as well. 
A similar argument shows that if 

for some chain of g-full-linear Ta, then for every countable chain 
Tx Q T2 Q . . . of (Mull-linear subrings there is a (Mull-linear subring T 
containing all Tt. Conversely, if each such countable chain has a 
(Mull-linear subring upper bound, then we could construct a chain 
{ ^ « « o , with each 

a ^ embedding. Hence if Q has no uncountable direct sums of right 
ideals, then the subring 

U Ta 

would be a simple, Type III, right self-injective ring (it cannot contain an 
uncountable direct sum of right ideals because it is a regular subring 
oîQ). 

6. Questions. Let Q be a simple, Type III, right self-injective ring with 
an algebraically closed centre F, and assume Q contains only countable 
direct sums of nonzero right ideals. 

(1) How "locally full linear" is Ql For example when does x e Q 
belong to some g-full-linear subring? (A necessary condition is that CQ(X) 
is directly infinite.) What about finite subsets? (cf. Proposition 14). 

(2) Given a (Mull-linear subring T and an idempotent e e Q, when 
does there exist a (Mull-linear subring Tf containing T and e (cf. 
Proposition 11 and Corollary 12)? Such a T' need not exist in general, as 
can be shown by examining 

Q = ô m a x ( l i m ^ " ) -

However T' would always exist if Q is a union of a chain of (Miill-linear 
subrings, say 

Q = ^n T«> 

because by Proposition 21 countable subsets of 12 would be bounded and 
hence some Ta would contain the given T and e. One reason for focusing 
on idempotents is that Q is always generated as a ring by idempotents. In 
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particular, a positive answer here would imply that any finite subset does 
belong to some g-full-linear subring, answering (1) for such Q. 

(3) Can Q be a union of a chain of (Mull-linear subrings? Note that by 
Corollary 20, we can form an uncountable direct limit 

R = lim Ta 

of countably-infinite dimensional full linear rings over F such that Ta —» 
Tp is a ^ embedding whenever a < ft. Is R right self-injective, or 
equivalently, does R contain only countable direct sums of nonzero right 
ideals? If 'yes', we have our desired Q (and from Corollary 22, an easy 
example of non-isomorphic Q's). 

(4) Let 

R = lim F„ 
^ '/ 

is a factor sequence (for example nl = 11). Is 

U = lim 7} 

is the countable direct limit of countable-dimensional full linear rings over 
F in which Ti —> Ti + X makes Tt a 7^+ 1-full-linear subring in class ^ 7 If 
'yes', then, by Corollary 20, different factor sequences would give 
isomorphic maximal right quotient rings. Note that it would suffice to 
construct a chain Sx Q S2 £ . . . of g-full-linear subrings of Q = ô m a x (^ ) 
such that Sj ^ Si + X is a ^ -embedding and 

oo 

R Q US,, 
l ' 

(5) Let £/ be as in (4) and let R be a non-right-Ore domain with centre F 
and countable-dimensional over F. Let 

6i = Ômax-ci(^oo) and Q2 = Ômax.d(^oo)-
By Corollaries 7 and 8, Qx and (22

 a r e simple, Type III, right self-injective 
rings with only countable direct sums of right ideals. When is Qx = Q21 
(As remarked earlier, U^ ^ R^ and R^ ^ U^ as rings.) 
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