
5 
The observables of a reaction 

Interesting spin effects are seen in many hadronic reactions, such as 
pp ----+ pp, np ----+ np, pp ----+ n~, Ap ----+ Ap, pp ----+ nX etc. And recently 
more complete measurements have been made on Ap ----+ Ap and the 
related reaction pp ----+ AA, especially at LEAR at CERN. In addition 
experiments using polarized deuteron beams and targets are becoming 
relatively commonplace. 

Given the interest and variety of reactions that are or will be studied it 
seems worthwhile to set up a general description for an arbitrary 2 ----+ 2 
reaction with particles of any spin. Indeed we shall set up a general 
scheme which is, surprisingly, simpler to work with than the usual one 
for N N ----+ N N and from which the relevant information for a specific 
reaction can be easily read off. 

Our emphasis here will be upon those quantities, the observables that 
can be measured and upon how they are related to the helicity amplitudes. 

We begin with total cross-section measurements, which yield infor
mation about the forward amplitudes, and then consider more general 
observables. For the latter we work first in the CM and then relate the 
CM observables to the Lab frames where the measurements are actually 
made. 

A comprehensive list of linearly independent measurable reaction pa
rameters and their relation to the helicity amplitudes, for various reactions, 
is given in Appendix 10. 

5.1 The generalized optical theorem 

For spinless particles, in our normalization, the usual optical theorem 
(see e.g. Messiah, 1958) relates the imaginary part of the forward helicity 
amplitude H to the total cross-section as follows: 

1 
Im H(e = 0) = 4 -JnO"tot· (5.1.1) 
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5.1 The generalized optical theorem 93 

For particles with spin, the direct generalization of (5.1.1) is 

1 
Im HAAAB),AAB(e = 0) = 4-Jn()tot(AA,AB) (5.1.2) 

where ()tot(AA, AB) means the total cross-section measured with the initial 
particles A and B in the unique helicity states AA, AB respectively, a 
situation that can sometimes be realized using a polarized beam and 
target. 

The unpolarized total cross-section is defined as 

(5.1.3) 

so that from (5.1.2) 

(5.1.4) 

where H;.AAB )AAB is evaluated at e = 0. For photons the factor 2s + 1 is 
replaced by 2 in (5.1.3) and (5.1.4). 

Relations (5.1.4) and (5.1.2) are very valuable. Equation (5.1.4), which 
is easy to use in practice, allows a determination of the imaginary part 
of the forward 'spin-averaged' amplitude whereas (5.1.2), which may be 
difficult in practice, gives the imaginary parts of the individual amplitudes 
HAAAB)AAB at e = 0. 

However, (5.1.2) is not the most general form of the optical theorem. 
There are other amplitudes, not of the form AAAB ---+ AAAB, which need 
not vanish in the forward direction (see Section 4.3), namely those of the 
form AAAB ---+A~ A~ where A~- A~ = AA- AB; all these can be measured 
by suitably preparing the initial states of beam and target. 

Let Pi(A, B) be the joint helicity density matrix for the initial particles. 
Then (Bialkowski, 1970) the generalization of (5.1.2) is 

where (J101 (pi) is the total cross-section measured with the beam and target 
described by Pi· 

Usually the beam and target are uncorrelated, so that 

Pi(A, B) = Pi(A) ® Pi(B). ( 5.1.6) 

We shall illustrate the use of (5.1.5) in nucleon-nucleon scattering and 
then consider a more general reaction. 
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94 5 The observables of a reaction 

5.1.1 Nucleon-nucleon scattering 

Let the spin-polarization vectors for the beam ('PA) and for the target (1'B) 
both be specified in the Lab frame, as is commonly done in experiments. 
Then the CM helicity density matrices for particles A and B will be 

p(A) = ! (I + pA . a) 
p(B) = ! (I + jjB ·a) 

(5.1.7) 

where, because the Lab frame is rotated from the helicity rest frame for 
B (see Fig. 3.1 and discussion thereafter) 

jjB = ( [l}J~' -[l}J~' -[l}J~ ). (5.1.8) 

Substituting in (5.1.5) yields 

Im H++;++(1 - [l}J1[l}J~) 

+ Im H+-;+-(1 + [l}J1[l}J~) 

+ lm H++;--([l}J1[l}J~ + [l}J:[l}J~) = 2~trt0t(1'A, pB) (5.1.9) 

where (±) is short for (±1/2). 
The connection between our helicity amplitudes and the notation com

monly used in nucleon-nucleon (NN) physics (Goldberger et al., 1960) is, 
aside from normalization, 

H++;++ = </>1 H++;-- = (h H+-;+- = (/J3 
H+-;-+ = </>4 H++;+- = </>s 

(5.1.10) 

~ 

If ---+ indicates complete polarization along or opposed to the incoming 
beam direction and i l indicates polarizations transverse to the beam then 
(5.1.9) gives the now familiar results 

(5.1.11) 

where the top arrow refers to the beam polarization and the bottom arrow 
to the target polarization, and 

(5.1.12) 

where the first arrow refers to the beam polarization and the second arrow 
to the target polarization. 

Measurements of 11aL and 11ar have produced rather interesting results, 
as will be discussed in Chapter 14. 
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5.1.2 Particles of arbitrary spin 

It is now simplest to specify the initial CM helicity density matrix in terms 
of the multipole parameters t~(A) and t~(B) (see eqn (3.1.32)). Then 
(5.1.5) becomes 

where hlL(m) is a linear combination of forward amplitudes: 

_ (2l + 1)(2L + 1) [ 1 L ] 
hlL(m) = (2sA + 1)(2sn + 1) Tr Tm TmH(8 = 0) . (5.1.13) 

Parity invariance gives 

(5.1.14) 

and time-reversal invariance yields 

(5.1.15) 

Thus only even values of l + L can occur and we end up with the result 

4 \rCTtot(Pi) = L L(2- 6mo) Im h1L(m) Re [t~(A)t~(B)] . (5.1. 16) 
Y'" l,L mzO 

l+L even 

Notice that there is no interference between even and odd ranks of 
po lariza ti on. 

For identical particles one also has 

h1L(m) = hu(m). (5.1.17) 

By suitably choosing the t~(A) and t~(B) one can measure the linear 
combinations of forward amplitudes hlL(m). 

Note that since ( T~) ij = 0 unless i = j + m, all amplitudes in the sum 

(5.1.16) are of the form 

with, of course lml ~ min{2sA,2sn}. Thus we have an important result: 
The determination of the imaginary part of a forward amplitude of the form 
H;.A+m.AB+m;),AAB requires polarization of rank l ?:: lml in both beam and 
target. 
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96 5 The observables of a reaction 

Once the htL(m) are determined, the individual helicity amplitudes can 
be obtained via 

5.1.3 Application to deuteron-nucleon 
and deuteron-deuteron scattering 

(5.1.18) 

Consider a magnetically prepared beam and target with axes of quanti
zation in the Lab frame specified by polar angles e = f3 A, ¢ = y A and 
e = f3B, ¢ = 0 respectively, as shown in Fig. 5.1. 

Let tb and tt be the multipole parameters of beam and target when 
referred to the frames in which their quantization axes are along OZ. 
Then the CM multipole parameters needed are found from (3.3.1) and 
(3.3.2), and (5.1.16) becomes 

1 
4 JnCTtot(pi) = 

X 

l,L m~O 
l+L even 

(5.1.19) 

X 

TARGET 

Fig. 5.1. Angles specifying quantization axes of beam and target. 
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5.1 The generalized optical theorem 97 

In terms of the polarization and the alignment1 of beam and target, 
(5.1.19) gives the following. 

For d+N ~ d+N 

1 d N 
4.ji/Jtot('P , d; 'P ) = Im hoo(O) 

+ ~ [&'~&'~ Im h11(1)- &'~&'lj Im h11(0)] 

where 

hoo(O) = 1 ( H11/2;11/2 + Hol/2;01/2 + H-11/2;-11/2) 

h11(1) = .J3H11/2;0-1/2 

h11(0) = ~ ( H11;2;1112- H-11/2;-11/2) 

h2o(O) = 1 ~ ( H11/2;11/2 + H-11/2;-11/2- 2Holf2;0l/2) 

(5.1.20) 

(5.1.21) 

and where f3 is the angle between pd and the beam direction. Note 
that four measurements are needed to find all the amplitudes, and only 
polarizations along and transverse to the beam are required. 

For d + d ~ d + d, labelling the beam and target deuterons by A and B 
respectively, one gets2 

4~(Jtot('PB,dB; pA, dA) 

Im hoo(O) + ! [&'1 &'~ Im h11 (1) - &'f&'~ Im h11 (0)] 

+ 2Jw [dA (3 cos2 f3A- 1) +dB (3 cos2 f3B- 1) J Im h2o(O) 

+ 4~dA dB [ (3 cos2 f3A- 1) (3 cos2 f3B- 1) Im hn(O) 

- 12 cos YA sin f3A cos f3A sin f3B cos f3B Im hn(1) 

(5.1.22) 

1 See subsection 3.1.12. 
2 This can be written in simpler form using the TiJ of eqn (3.1.59). We have not done so because 

experimentally it is easier to think in terms of the alignment. 
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98 5 The observables of a reaction 

Finally, the amplitude combinations measured by seven experiments 
are: 

hoo(O) = ~ ( H11;11 + 2Hto;01 + H1-1;1-1 + !Hoo;oo) 

h11(1) = Hll;OO + Hto;0-1 

hn(O) = Hl1;11- H1-1;1-1 

h2o(O) = ~ (Hll;ll - Hto;10 + H1-1;1-1 - Hoo;oo) 

h22(0) = ~ (Hll;ll - 4Hto;10 + H1-1;1-1 + 2Hoo;oo) 

h22(1) = ~ (Hll;OO- Hto;0-1) 

h22(2) = ~Hll;-1-1· 

(5.1.23) 

Note that now the polarizations of both beam and target have to be set 
at some angle other than along or transverse to the beam for at least one 
measurement. For example, one could choose YA = 0, f3A = f3B = 45°. 

5.2 The final state helicity density matrix 

We consider now the definition, and some important properties, of the 
helicity density matrix of the final particles produced in a reaction. Initially 
we deal with 2 ---4 2 reactions, but this will be generalized in Section 5.8. 

5.2.1 Definition 

We consider an arbitrary reaction A + B ---4 C +D. For given initial 
helicities a, b, the helicity amplitudes Hcd;ab are a measure of the probability 
amplitude for finding the final helicities c, d. Thus, in analogy with eqn 
(3.2.2) the joint CM helicity density matrix for the final state is 

P~d;c'd'(C,D) = LHcd;ab Piab;a'b'(A,B) H;'d';a'b' 
a,b 

a',b' 

( 5.2.1) 

where Pi(A, B) is the initial state helicity density matrix. To avoid the 
profusion of indices we write (5.2.1) in matrix form: 

p'(C,D) = Hpi(A,B)Ht. (5.2.2) 

If Pi(A, B) is correctly normalized, so that Tr Pi(A, B) = 1, it will be found 
that p'(C,D) is not normalized to trace 1, so for computing expectation 
values of observables in the final state we must always use 

(CD)= p'(C,D) 
p ' Tr p'(C,D) 
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5.2 The final state helicity density matrix 

With our normalization for Hp_}, eqn (4.1.4), 

d2<J 
Tr p'(C,D) = 2n dtdcjJ (Pi), 

99 

(5.2.3) 

where (d2<J I dtdc/J )(pi) is the differential cross-section into the momentum 
transfer range t ~ t + dt and the azimuthal range cjJ ~ cjJ + dcjJ for an 
initial state specified by Pi· 

5.2.2 Rank conditions 

Since the rank (see subsection (3.1.2)) of a product of matrices must be 
less than or equal to the rank of any matrix in the product, (5.2.2) implies 
that 

rf :::;; ri (5.2.4) 

where rf and ri are the ranks of the final and initial state density matrices. 
This condition can be a very stringent one. For example, in 

n + N ~ n + N* ( 1) 

where N*(1) is a high-spin resonance, ri cannot be greater than 2 (Pi is a 
2 x 2 matrix) and therefore p1, which is 21 x 21 and could thus be a huge 
matrix, must have rank :::;; 2. 

If it happens that only the even part P+ of the final state density matrix 
can be measured (see subsection 3.1.7), then the weaker rank condition 

rank P+:::;; 2ri 

holds. In our N*(1) example above, if 1 = 3/2 we end up with rank 
P+ :::;; 4 which is no restriction at all, bearing in mind that P+ is a 4 x 4 
matrix! If both C and D have non-zero spin and we consider the effective 
density matrix of, say, C, then its rank must satisfy a much weaker bound 
than (5.2.4), namely, 

rank p(C):::;; (2sv + 1) rank Pi (5.2.5) 

with analogous constraint for D. 
Generally a large number of relations may exist amongst the elements 

of PJ and they must be taken into account experimentally. 

5.2.3 Angular momentum constraints near 8 = 0, n 

The behaviour of the Hp.} near 8 = 0 and n (Section 4.3) imposes 
constraints on p(C,D) near the forward and backward regions. These 
depend upon Pi(A, B). 

The strongest conditions apply when the initial state is unpolarized. 
Then at 8 = 0 or n 

Pcd;c'd'(C,D) = 0 
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100 5 The observables of a reaction 

unless both 

c- d = c'- d' and lc- dl :::; SA + SB. 

Near these points, the behaviour is 

where 

with 

and 

Pcd;c'd' oc (sine/2Y1(cosej2)c1 

Sl = lc-d-c' +d'l +(1 +E)M 

Cl = lc- d + C1 - d'l + (1- E)M 

E = sign { (c- d)(c'- d')} 

(5.2.6) 

{ 
0 when either lc- dl or lc'- d'l :::; SA + sB 

M = min {lie- dl- sA- sBI; lie'- d'l- SA- sBI} otherwise. 

For the effective single-particle density matrix, say of particle C, we have 

unless both 

and 

where 

with 

and 

Pc'c(C) = 0, 

c = c' and lei :::; sA + sB + sv, 

s1 = lc- c'l + (1 + e)M 

c1 = lc + c'l + (1 - e)M 

E' = sign { cc'} 

(5.2.7) 

(5.2.8) 

_ { 0 when either lei or lc'l :::; SA + SB + sv 

M = min {I lei -sA - sB - sv I; lie' I -SA - SB - sv I} otherwise. 

The above constraints must be respected in any data analysis. It will 
be seen in Section 5.4 that the multipole parameters have a much simpler 
behaviour than p at e ~ 0, n. 
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5.3 The CM observables and the dynamical reaction parameters 101 

5.3 The CM observables and the dynamical reaction parameters 

Several discussions of the variables valid for relativistic scattering have 
been given in the literature for nucleon-nucleon scattering. Detailed ref
erences are given in Bourrely, Leader and Soffer, (1980). 

Our treatment is more general, applying to any reaction, and is actually 
simpler. We expand the initial and correctly normalized final density 
matrices in terms of joint multipole parameters t~M(A,B), t~f~,(C,D), 
according to eqn (3.1.31) as generalized to combined systems of particles, 
and substitute in (5.2.2). There results a relation between the initial and 
final multi pole parameters of the reaction: 

I' L' d2a 
tm'M'(C,D) dtdcp (pi) 

(2) n, 1 da 
3 2n dt it(2l + 1)(2L + 1) 

mM 

x (l, m; L, Mil', m'; L', M')¢ t~(A)tXt(B) (5.3.1) 

where ny is the number of photons in the initial state. We have assumed 
that the beam and target are uncorrelated. Equation (5.3.1) gives the value 
of t~f~,( C, D) when C's direction is at polar angles 8, cp in the CM. The 
outcome of the experiment is controlled by the fundamental CM dynamical 
reaction parameters (we shall simply call them 'reaction parameters'), 

(l, m; L, Mil', m'; L', M')¢ 

( 5.3.2) 

where His the matrix whose elements are Hca;ab(e, cp). The use of matrix 
notation is compact and efficient, but to avoid any confusion we write out 
the trace in (5.3.2) in full detail: 

It Lt t I' L' Tr [HTm (sA)T M (sn)H Tm,(sc)T M'(sv)] 

= Hca·ab (r~t(sA)) (rf:,/(sn)) 
' aa' bb' 

The reaction parameters (5.3.2) are a direct generalization of the Wolfen
stein parameters. All the dynamics is contained in these parameters, which 
can be evaluated in terms of the helicity amplitudes. They depend on both 
e (or t) and¢, but the ¢-dependence is trivial: 

(l · L Mil' '· L' M') - i¢(M-m) (l · L Mil' '· L' M') (53 3) ,m, , ,m, , ¢- e ,m, , ,m, , , .. 
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102 5 The observables of a reaction 

where the right-hand side parameters are at ¢ = 0. When no ¢-label is 
shown we shall always mean¢= 0 in the reaction parameters. 

It should be noted that the order of symbols is 

(beam; targetlscattered; recoil) 

and the normalization is such that 

(0,0;0,010,0;0,0) = 1. (5.3.4) 

Note that for some colliding-beam experiments the spin measurements 
are carried out in the CM, so that (5.3.1) will apply directly to the measured 
quantities. 

In using (5.3.1) and various special cases to be derived from it, it must 
be remembered that for all photons, whether polarized or not, because 
of the absence of states with helicity A = 0 one has t6 = 1/ Jill, as is 
explained in subsection 3.1.12. Also of use in this case is the result 

(2, 0; 0, 010, 0; 0, 0) = 1/ JiO, 
which follows from (5.3.2) and the properties of TJ as given in (3.1.26). 

5.3.1 Properties of the CM reaction parameters 

The reaction parameters are not all independent as a consequence of the 
symmetry properties of the helicity amplitudes and of the T~ matrices. 

(i) Reality. From T~t = ( -l)m T~m follows 

(l, m; L, Mil', m'; L', M')* 

= (-1r+M+m'+M' X (1,-m;L,-Mil',-m';L',-M'). (5.3.5) 

(ii) Parity. Using (r~) = (-1)1 (r~m) and the space inversion 
-mt-mz mtmz 

properties eqn (4.2.1) in both the Hp,} in (5.3.2) yields 

(l, m; L, Mil', m'; L', M') 
= (-1)m+M+m'+M'(-1)l+L+l'+L' 

x (l, -m;L, -Mil', -m' ;L', -M'). (5.3.6) 

Thus 

(l,O;L,Oil',O;L',O) = 0 (5.3.7) 

if l + L + l' + L' is odd. 
When this is combined with (5.3.5) we have the important result 

(l,m;L,Mil',m';L',M') is{. re~l } 
tmagmary 

asl+L+l'+L' is {:v;;}. (5.3.8) 
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(iii) Time-reversal. Using eqn (4.2.4) in both the Hp} in (5.3.2) and also 
the fact that the T~ are real gives 

(l m · L Mil' m' · L' M')AB->CD 
' ' ' ' ' ' 

- (l' I. L' M'il . L M)CD->AB - , m , , , m, , r/J=n . 

For elastic reactions eqn ( 4.2.5) yields 

(l m·L Mil' m'·L' M') 
' ' ' ' ' ' 

= (-1)m+M+m'+M' (l' m'· L' M'il m· L M) 
' ' ' ' ' ' . 

( iv) Identical particles. Using ( 4.2.11a,b) we find the following. 
If A= B, 

(l m· L Mil' m'· L' M')8 
' ' ' ' ' ' 

= (-1)m'+M'(L M·l mil' m'·L' M')n-8 
' ' ' ' ' ' . 

Thus at 8 = n/2 

(l m·l mil' m' · L' M') = 0 
' ' ' ' ' ' 

if m' + M' is odd. 

If C = D, 

(5.3.9) 

(5.3.10) 

(5.3.11) 

(5.3.12) 

(l, m; L, MIL', M'; l', m')8 = ( -l)m+M (l, m; L, Mil', m'; L', M't-8. (5.3.13) 

Thus at 8 = n/2 

(l, m; L, Mil', m'; l', m') = 0 if m + M is odd. (5.3.14) 

Equations (5.3.13), (5.3.14) also hold for reactions of the type 

provided the reaction is invariant under charge conjugation. 
Finally, if A = B and C = D then 

(L M·l miL' M'·l' m') = (-1)m+M+m'+M'(l m·L Mil' m'·L' M') 
' ' ' ' ' ' ' ' ' ' ' ' . (5.3.15) 

This also holds for reactions of the type 

if charge conjugation is a good symmetry. 
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104 5 The observables of a reaction 

( v) Additional parity and time-reversal constraints. The application of the 
above symmetry results will not, in general, reduce the number of inde
pendent reaction parameters to the expected N 2 in the case where there 
are N independent helicity amplitudes. The additional relations can be 
obtained by applying the symmetry concerned to just one Hp} in (5.3.2). 
The results are as follows. 

Parity: 

(l, m; L, Mil', m'; L', M') 

= 1J " d11m 1 (lm)d L 1M 1 (LM)dl'm' (l'm')d L' M' (L' M') ~ 1 1 1 1 
repeated 
indices 

X (l1, m1; Lt, Mtlli, m~; L~, MD (5.3.16) 

where 1J is defined in eqn ( 4.2.1 ). The d ( lm) are given in terms of vector 
addition coefficients and are tabulated for s = 1/2, 1 and 3/2 in Appendix 
6. 

Time reversal: (for elastic reactions): 

(l,m;L,Mil',m';L',M') = L lm"l'm' LML'M' 
'{jl , ·I' I '{jL M, ·L' M' 1m1, 1m1 1 1, 1 1 

repeated 
indices 

x {lt,mt;Lt,Mtlli,m~;L~,MD (5.3.17) 

The coefficients 'fl are explained in Appendix 7 and are tabulated for s = 

1/2. In Appendix 10 we give a comprehensive list oflinearly independent 
reaction parameters for various reactions and their relation to the helicity 
amplitudes. 

(vi) Behaviour near e = 0 or n. In the forward and backward scattering 
regions we find 

(l, m; L, Mil', m'; L', M't·->O oc (sin 8 /2)1m-M-m'+M'I (5.3.18a) 

and 

(l, m; L, Mil', m'; L', M')8---->n oc (cos 8 /2)1m-M+m'-M'I (5.3.18b) 

The phenomenological consequences of these properties will emerge in the 
following sections. 

5.4 Experimental determination of the CM reaction parameters 

In this section we assume that we are given the CM multipole parameters 
for an arbitrarily prepared initial state and that we are able to measure 
the joint CM multipole parameters of the final state. The connection 
with measurements carried out in the Lab and the question of how one 
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5.4 Determination of the CM reaction parameters 105 

measures the multipole parameters will be dealt with in Sections 5.5 and 
5.6. 

From (5.3.1), exhibiting explicitly the ¢-dependence, the outcome of an 
experiment is controlled by 

l'L' d2(J (2)ny 1 d(J"' 
tm'M'(C,D) dtd<jl = 3 2n dt Tt(2l + 1)(2L + 1) 

X L eicp(M-m)t~(A)tkt(B) 
mM 

x (l, m; L, Mll',m',L', M') (5.4.1) 

where, of course, the left-hand side is measured for an initial state 
specified by t~(A) and tkt(B). (For photons we recall the discussion after 
eqn ( 5.3.4 ). ) 

There are, in general, two ways to utilize (5.4.1) experimentally in order 
to learn about the reaction parameters. The first way takes advantage 
of the simple ¢-dependence to study asymmetries such as 'up-down' or 
'left-right'. The most sophisticated example would involve measuring over 
the whole range of <P at fixed 8 and then taking experimental averages of 
eill¢ over the data at fixed e, the f1 being integers. 

The second way looks at the changes induced in a measured observable 
when the density matrix of the initial state is altered, e.g. by reversal of 
the ordinary (rank-1) polarization of beam or target. For spin > 1/2 the 
method is less efficacious than for s = 1/2, where one can maximize the 
effect by fully reversing the sign of the polarization. It is not generally 
possible to reverse the sign of an arbitrary t~ when l 2 2. We shall discuss 
an example where the t~ are altered by the passage through a magnetic 
field. 

5.4.1 Unpolarized initial state 

(i) Measurements of the generalized polarizing power 
and the final state polarization correlation parameters 

Since all t~(A) and tkt(B) are zero except t8(A) = t8(B) = 1, there is no 
¢-dependence left in (5.4.1) and, remembering that by definition 

[ 2n d2(J 0 0 0 d(J 
Jo d¢ dtd¢ (unpol. 1mt1al state) = dt' 

one obtains 

t~f~,(C,D; unpol. initial state)= (0, 0; 0, Oll',m' ;L', M'). ( 5.4.2) 
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106 5 The observables of a reaction 

For an elastic reaction time reversal, eqn (5.3.10), then g1ves the 
parameters: 

(l' m'·L' M'IO O·O 0) = (-l)m'+M'(O O·O Oil' m'·L' M') 
' ' ' ' ' ' ' ' ' ' ' ' . 

Note that the parameters (0, 0; 0, Olf', m'; 0, 0) and (0, 0; 0, 010, 0; L', M') are 
analogous to the usual polarizing power of the reaction but are here 
generalized to specify the rank of the polarization produced. We shall 
refer to them as the 'lm polarizing power'. The parameters with both l' and 
L' non-zero are generalizations of the final state polarization correlation 
parameters CiJ used in nucleon-nucleon scattering. All these parameters 
can be determined, in principle, using an unpolarized initial state. 

(ii) Properties of the final state multipole parameters 
From ( 5.4.2) and the properties ( 5.3.5)-( 5.3.17) of the reaction parameters 
we learn the following properties of the final state CM joint (or effective) 
helicity-basis multipole parameters for a parity-conserving reaction with 
unpolarized initial state: 

(a) t;;M(C,D) is independent of¢. 

(b) As always t/_!:m-M(C,D) = (-l)m+Mt;;M(C,D)*. 

(c) { 
real } { even } 

t;;M is . o_r for l + L or . 
1magmary odd 

(5.4.3) 

(d) Hence t1L (C D) = (-l)I+L+m+M t1L (C D) 
' -~ ' ~ ' 

and t&~ = 0 if l + L is odd. 

As an example, consider the famous result that the spin-polarization 
vector P of the final particles in a parity-conserving two-body reaction 
with unpolarized initial state must be perpendicular to the reaction plane. 
The properties (c) and (d) imply that t6 = 0 and t~ 1 is pure imaginary 
respectively. The result then follows from eqn (3.1.35). 

In reverse, we note that a non-zero value of, say, the longitudinal com
ponent of P (i.e. the component along the particle's momentum) signals a 
parity violation. Some of the most beautiful electroweak experiments play 
upon just this feature. 

(e) If particles C and D are identical then 

t;;M(8) = tfclm(n- 8). 

(f) If, in addition, particles A and B are identical then 

t;;M(e) = (-l)m+Mtfclm(B) 

( 5.4.4) 

( 5.4.5) 
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and it follows that 

if m + M is odd. (5.4.6) 

As an example, in pp ~ pp we have t~ 1 = 0 at e = n/2. Thus the 
spin-polarization vector P has magnitude 0 at e = n/2. Equivalently one 
can say that the polarizing power vanishes at e = n/2. 

(g) As e ~o 
As e ~ n 

t',;M oc (sinej2)lm-MI 

t',f;M OC (cos 8 /2) lm-MI 
( 5.4. 7) 

Most of the above properties have obvious consequences for the helicity 
density matrix itself. The most interesting result follows from (d), namely 

)c-c'+d-d' 
Pc'd';cd = ( -1 P-c'-d';-c-d· (5.4.8) 

Note that from eqn (3.1.43) the even- and odd-polarization parts of the 
final state density matrix are, in this case, simply the real and imaginary 
parts of p, i.e. 

P+ = Rep 

P- = i Imp. 
(5.4.9) 

In the transversity basis the analogue for the effective density matrix of 
either of the final particles is 

p 2 c = 0 if c' - c is odd, (5.4.10) 

thus giving pT a 'chequerboard' pattern and forcing [t~]sT = 0 if m is odd. 

5.4.2 Polarized beam, unpolarized target 

We consider the measurement of the cross-section and the final state 
multipole parameters for an arbitrarily polarized beam. We also give 
some results for specific types of initial polarization. 

(i) Measurement of cross-section asymmetries 
- the generalized analysing power 

From (5.4.1) we have, in general (for photons we recall the discussion 
after eqn (5.3.4)) 

d2a _ (2)n' 1 da"' z . . -im</> 
dtd¢- 3 2n dt f;:(2l + 1)tm(A)(l,m,O,OIO,O,O,O)e . (5.4.11) 

The parameters (l, m; 0, 010, 0; 0, 0) play the role of the 'analysing power' 
of the reaction for lm-type initial polarization, since they govern the 
magnitude of the asymmetry or ¢-dependence in d2a I dtd¢. From eqn 
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108 5 The observables of a reaction 

(5.3.10) we see that for an elastic reaction the magnitudes of the lm 
polarizing power and lm analysing power are equal.1 

In a typical polarized-beam experiment let the quantization axis for the 
beam have polar angles e = fJ, cp = y in the rest frame of the beam 
(see Fig. 5.1). Let tb be the (known) helicity multipole parameters in the 
frame whose Z -axis is along the quantization axis. Then the CM multi pole 
parameters t~(A) needed for (5.4.11) are, from (3.3.1), 

( 5.4.12) 

We refer to the plane cp = y, i.e. the plane containing the beam and the 
quantization axis, as the quantization plane. For this discussion there is no 
loss of generality in choosing y = 0, so that the quantization plane is the 
XZ-plane. In detail (5.4.11) now becomes (recall that (l,m;O,OIO,O;O,O) is 
pure imaginary when l is odd) 

( 2) ny 1 d(J ( 1 """' AI """' 1 3 2n dt 1 + 2 ~(21 + 1)t0 ~(2- bmo)dmo(fJ) 
1~1 m~O 

x { [1 + (-1)1] cosmc/J- i[1- (-1)1] sinmc/J} 

x (l,m;O,OIO,O;O,o)) (5.4.13) 

where cp is the azimuthal angle measured from the quantization plane. 
The asymmetries with respect to the quantization plane, or the detailed 

¢-dependence itself, can be used to isolate the combinations such as 

C(;'m = L(2l + 1)tbd~o(fJ)(l,m;O,OIO,O;O,O) (5.4.14) 
l~m 

for each m 2 0. 
To measure the individual (l, m; 0, 010, 0; 0, 0) one must be able to vary 

the t~(A) of the beam for each m. One way to do this is to deflect the 
polarized beam in a magnetic field, between the production reaction and 
the main reaction. We shall discuss one simple example. 

1 Because of this and eqn (5.4.2), an analogue of (5.4.11) appears in the non-relativistic literature 
with (l,m;O,OIO,O;O,O) replaced by (-l)mt~(li), the latter being the CM final state multipole 
parameters for A when produced from an unpolarized initial state. We avoid this in practice 
since it confuses properties of the beams in special situations with properties of the reaction. 
Moreover in relativistic double-scattering experiments the t~(A) to be inserted into (5.4.11) are 
NOT the final state CM multipole parameters of the first reaction but, rather, are the [t~(8)]sLc 
discussed in subsection 3.3.2 (see eqn (3.3.14)). 
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( ii) Use of a magnetic field to vary the initial state density matrix 
Let a polarized beam having multipole parameters t'~ emerge in the 

XZ -plane and pass through a uniform magnetic field B oriented along 
0 Y. The particles are deflected around 0 Y through an angle 8cyc (the 
cyclotron angle) as measured in the Lab. (8cyc is zero for neutral particles.) 

The helicity density matrix of the beam, considered, as usual, to be 
arriving along the Z -direction of the main reaction, will then be described 
by the CM helicity multipole parameters t~ given by 

t~(6) = L d~mr(6)t'~, (5.4.15) 
m' 

where 6 is the angle of precession of the spin vector of the particle during 
the passage through the magnetic field. 

For a particle of mass m, charge Q, arbitrary spin s and total magnetic 
moment f-l, the g-factor is defined by 

Q 
ll = g-2 s. 

me 
( 5.4.16) 

Then the precession angle 6 is given, in terms of the cyclotron angle, by 

( g ) EL 
6 = l - 1 mc2 8cyc· (5.4.17) 

where EL is the Lab energy of the beam particles. For protons and 
deuterons one has 

( f- 1) = 1.79 
2 proton 

- -1 = -0.14. ( g ) 
2 deuteron 

It is thus difficult to cause a sizeable alteration of the t'~ for 
deuterons. Nevertheless a successful experiment of this type, using 410 
MeV deuterons, was carried out by Button and Mermod (1960), and the 
idea seems to stem from Lakin (1955). 

For neutral particles 

(5.4.18) 

where Jl is the magnetic moment in units of the proton magneton, ep and 
mp are the charge and mass of the proton and d is the distance through 
the magnetic field traversed by the particle. 

If B is measured in gauss and d in metres then 

6 ~ -3.2 X 10-5/-l ( EL) Bd. (5.4.19) 
PLC 

We have, for example, 

/-lneutron = -1.91 /-lA = -0.61. 
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Clearly one must utilize as many different values Ji of J as there 
are [-values appearing in the sum (5.4.14) and measure Cm(bi) for each. 
The individual (l, m; 0, 010, 0; 0, 0) are then obtained by solving a set of 
simultaneous equations. 

(iii) Measurement of the generalized 
depolarization and polarization-transfer parameters 

Consider the case where we measure the effective multipole parameters of 
particle C. From (5.4.1) and (5.4.2) we have 

[ 
1, d2a l [ I' d2a l tm,(C) dtdcp - tm,(C) dtdcp 

pol.bm. unpol. 

(2) ny 1 da 
3 2n dt ~(21 + 1)t~(A) 

m 

X (l,m;O,Oil',m';O,O)e-im¢ ( 5.4.20) 

where da / dt is, of course, the unpolarized cross-section. 
Equation (5.4.20) indicates the significance of the generalized depolar

ization parameters (l, m; 0, Oil', m'; 0, 0) which can be measured by studying 
the asymmetry in cp of the left-hand side for several values of l' and m', 
bearing in mind the ¢-independence of the second term on the left-hand 
side. As in (ii) above, the isolation of individual parameters will be possible 
only if the initial t~(A) can be varied. 

If it is the density matrix of D that is measured, completely analo
gous equations hold and one determines thereby the generalized A ~ D 
polarization-transfer parameters (l, m; 0, OJO, 0; L', M'). 

If the joint multipole parameters for C and D can be measured, one 
learns analogously about the 'three-spin' parameters (l, m; 0, Oil', m'; L', M'). 

( iv) Properties of the final state 
From (5.4.13), (5.4.20) and the properties (5.3.5)-(5.3.17) of the reaction 

parameters we find that the special properties of d2ajdtdcp and t;!;M(C,D) 
for our main reaction, as listed below, hold for any of the following 
situations. 

(sl) The magnetically prepared beam has fJ = n/2, i.e. the quantization 
axis is perpendicular to the beam. 

(s2) The beam is a secondary beam emerging from a previous parity 
conserving reaction R1 : E + F ~ A+ G, with unpolarized initial state, 
and our Y -axis is along PE x PA· 

(s3) As in (s2), but R1 can have a polarized beam E, a polarized target 
F or both, provided that the quantization axes are normal to the 
scattering plane of R1. 
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The properties are : 

(a) d2a I dtdcp is symmetric under reflection in the beam-containing plane 
that is perpendicular to the quantization plane, i.e. under cp ~ -cp. 
(Exceptionally, if particles A have spin 1/2, this holds also for any 
angle f3 of the quantization axis; furthermore, Re t;{;M for l + L even 
and Im t;{;M for l + L odd are symmetric under cp ~ -¢.) 

(b) t;{;M( C, D) now depends on cp in general. 
(c) As always 

(d) 

Thus at cp = 0 

t1L is mM 

tiL = (-1)m+M tiL• . -m-M mM 

{ . r~~l } as l + L is { e:~n } . 
1magmary odd 

(e) Hence tf_!:m_M(cp) = (-1)m+M+I+Ltlj;M(-c/J), and 

tb~(cp = 0) = 0 if l +Lis odd. 

(5.4.21) 

(5.4.22) 

(5.4.23) 

(5.4.24) 

As an example, an incoming beam with its spin-polarization vector pA 
perpendicular to the scattering plane satisfies the condition (sl). Then use 
of (5.4.22) together with (3.1.35) tells us that the spin-polarization vectors 
pc and pD must also be perpendicular to the scattering plane. 

(f) For an arbitrary initial polarization, if C = D one has 

(g) 

t;{;M(8, c/J) = ddm(n- 8, c/J + n). 

As 8 ~o 

As 8 ~ n 

t;{;M oc (sin 8 /2)A 

t;{;M oc (cos8/2)A 

(5.4.25) 

(5.4.26) 

where A= max {0, lm- Ml- m'} and m' is the largest value of lm'l 
that occurs in the t~,(A) of the polarized beam. 

For the density matrix itself, the results given in subsection 5.4.1 hold 
at cp = 0. For cp -=/=- 0 one has 

c-c' +d-d' ( "'-) Pc'd';ca(c/J) = (-1) P-c'-d';-c-d -'+' · (5.4.27) 

In particular p satisfies (5.4.8) at cp = 0 under the experimental conditions 
(sl)-(s3). 
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There are other results that hold for rather special circumstances. For 
example, if the quantization axis lies in the scattering plane and if the 
beam possesses only even-rank or only odd-rank polarization, then 

( Re tl,;M) for 
pol.bm. 

{ even-rank } . . 
odd-rank polanzatwn 

= (Re tlLM) 
m unpol. 

for l + L { odd } 
even 

( 5.4.28) 

and 

( Im tl,;M) for 
pol.bm. 

{ even-rank } . . 
odd-rank polanzatwn 

= ( Im tlLM) 
m unpol. 

{ even } 
for l + L odd . (5.4.29) 

These are particularly powerful when the beam consists of spin-1/2 parti
cles, since in this case only rank -1 polarization is possible. As an example, 
if the spin-polarization vector of the beam, pA, lies in the scattering plane 
then the spin-polarization vector pc can have components both in ( 'Pf) 
and perpendicular to ('Pf) to the scattering plane. Equations (5.4.28), 
(5.4.29) together with (3.1.35) tell us that 'Pf is independent of the vector 
pA, i.e. it is the same as it would have been if the beam were unpolarized. 

5.4.3 Polarized target, unpolarized beam 

The transcription of the results of subsection 5.4.2 to the situation where 
the target is polarized and the beam is unpolarized is absolutely straight
forward. Only one point requires mention. 

If the experiment involves a stationary target in the laboratory and if 
the target quantization axis is specified by polar angles (} = /3', cjJ = y' in 
the Lab frame, then in place of (5.4.12) one must have (see eqn (3.3.2)) 

(5.4.30) 

If, however, the experiment involves colliding beams and if {3', y' refer 
to the quantization axis for B in its helicity rest frame Sn (see Fig. 3.1) 
then (5.4.12) should be used to calculate tfJ(B). 

5.4.4 Polarized beam and target 

For either the differential cross-section or the final state multipole pa
rameters, the general result when the beam and target are both polarized 
is, from (5.4.1), of the form (for photons recall the discussion after eqn 
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(5.3.4)) 

[ I'L' d2(J l [ I'L' d2(J l 
tm'M'(C,D) dtd</J pol.bm. - tm'M' dtd</J 

pol.targ. pol.bm. 

[ I' L' d2 (J l [ I' L' d2 (J l 
- tm' M' dtd</J + tm' M' dtd</J 

pol.targ. unpol. 

(2) ny 1 d(J 
= 3 2n Tt 

1
E

1 
(21 + 1)(2L + 1)t~(A)tfJ(B) 

m,M 

x (l m· L Mil' m' · L' M')e-i(M-m)</J 
' ' ' ' ' ' . (5.4.31) 

Here, obviously, the state of polarization of beam (or target) must, where 
labelled, be the same on both sides of the equation. 

The generalized initial state polarization correlation parameters, 

(l, m; L, MIO, 0; 0, 0), 

which are the analogues of AiJ in nucleon-nucleon scattering, can be stud
ied from the ¢-dependence of the differential cross-section. Other three
and four-spin tensors require measurements of the final state multipole 
parameters. 

For arbitrarily polarized beam and target the final state parameters t;[(M 
do not possess any special symmetry properties. If, however, the following 
experimental condition holds, 

(s4) the quantization axes of beam and target are parallel 

then the properties (a)-(f) listed in subsection 5.4.2(iv) continue to hold in 
the situations (sl)-(s3). 

The behaviour near e = 0, n is now as follows. 

For e ~ 0 t;[;M oc (sine j2)A' 

Fore~ n 
(5.4.32) 

where A' =max {0, lm- Ml- ;a} and ;a is the largest value of lm'- M'l 
that occurs in the t~,(A) and t~,(B) of the polarized beam and target. 

5.5 The laboratory reaction parameters 

For some colliding-beam experiments the measurements are carried out in 
the CM so that the multipole parameters that appear in (5.4.1) are the ones 
measured. For fixed targets in the laboratory what one actually measures 
are the multipole parameters in the Lab natural analysing frames (see 
subsection 3.3.2, especially Fig. 3.5). It is straightforward to translate these 
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measurements into statements about the CM multipole parameters so that 
(5.4.1) again applies. However, for psychological reasons, experimentalists 
prefer to utilize the analogue of (5.4.1), which connects directly what goes 
into the experiment with what comes out in the Lab. 

With all quantities measured respectively in the Lab analysing frames 
SLA, SLB, SLc, SLv one has 

(2) ny 1 d(J 
3 2n dt ft(2l + 1)(2L + 1) 

mM 

x [t~(A)] [tXt(B)] 
SLA SLB 

X (l m· L Mil' m' · L' M') ei(M-m)<f> 
' ' ' ' ' ' Lab 

where, from (3.3.14), the Lab reaction parameters are 

(l, m; L, Mil', m'; L', M')Lab 

= L (l,m;L,Mil',m";L',M") 
m",M" 

with the angles rxc, rxv being given by (2.2.13). 

(5.5.1) 

(5.5.2) 

Note that the Lab reaction parameters enjoy the same reality property 
(5.3.8) as do the CM ones. 

Clearly the entire analysis of measurements in the CM can be taken over 
unchanged to discuss the extraction of the Lab reaction parameters from the 
Lab experimental data. 

The symmetry properties that relate many of the CM parameters to 
each other will give rise, via (5.5.2), to similar, though more complicated
looking, relations amongst the Lab parameters. 

Only the parity result looks simple: 

(1, -m; L, -Mil', -m'; L', -M')Lab = ( -1)m+M+m'+M' ( -1)l+L+l'+L' 

X (l,m;L,Mil',m';L',M')Lab (5.5.3) 

from which one gets 

(l,O;L,Oil',O;L',O)Lab = 0 if l + L + l' + L' is odd. (5.5.4) 

For the other symmetries there is no point in writing down the general 
results. In a specific reaction it is best to write them out explicitly for the 
CM parameters and then to substitute the inverse of (5.5.2) to get the 
relations amongst the Lab reaction parameters. 
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The properties of the CM final state multi pole parameters tl,;;M( C, D) 
listed in subsections 5.4.1(ii) and 5.4.2(iv) hold also for the Lab multi
pole parameters provided that they are measured in the respective Lab 
analysing frames SLc and SLD. 

5.6 Applications: Cartesian formalism 
for initial particles with spin 1/2 

For particles of spin ~ 1 the above formalism is the simplest and most 
compact. For spin-1/2 particles, however, one is accustomed to working 
with the Cartesian components of the spin-polarization vectors P = (a). 
Moreover only the values l = 0, 1 occur in the reaction parameters so that 
a simpler notation is possible. 

The transformation between multipole parameters and components of 
the spin-polarization vector for spin 1/2 is 

J2T+1 t~ = L Uzm;11!?111 ( 5.6.1) 
fl 

where lm (= 00, 11, 10, 1-1) labels the rows, and 11 (= O,X, Y,Z) labels 
the columns, with !?1° = 1. The matrix U is given by 

u = (~01 -t~fi -i~J2 ~) (5.6.2) 

1/ J2 -i/J'l 0 
with utu = 1. 

5.6.1 The reaction spin 1/2 + spin 1/2 ~ spin 1/2 + spin 1/2 

The Cartesian analogue of the CM relation (5.4.1) is then 

d2a 1 da 
(rrrt'(C)rrpr(D)) dtdc/J = 2n dt ~ (rra(A)) (rrp(B)) 

(5.6.3) 

x (rxfJirx' {J\p, 

where rx, fJ, rx', fJ' take on the values 0, X, Y, Z, corresponding to the usual 
three Pauli matrices a supplemented by a fourth matrix cro = I, the unit 
2 x 2 matrix.1 

Equation (5.6.3) relates the final state spin expectation values to those 
of the initial state in the CM. We shall make much use of this result when 
studying electroweak and QCD reactions. 

It must be remembered that the directions X, Y, Z refer to the CM 
frame but that the physical interpretation of each (rr(K)) is that it is the 

1 According to convention we use upper-case X, Y, Z here. 
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mean spin vector for particle K in its helicity rest frame SK reached from 
the CM. 

The CM Cartesian reaction parameters are given by 

( af31a' /3 1)<f> = L ..}21 + 1..}2L + 1 Uzm;a U LM ;{3 

repeated 
indices 

x (l, m; L, Mil', m'; L', M')<P 

X Uz~m';a'Ul'M';f3'.j2l' + 1.j2L' + 1 

1 (d ) -l 
= 4. d~ Tr (aaapHt aa'ap,H) 

in complete analogy to (5.3.2). 

( 5.6.4) 

The explicit ¢-dependence of (af31a' f3')<P can be found from (5.6.4) and 
(5.3.3). One gets 

( af31a' f3')<P = gt~a" ( 4> )qtpf3" ( -4> )(a" /3" Ia' /3') (5.6.5) 

with 

0 0 0) (1 
R[r,( </> )] ~ ~ 

0 0 
cos 4> - sin 4> 
sin 4> cos 4> 

0 0 

(5.6.6) 

In (5.6.5), as usual, absence of a ¢-label implies 4> = 0. 
In a similar fashion the Lab spin expectation values in the final state 

are related to those of the initial state, provided each is measured in the 
natural analysing frame SLK, by 

(5.6.7) 

where now the directions X, Y,Z for, say, particle K refer to the spin 
projections along the X-, Y -, Z -axes of the Lab frame SLK. 

From (5.6.4) and (5.5.2) we find 

(af31a' f3'kab = L (af31a" /3") 
a" ,{3" 

(5.6.8) 
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where, for any angle co, 

o o o) = ( 0~1 
R[ry(w)] 

0 
cosw 

0 
-smw 

~ si~w) 
1 0 . 
0 cosw 

(5.6.9) 

It follows that the azimuthal ¢-dependence of the Lab reaction parameters 
is also given by (5.6.5). 

It should be remembered that for N N ~ N N one has o:c = eL and 
o:v = eR, where eL is the Lab scattering angle and eR is the Lab recoil 
angle; however for a reaction like Ap ~ Ap one will have o:v = eR but 
e<c f. 8L (see subsection 2.2.4). 

Some of the results of the most exciting experiments on spin dependence 
in N N scattering carried out at Argonne have been reported using a 
slightly different choice of Lab reference frame for each particle. The 
Argonne Lab frames S{;f0 are 

SARG S 
LA = LA 

SARG S 
LC = LC 

s{;f0 = SL = rz(-n)ry(-n)SLB 

S{;]J0 = r z ( -n )SLD 

X X \sstA~RGG 
~z 

... ... .... 

F~G. ___ A.,. ... 

LAB 

z 

' ' ' 

(5.6.10) 

Fig. 5.2 The Argonne Lab frames for A + B ---+ C + D as used in the 
reporting of several experiments. 
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118 5 The observables of a reaction 

and, as shown in Fig. 5.2, all have their Y -axes in the same direction. The 
Argonne frames seem to be a simple, sensible choice. Their drawback is 
that they ignore the fact that both B and D have azimuthal angle <P = n. 

By convention the directions in each Argonne Lab frame are not referred 
to as X, Y, Z but by the symbols 

L =longitudinal= along OZ 

N = normal = along 0 Y 

S =sideways= along OX 

and the Argonne final state measurements are related to their initial state 
ones by an equation almost identical to (5.6.7) but involving the Argonne 
reaction parameters 

where 

co=cx=vo=vz=+1 

Ey=Ez=vx=vy=-1 

(5.6.11) 

The Argonne reaction parameters are connected to the CM parameters 
by an obvious change in (5.6.8). Clearly they have essentially the same 
¢-dependence as the Lab reaction parameters. 

The detailed symmetry properties of the CM Cartesian reaction param
eters and of the Argonne Lab reaction parameters are given in Appendix 
8, both for N N ----+ N N and for the more general case of reactions like 
AN----+ AN. 

In Appendix 9 we list the 'shorthand' notation and the nomenclature 
commonly used for the Argonne Lab parameters, both for N N ----+ N N 
and for AN ----+ AN. 

Let us look at an example of the use of (5.6.3) or (5.6.7) for a parity
conserving reaction A+ B ----+A+ B where both beam and target may be 
polarized and one measures the differential cross-section. Let 

pA = (q/J:,q/J¢,qp;4) 

pB = ( q/J~, q!J~, q!Jn 

be the components of the spin-polarization vectors relative to the CM or 
Lab frames, in which A moves along OZ. 

Then, according to subsection 3.3.1 (see also eqn (5.1.7)) the spin
polarization vector that must be used forB in (5.6.3) is 

pB = (q/J~, -q/J~, -q/)n. 
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5.6 Applications: Cartesian formalism for spin 1/2 119 

Thus, in either the CM or the Lab, using (5.6.5) in (5.6.3) or (5.6.7), one 
has 

d2lJ _ 1 dlJ { (A) ( A A · ) 
dtd¢ - 2n dt 1 + A f!JJ y cos cp - f!JJ x sm <P 

- A(B) (f!/Jff cos cp + f!JJ: sin <P) 

+A [cos2 m f!}JAf!jJB - sin2 A. f!}JAf!}JB 
XX 'f'XX 'Pyy 

+cos <P sin <P ( -f!JJ1f!!Jff + f!!Jfff!JJ:)] 

+A [sin2 m f!JJAf!}JB - cos2 "' f!}JAf!}JB YY 'I' X X o/ y y 

+cos <P sin <P (f!JJ1f!!Jff - f!!Jfff!JJ:)] 

- Azzf!JJ1"f!JJ! + Azxf!JJ1" (COS qJ f!/J: -sin qJ f!!Jff) 

-Axzf!JJ! (cos </J f!JJ1 +sin </J f!!Jff)} (5.6.12) 

where we have used the following abbreviations for the various analysing 
powers: 

A(A) = (YOIOO)cM = (YOIOO)Lab 

A(B) = (OY IOO)cM = (OY IOO)Lab 

Aij = (ijiOO)cM = (ijiOO)Lab· 

(5.6.13) 

The equality of the Lab and CM generalized analysing powers follows 
from (5.6.8). 

Note that for identical fermions, e.g. for pp ~ pp, Azx = -Axz and 
A(A) = -A(B)_ Conventionally one writes A(A) = -A(B) =AN. 

Equation (5.6.12) indicates how the analysing powers could be measured 
from a study of the azimuthal dependence or by comparing 'left' (¢ = 0) 
and 'right' ( <P = n) scattering, with various settings of the spin-polarization 
vectors. 

Alternatively, if the analysing powers are known, the ¢-dependence can 
be used to get some information about the spin-polarization vector of 
beam and target, an important issue in 'polarimetry'. 

If the spin-polarization vector refers to the Argonne choice of reference 
frames then in the Argonne notation (5.6.12) will hold with the following 
substitutions: 

Axx ~Ass Ayy ~ -ANN 

Axz ~ -AsL Azx ~ ALs 

(5.6.14) 
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5.6.2 The reactions spin 0 +spin 1/2 - spin 0 +spin 1/2 
and spin 1/2 +spin 1/2 - spin 0 +spin 0 

We have in mind here processes like nN - nN and N N - nn. 

(i) 0 + 1/2 - 0 + 1/2. The formulae (5.6.3), (5.6.4) and (5.6.7) apply 
provided the following simplifications are made. 

(a) Suppress completely the labels IX and 1X1• 

(b) Replace the factor 1/4 by 1/2 in the relation (5.6.4) for (/31/3')¢ in 
terms of the trace over H. 

(ii) 1/2 + 1/2 - 0 + 0. Again (5.6.3), (5.6.4) and (5.6.7) apply provided 
that one suppresses the labels 1X1 and [3' everywhere. 

5.6.3 The reactions spin 1/2 +spin 1/2- arbitrary-spin particles 

Undoubtedly many of the most interesting experiments in the next decade 
will consist of the production of high-spin particles from collisions of spin-
1/2 particles. We therefore recast our general results (5.3.1) and (5.5.1) into 
a hybrid form that takes advantage of the Cartesian formalism for the 
initial particles but retains the multipole description for the final particles. 
We get in the CM 

IL d2a 1 da "" ) 
tmM(C,D) dtd</J = 2n dt;:; (aiX(A)) (ap(B) 

X (IX/311, m; L, M)¢, (5.6.15) 

where the hybrid CM reaction parameters are given by 

. _ 1 (da)-l ( t 1 L ) (1Xf311,m,L,M)¢- 4 dt Tr aiXapH TmTMH . (5.6.16) 

For <P = 0 one finds that the parameters are real or imaginary according 
as l + L + biXo + bpo is even or odd. 

The Lab version of (5.6.15), using the natural Lab analysing frames, is 

[ IL d2a l 1 du "" ) ( ) tmM(C,D) dtd</J = 2n dt L... (aiX(A) SLA ap(B) SLB 
SLcSLD IX,p 

X (IX/311, m; L, M)iab (5.6.17) 

where the directions IX, f3 for A and B refer to the frames SLA, SLB, with 

(1X,f311,m;L,Mkab = L (1Xf3ll,m';L,M') 
m',M' 

(5.6.18) 
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5.6 Applications: Cartesian formalism for spin 1/2 121 

If the Argonne Lab frames are used, the analogue of (5.6.17) has in it 

(r:xf3[l, m; L, M)t!~? = cp(r:xf3[l, m; L, M)Lab( -1)M (5.6.19) 

where, as earlier, 

co= ex= 1 Ey = cz = -1. 

The ¢-dependence of the hybrid CM or Lab reaction parameters is still 
given by ( 5.6.5) and the ¢-dependence of the Argonne parameters then 
follows from (5.6.19). 

Consider now the most general possible experiment for a 2 ~ 2 reaction 
with polarized spin-1/2 beam and target. Let p(A) = (8P_1,&P7,&P1) and 

j)(B) = ( &>~, &>:, &>n be the components of the spin-polarization vectors 
of beam and target specified in the correct helicity frames for A and B (see 
subsection 3.3.1) using either the CM or natural Lab analysing frames. 
Recall (see eqn (5.1.7)) that if one specifies the components of the initial 
spin-polarization vector in the CM or Lab frames where A moves along 
OZ then, for B, j)(B) = (&1'~, -&1':, -&1'~). Then, with f standing for the 
final state labels l, m; L, M, one has for AB ~ CD 

IL d2(J 
tmM( C' D) dtd¢ 

1 [ lL d(J] = -2 tmM(C,D)-d 
n t unpol. 

+ 2~ ~~ { &1'_1 [cos 4> (XO[f)- sin 4> (YO[f)] 

+ &>~ [cos 4> (OX[f)- sin 4> (OY If)] 

+ &P7 [cos 4> (YO[f) +sin 4> (XO[f)] 

+ &>: [cos 4> (OY [f)+ sin 4> (OX[f)] 

+ &P1(ZO[f) + :?/>~(OZ[f) + &P1:?/>~(ZZ[f) 

+&1'_1:?/>~ [cos2 ¢ (XX[f)+sin2 ¢ (YY[f) 

-cos 4> sin 4> ((XY [f)+ (Y X[f)) J 

+ &P7&>: [sin2 4> (XX[f) + cos2 4> (Y Y [f) 

+cos 4> sin 4> ((XY [f)+ (Y X[f))] 

+ &1'_1&>: [ cos2 4> (XY [f)- sin2 4> (Y X[f) 

+cos 4> sin</> ((XX[f)- (Y Y [f))] + 
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122 5 The observables of a reaction 

+&1&>~ [cos2 ¢ (YXIf)-sin2 ¢ (XYif) 

+cos <P sin <P ((XXI!)- (Y Y If)) J 

+ &1&>~ [cos <P (XZ If)- sin <P (Y Z If)] 

+ &_/§>~ [cos <P (ZXIf)- sin <P (Z Y If)] 

+ &1&>~ [cos <P (Y Z If)+ sin <P (XZ If)] 

+&>./&>: [cos <P (Z Y If)+ sin <P (ZXIf)]} (5.6.20) 

where the reaction parameters and the final state multipole parameters 
should carry an appropriate label to indicate which set of reference frames 
is implied. 

The above is completely general in the sense that no discrete symmetries 
have been assumed. 

We mention some of the simpler properties of the hybrid parameters. 

(i) Reality. Using T~t = T!_m( -l)m and a! = arx in (5.6.16), one finds 

(cxf3ll, m; L, M)* = ( -1)m+M (cxf3ll, -m; L, -M). 

(ii) Parity. For any one set of the above reference frames one has 

(cxf31l,m;L,M) = ~!:~f(-1)1+L+m+M(cxf3ll,-m;L,-M) 

where ~5 = ~~ = +1 and~';=~!= -1. Thus 

(cxf3ll,O;L,O) = 0 if ~{;~f(-1)1+L = -1. 

Combining (5.6.22) and (5.6.21) we have 

. . { real } ?Jl ?Jl l+L _ (cxf3ll,m,L,M) IS . . as ~rx ~/3 (-1) - ±1. 
1magmary 

(5.6.21) 

(5.6.22) 

(5.6.23) 

(5.6.24) 

(iii) Identical particles. If A = B, then for the CM reaction parameters 

(cxf3ll, m; L, M)8 = ( -1)m+M (f3cxll, m; L, M)n-e. (5.6.25) 

As regards the properties of the final state multipole parameters they 
are of course no different from those discussed in subsections 5.4.1(ii) and 
5.4.2(iv), provided that they are measured in the correct reference frames 
of the set being used. 

Equations (5.6.20), (5.6.23), and (5.6.24) give a complete description of 
the states of polarization of the final particles that are possible for various 
choices of the initial state polarizations with and without the imposition 
of parity invariance. 
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5.6.4 Connection between photon and spin-1/2 induced reactions 

We saw in subsection 3.1.12 that because of the absence of states lm = 0) 
for photons, the helicity density matrix for a photon is essentially a 2 x 2 
matrix and can therefore be expressed in terms of the Pauli matrices. 

Upon comparing (3.1.85) and (3.1.88) with the result (3.1.23) for spin-
1/2 particles, it is clear that we can map any formulae for the observables 
in the reaction 

spin 1/2 + B ~X, 

where the spin-1/2 particles have a spin-polarization vector P, into the 
corresponding formula for the observable for the photon-induced reaction 

y+B~x. 

This is done by making the following replacements: 

(a) 

(b) 

fJ> x ~ - COS 2y fJ>lin fJ> y ~ - sin 2y fJ>Jin 

corresponding to a photon linearly polarized in the XY -plane at 
angle y to OX, with degree of linear polarization fJ>1in (see subsection 
3.1.12(ii)); 

g>z ~ fJ>circ 

corresponding to a circularly polarized photon with circular polariza
tion fJ>circ (see subsection 3.1.12(ii)); 

(c) Hx;A;_s ~ Hx;Ay=2A,As 

for the helicity amplitudes, where A refers to the spin-1/2 particle. 

5.7 Non-linear relations amongst the observables 

Consider a reaction A + B ~ C + D for which, after application of all 
the symmetries of the situation, there are found to exist n independent 
helicity amplitudes. Let us label these H1 with j = 1, ... , n. Since all the 
observables are quadratic in the H1 there will clearly exist n2 linearly 
independent observables Oa of the form 

Orx = L a}kHJHk 
j,k 

(5.7.1) 

with known coefficients a}k· Knowing the value of the n2 observables Orx 

is tantamount to knowing the value of the n2 quantities 

(5.7.2) 
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124 5 The observables of a reaction 

However, the number of experiments that can be carried out, i.e. the 
number of reaction parameters that exist, is 

N = (2sA + 1)(2sB + 1)(2sc + 1)(2sv + 1), 

a number that is generally much larger than n2. For example, in elastic 
nucleon-nucleon scattering n2 = 25 whereas N = 256. The symmetry 
properties of the reaction parameters given in subsection 5.3.1 yield linear 
relations amongst them just such as to reduce their number to n2 inde
pendent parameters. The case of nucleon-nucleon scattering is displayed 
in some detail in Appendix 8. 

To start with, though, there are only 2n independent real functions, the 
real and imaginary parts of the H1. Moreover because the observables 
are quadratic functions of the H1, one overall phase is irrelevant and can 
never be determined experimentally. Thus in fact all experiments must be 
describable in terms of 2n - 1 real functions. This implies that there must 
exist n2 - (2n- 1) = (n- 1)2 relations amongst the n2 observables Ort. As 
will be seen, they are non-linear relations. The method for finding them 
is due to Klepikov, Kogan and Shamanin (1967) and Bourrely and Soffer 
(1975). 

Consider the matrix 0 whose elements are the o1k of (5.7.2). It is an 
n x n hermitian, positive matrix of rank 1. It is clear from (5.7.2) that 

(5.7.3) 

from which it follows that 

0 2 = 0 Tr 0. (5.7.4) 

Conversely one can show that if a given square matrix has elements 0 Jk 
such that (with no summation over repeated indices) 

(Oik)2 = oiiokk (5.7.5) 

for all i i= k and 

(5.7.6) 

for all i i= k and any one value of j (i= i or k), then (5.7.3) and (5.7.4) follow. 
Equations (5.7.5) and (5.7.6) are the necessary and sufficient conditions 
for o1k to be of the form (5.7.2). They constitute the desired non-linear 
relations amongst the observables. 

The best-known example occurs in nN ----+ nN where the reaction 
parameters 

P = (OOION)~!i,0 

A = (OLIOS)~!i,0 

R = (OSIOS)~!i,0 
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5.8 Multiparticle and inclusive reactions 

(the nomenclature P, A, R is historical) satisfy 

p2 + R2 + A2 = 1. 

125 

(5.7.7) 

For nucleon-nucleon scattering the 16 non-linear relations can be found 
in Bourrely and Soffer (1975). 

5.8 Multiparticle and inclusive reactions 

We consider the simplest kind of multi particle production process 

A + B ----+ C + D1 + D2 + D3 + · · · 
where all the variables specifying the multiparticle 

X = D1 + D2 + D3 + · · · 
are integrated over (except its mass Mx ), i.e. we consider the single-particle 
inclusive reaction 

A+B---+C+X 

where A, B, C can have arbitrary spins. It does not matter, in what 
follows, whether X contains a fixed number of particles or whether we 
sum over different numbers of particles. 

5.8.1 CM reaction parameters and final state density matrix 

For each fixed number of particles, X can be considered as a composite 
'particle', with many internal degrees of freedom and with a definite 
momentum P = PA + PB- PC· It has a variable spin Sx and helicity A. In 
summing over all possible configurations of the particles that make up X 
we also sum over all the values of A incoherently. 

It is then clear that, in so far as helicity dependence is concerned, the 
unnormalized final state density matrix for C, p'(C), is given, in analogy 
with (5.2.1), by 

P~c'(C;s,t,Mi,cf>) = L LLHcA;ab(s,t,Mi,cf>) 
internal A ab 
variables a'b' 

X Piab;a'b'(A,B)H;,A;a'b'(s,t,Mi,cf>) (5.8.1) 

where the H are generalized helicity amplitudes the knowledge of whose 
detailed properties is not necessary for our discussion. 

We normalize the H in such a way that 

d3(J 

Tr p'(C) = 2ns dtdcf>dMi" (5.8.2) 

From now on p( C) will mean the properly normalized density matrix. 
It is clear that those symmetry properties of p( C) in the 2 ----+ 2 process 
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A+ B ~ C + D which arise from parity conservation (for example (5.4.27)) 
and in which the spin sx and the intrinsic parity IJx do not appear explicitly 
will continue to hold for p( C) in A + B ~ C +X. 

In complete analogy with (5.3.1) for 2 ~ 2 scattering, we now have for 
the final state multipole parameter of C, in the CM, 

d\r l' 1 d2 cr "' z L 
dtd¢dMi tm,(C) = 2n dtdMi f;;:(2l + 1)(2L + 1)tm(A)tM(B) 

LM 

X (l,m;L,Mil',m')~c (5.8.3) 

where 

(l,m;L,Mil',m')~c = L (l,m;L,Mil',m';L' = O,M' = O)¢s~cx (5.8.4) 
internal 
variables 

and now depends on ¢, t and Ml as well, and where L', M' refer to 
'particle' X. 

Because the sum is incoherent, (1, m; L, Mil', m')~c has the same proper
ties (5.3.3), (5.3.5), (5.3.6), (5.3.7), (5.3.8) and (5.3.11) as it would have had 
if X were a single spinless particle. It does not enjoy those properties like 
(5.3.16) that depend upon the intrinsic parity of 'X'. 

As a consequence the properties of t~( C) exactly mimic those given in 
subsections 5.4.1(ii) and 5.4.2(iv) for A+ B ~ C + D, if sv is put equal to 
zero. 

In particular, for an unpolarized initial state and a parity-conserving 
reaction, the polarization vector of C must be perpendicular to the plane 
defined by PA and PC· 

If A and B have spins 1/2 then (5.8.3) can be re-cast in an obvious way 
(Section 5.6) into a pure Cartesian or a hybrid Cartesian-spherical form. 
(See (5.6.3), (5.6.12) in which sv would be put equal to zero.) 

The CM reaction parameters can, in the present case, be related to 
discontinuities across the cut in Mi of the forward 3 ~ 3 amplitudes for 
the process A+ B + C ~ A+ B + C (see Fig. 5.3). The original work, 
relating only to the unpolarized case, is due to Mueller (1970). For the 
generalization to spin-dependent terms see the work of Goldstein and 
Owens (1976). In the notation of the latter, our reaction parameter is 
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(j (A + B ----t c + X) = L 
X 

=:L 
X 

A~C 

B~x 

A~A c . c 
B X B 

A*! A c : c 
I 

B I B 
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2 

Fig. 5.3. Schematic form of the Mueller formula for inclusive cross
sections: see the text for a discussion of the quantities. 

given by 

(l,m;L,Mfl',m')~c = L (T~,t}c'c(T~)a'a(T/J)b'b 
abc 

a'b'c' 

X Labc discMl gabc;abc 

( 5.8.5) 

where ga'b'c'·abc is the forward 3 ~ 3 amplitude and 'disc' refers to the 
discontinuities across the cut in Ml. 

Near the forward and backward directions for C, i.e. e = 0, n, the 3 ~ 3 
amplitude has the behaviour 

( 5.8.6) 

where (I= fa-b-e-a' +b' +c'l and (2 = fa-b+c-a' +b'-c'f, which 
implies for the reaction parameters the behaviour 

(l,m;L,Mfl',m')inc oc (sin8/2)lm-M+m'l (cos8j2)1m-M-m'l. (5.8.7) 

We end this section with a brief comment on two-particle semi-inclusive 
reactions of the type 

A + B ~ C + D + E1 + E2 + · · · 

where all variables specifying the multi particle state X= E1 + E2 + · · · are 
integrated over, except its mass Mx. 
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The properties of the joint density matrix for C and D will then be 
analogous to those of C + D in the 2 ---+ 3 process 

A+B-+C+D+X 

where X is considered to be a particle of spin zero, but of indefinite parity. 
The outcome of an experiment will be controlled by the reaction 

parameters 

(l m·L Mil' m'·L' M')inc = """" (l m·L Mil' m'·L' M'·O O)AB-->CDX 
' ' ' ' ' ' .L...,.; ' ' ' ' ' ' ' ' • 

internal 
variables 

of X 
( 5.8.8) 

The most important new element is that the polarization vectors of C 
and D need not be perpendicular to the reaction planes ABC or ABD 
respectively, even for unpolarized initial beam and target. 
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