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Bivariate Polynomials of Least Deviation
from Zero
Borislav D. Bojanov, Werner Haußmann and Geno P. Nikolov

Abstract. Bivariate polynomials with a fixed leading term xm yn, which deviate least from zero in the
uniform or L2-norm on the unit disk D (resp. a triangle) are given explicitly. A similar problem in Lp ,
1 ≤ p ≤ ∞, is studied on D in the set of products of linear polynomials.

Introduction

One of the most remarkable properties of the Tchebycheff polynomials of the first
kind defined by

Tn(x) = cos n arccos x, −1 ≤ x ≤ 1,

is that they have minimal uniform norm on [−1, 1] among all polynomials of degree
n with the same leading coefficient (which is 2n−1). In other words, Tn deviates least
from zero in the described class of polynomials. The Tchebycheff polynomials of the
second kind,

Un(x) =
sin(n + 1) arccos x

sin arccos x
, −1 ≤ x ≤ 1,

have the corresponding property with respect to the L1-norm on [−1, 1]; note that
the leading coefficient of Un is 2n. These extremal properties give rise to interest-
ing consequences and important relations for algebraic polynomials (see Borwein-
Erdélyi [4], Milovanović-Mitrinović-Rassias [12], Rivlin [20]).

The minimum deviation property of the Tchebycheff polynomials in the univari-
ate case was a motivation for various investigations of the problem of least deviation
in the multivariate setting. Of course, since there are many counterparts to a univari-
ate interval even in the bivariate case (e.g., a square, a disk, a triangle or others), and
since the leading term of a multivariate polynomial can be specified in many ways,
these questions lead to different problems and solutions. In particular, we mention
the following work:

Uniform approximation on the square (Sloss [22], Ehlich-Zeller [6], Reimer [18]),
on the disk (Gearhart [8], Reimer [17]), on a triangle (Newman-Xu [13]), L2-approx-
imation on the square (Šac [21], Rack [15]), L1-approximation (Fromm [7], Rack
[16], Haußmann-Zeller [9]) and mixed norm approximation (Haußmann-Zeller
[10]) on the square.

In the present paper we give explicit representations for bivariate polynomials of
least deviation from zero on the disk

D := {(x, y) ∈ R2 : x2 + y2 ≤ 1}
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and on the triangle

S := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 1 − x − y ≥ 0}.

We consider the class

πk(R2) =
{ ∑

0≤i+ j≤k

ai, jx
i y j : ai, j ∈ R

}

of bivariate polynomials of total degree ≤ k. We determine an error function ωm,n of
type {m, n} on a set Ω ⊂ R2 as a polynomial of the form

ωm,n(x, y) := xm yn − p(x, y), p ∈ πm+n−1(R2),

which deviates least from zero on Ω with respect to a given norm, i.e.,

‖ωm,n‖ = minimum!

The first two sections are devoted to uniform approximation. In Section 1 we
present a construction which allows to generate a family of error functions of type
{m, n} on the disk D, starting from any given one. In addition to the results described
by Gearhart [8] and Reimer [17], our construction provides families of new error
functions. In Section 2, error functions for the triangle S are found on the basis of
those obtained by Gearhart for the disk. Moreover, we describe an interesting relation
between Gearhart’s error functions on D and another family of error functions on S
due to Newman-Xu [13]. In Section 3 we give the explicit form for the coefficients
of the error functions ωm,n on D with respect to the L2-norm. Section 4 treats a
nonlinear least deviation problem on D in any Lp-norm (1 ≤ p ≤ ∞) in the set of
polynomials from πn(R2) which vanish on n lines (i.e., that can be factorized in terms
of degree 1).

1 Best Uniform Approximation on the Disk

Although the unit disk D in R2 is a quite natural domain, there are only few papers
concerning polynomials of least uniform deviation from zero on D. We mention the
following results:

Theorem A (Gearhart [8]) For integers n ≥ 0 and m ≥ 0 with m + n ≥ 1 set

(1) Gm,n(x, y) =
1

2m+n

(
Um(x)Un(y) + Um−2(x)Un−2(y)

)
.

Then Gm,n is an error function of type {m, n} on D with respect to the uniform norm.
The deviation is

‖Gm,n‖D,∞ =
1

2m+n−1
.

Here and in what follows, U−1 = 0, U−2 = −1.
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Another family of polynomials of least uniform deviation from zero on D was
discovered by Reimer. He considered the polynomials Rµ̄ generated by

(2) |t̄|N TN

(
t̄ · x̄

|t̄|
)

=
∑
|µ̄|=N

t̄ µ̄Rµ̄(x̄)

with µ̄ = (µ1, . . . , µd), t̄ = (t1, . . . , td), x̄ = (x1, . . . , xd), where t̄ · x̄ is the Euclidean
inner product. When d = 1, then we have Rµ = Tµ, which has minimal uniform
norm on [−1, 1]. For the bivariate case the following result was proved:

Theorem B (Reimer [17]) Let R(m,n) be defined by (2). Then

(3) Rm,n(x, y) :=
1

2m+n−1
(m+n

n

)R(m,n)(x, y)

is an error function of type {m, n} on D with respect to the uniform norm.

Except for special cases, the polynomials of Gearhart and Reimer do not coincide.
However, as pointed out by Gearhart [8, Theorem 2.2], all extremal polynomials of
a given type {m, n} must agree on ∂D. He also showed that given any error function
pm,n(x, y) one can obtain error functions pkm,kn (k ∈ N) by

(4) pkm,kn(x, y) =
1

2k(m+n)−1
Tk

(
2m+n−1 pm,n(x, y)

)
.

In this section we give a construction which allows us to produce a series of new
error functions starting from a given one. This is a variant of the well-known semi-
group property of the classical Tchebycheff polynomials Tm (see Rivlin [20, p. 160]).

Theorem 1 Let pm,n be an error function of type {m, n}. Then for every k ∈ N

(5) Lk[pm,n](x, y) :=
1

2(k−1)(m+n)
pm,n

(
Tk(x), yUk−1(x)

)
is an error function of type {k(m + n) − n, n} with respect to the uniform norm.

Proof We start with the observation that (x, y) ∈ D implies
(

Tk(x), yUk−1(x)
) ∈ D.

Indeed, for (x, y) ∈ D we have

T2
k (x) + y2U 2

k−1(x) ≤ T2
k (x) + (1 − x2)U 2

k−1(x) = cos2 kϕ + sin2 kϕ = 1,

where x = cos ϕ. Now, since pm,n is an error function of type {m, n}, it follows that

(6) ‖Lk[pm,n]‖D,∞ ≤ 1

2(k−1)(m+n)
· ‖pm,n‖D,∞ =

1

2k(m+n)−1
.

Since the leading term of Lk[pm,n] is xk(m+n)−n · yn with coefficient 1, Theorem A
implies ‖Lk[pm,n]‖ ≥ 2−k(m+n)+1, hence equality.
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As was already mentioned, the error functions from Theorems A and B found by
Gearhart and Reimer are different, in general. They necessarily coincide when m·n =
0 or m = n = 1, in which cases we have uniqueness (Gearhart [8, Theorem 2.2]). It
should also be pointed out the following coincidence:
For any non-negative integer m

(7) Gm,1 = Rm,1.

Proof By the definition of Gm,1 one finds Gm,1(x, y) = 1
2m yUm(x), while the normal-

ization of Rm,1 yields

Rm,1(x, y) =
1

2m(m + 1)
R(m,1)(x, y),

therefore (7) is equivalent to

(8) R(m,1)(x, y) = (m + 1)yUm(x),

which is easily verified for m = 0, 1, 2. Assuming (8) is true for some natural m ≥ 2,
we shall show its validity for m + 1. Making use of the induction hypothesis, the
recurrence relation (Reimer [17, equations (1.5)])

R(m+1,1)(x, y) = 2xR(m,1)(x, y) + 2yR(m+1,0)(x, y) − R(m−1,1)(x, y)

and the fact that R(n,0)(x, y) = Tn(x) we obtain

R(m+1,1)(x, y) = 2xy(m + 1)Um(x) + 2yTm+1(x) − myUm(x).

In view of the identity
(

2xTm+1(x)
) ′

=
(

Tm+2(x) + Tm(x)
) ′

, this last expression is
equal to (m + 2)yUm+1(x), and the induction step is completed.

It is easy to see that the application of the operators Lk defined above to the error
functions Gm,1 = Rm,1 does not provide new error functions in each case. Indeed, we
have

Lk[Gm,1](x, y) = Lk

[
1

2m
yUm(x)

]

=
1

2(k−1)(m+1)

1

2m
yUm

(
Tk(x)

)
Uk−1(x)

=
1

2k(m+1)−1
yUk(m+1)−1(x)

= Gk(m+1)−1,1(x, y).

But the next examples will show that the operator Lk indeed produces new error
functions:
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Example 1: Error functions of type {4, 2} The Gearhart and the Reimer {4, 2}-type
error functions are

G4,2(x, y) = x4 y2 − 1

4
x4 − 3

4
x2 y2 +

1

4
x2 +

1

16
y2 − 1

32
,

R4,2(x, y) = x4 y2 − 1

10
x4 − 3

5
x2 y2 +

3

40
x2 +

3

80
y2 − 1

160
,

respectively. Two further {4, 2}-type error functions are

L2[R1,2](x, y) ≡ L2[G1,2](x, y) = x4 y2 − 1

2
x2 y2 − 1

16
x2 +

1

32

and

L3[R0,2](x, y) ≡ L3[G0,2](x, y) = x4 y2 − 1

2
x2 y2 +

1

16
y2 − 1

32

(note: the last error function can also be obtained from (4) as 2−5T2

(
22R2,1(x, y)

)
).

It turns out that the Reimer error function R4,2 is a convex combination of the re-
maining three polynomials, namely

R4,2 =
2

5
G4,2 +

2

5
L2[R1,2] +

1

5
L3[R0,2].

Hence R4,2 is not a vertex of the set of all {4, 2}-type error functions.

Example 2: Error functions of type {6, 2} The Gearhart and the Reimer {6, 2}-type
error functions are

R6,2(x, y) = x6 y2 − 1

14
x6 − 15

14
x4 y2 +

5

56
x4 +

15

56
x2 y2 − 3

112
x2 − 1

112
y2 +

1

896
,

G6,2(x, y) = x6 y2 − 1

4
x6 − 5

4
x4 y2 +

3

8
x4 +

3

8
x2 y2 − 9

64
x2 − 1

64
y2 +

1

128
,

respectively. To these we add three further {6, 2} error functions,

L2[R2,2](x, y) = x6 y2 − x4 y2 − 1

24
x4 +

5

24
x2 y2 +

1

24
x2 − 1

128
,

L2[G2,2](x, y) = x6 y2 − x4 y2 − 1

16
x4 +

3

16
x2 y2 +

1

16
x2 − 1

128
,

L4[R0,2](x, y) ≡ L4[G0,2](x, y) = x6 y2 − x4 y2 +
1

4
x2 y2 − 1

128
.

The last error function can also be obtained from (4) as 2−7T2

(
23R3,1(x, y)

)
. Note

that these new error functions are linearly dependent:

L2[R2,2] =
2

3
L2[G2,2] +

1

3
L4[R0,2].

In the above examples, the error functions produced by the operators Lk are some-
what simpler than the corresponding error functions of Gearhart and Reimer (in
particular, they have less non-zero coefficients).
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2 Best Uniform Approximation on a Triangle

Here we consider best approximation on the triangle

S = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 1 − x − y ≥ 0}.

In this case there is the following interesting

Theorem C (Newman-Xu [13]) For every p ∈ πm+n−1(R2),

‖xm yn − p‖S,∞ ≥ 1

22(m+n)−1
‖Am,n‖S,∞ =

1

22(m+n)−1
,

where

Am,n(x, y) =




Tm−n(2x − 1)Tn(8xy − 1)

+ 8xy(2x − 1)Um−n−1(2x − 1)Un−1(8xy − 1) if m > n,

Tm(8xy − 1) if m = n,

Tn−m(2y − 1)Tm(8xy − 1)

+ 8xy(2y − 1)Un−m−1(2y − 1)Um−1(8xy − 1) if m < n.

In our terminology, this means that 2−2(m+n)+1Am,n(x, y) is an error function of
type {m, n} on S. The proof of Theorem C in [13] is very tricky. Again, there is no
uniqueness of the extremal polynomials, as Newman-Xu show.

There is a simple relation between approximation on the triangle S and on the
disk D. It is based on the observation that S can be mapped into D by a polynomial
transformation (see Reimer [19]). For easy reference we formulate an immediate
consequence of this relation as a separate proposition.

Proposition 2 If p(x, y) is an error function on S of type {m, n}, then p(x2, y2) is an
error function of type {2m, 2n} on D. Conversely, if P(x, y) is an error function of type
{2m, 2n} on D such that P(x, y) = p(x2, y2), then p(x, y) is an error function of type
{m, n} on S.

Proof The mapping Φ : S → D defined by

S � (u, v) → (x, y) ∈ D with u = x2, v = y2

gives a one-to-one correspondence between S and D+ := D ∩ {(x, y) ∈ R2 : x ≥
0, y ≥ 0}. If p(u, v) is an error function of type {m, n} on S, then P(x, y) :=
p(x2, y2) is a polynomial of the form

x2m y2n + lower degree terms.

It is easily seen that P is an error function of type {2m, 2n} on D. To show this,
assume that Q is an error function of type {2m, 2n} on D, but

‖Q‖D,∞ < ‖P‖D,∞.
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Without loss of generality we may assume that Q(x, y) = q(x2, y2), otherwise we can
take

(
Q(x, y) + Q(−x, y) + Q(x,−y) + Q(−x,−y)

)
/4. Then

‖q‖S,∞ = ‖Q‖D,∞ < ‖P‖D,∞ = ‖p‖S,∞,

a contradiction. The second part of the claim follows in the same way.

Thus, any family of extremal polynomials on D generates a family of extremal
polynomials on S and vice versa. An explicit formula can be given for the extremal
polynomials on S produced by the Gearhart polynomials {G2m,2n}. Indeed, we have:

Theorem 3 For any fixed pair (m, n) of non-negative integers the polynomial

Qm,n(x, y) :=
1

22(m+n)
{[Um(2x − 1) + Um−1(2x − 1)]

· [Un(2y − 1) + Un−1(2y − 1)]

+ [Um−1(2x − 1) + Um−2(2x − 1)]

· [Un−1(2y − 1) + Un−2(2y − 1)]}

is an error function of type {m, n} on S.

Proof We use the formula

G2m,2n(x, y) =
1

22m+2n
[U2m(x)U2n(y) + U2m−2(x)U2n−2(y)]

for Gearhart’s polynomials of least deviation on D and represent it in terms of x2 and
y2 using the identity

(9) U2k(t) = Uk(2t2 − 1) + Uk−1(2t2 − 1).

Then the replacement x2 → x, y2 → y results in the desired expression for Qm,n.

Now we shall give the relation between the polynomials Am,n found by Newman-
Xu and the polynomials of Gearhart. Consider Gearhart’s error function of type
{m − n, 2n} on D for m > n,

Gm−n,2n(x, y) =
1

2m+n
[Um−n(x)U2n(y) + Um−n−2(x)U2n−2(y)].

We apply the operator L2 defined in Theorem 1 to Gm−n,2n to obtain an error function
V2m,2n of type {2m, 2n} on D,

V2m,2n(x, y) =
1

22m+2n
[Um−n(2x2 − 1)U2n(2xy) + Um−n−2(2x2 − 1)U2n−2(2xy)].
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Using (9) we get the representation

V2m,2n(x, y)

=
1

22m+2n
{Um−n(2x2 − 1)[Un(8x2 y2 − 1) + Un−1(8x2 y2 − 1)]

+ Um−n−2(2x2 − 1)[Un−1(8x2 y2 − 1) + Un−2(8x2 y2 − 1)]}.
According to Proposition 2, the replacement x2 → x, y2 → y in V2m,2n yields an error
function of type {m, n} on the triangle S, which we denote by Wm,n:

Wm,n(x, y) =
1

22m+2n
{Um−n(2x − 1)[Un(8xy − 1) + Un−1(8xy − 1)]

+ Um−n−2(2x − 1)[Un−1(8xy − 1) + Un−2(8xy − 1)]}

=:
1

22m+2n
{I + II}.

We shall show that Wm,n is exactly the Newman-Xu error function 2−2m−2n+1Am,n

from Theorem C (for m > n).
To this end we make use of the formulae

Uk(z) = zUk−1(z) + Tk(z),(10)

Uk−2(z) = zUk−1(z) − Tk(z).(11)

Applying (10) to I and (11) to II we get

I = [(2x − 1)Um−n−1(2x − 1) + Tm−n(2x − 1)]

· [8xyUn−1(8xy − 1) + Tn(8xy − 1)],

II = [(2x − 1)Um−n−1(2x − 1) − Tm−n(2x − 1)]

· [8xyUn−1(8xy − 1) − Tn(8xy − 1)].

It is clear now that I + II = 2Am,n, hence

Wm,n(x, y) =
1

22(m+n)−1
Am,n(x, y).

The case m < n is treated in the same way. The case m = n is even simpler: We take
p1,1(x, y) = xy which is the error function of type {1, 1} on D, then in view of (4),

1

24n−1
T2n

(
2p1,1(x, y)

)
=

1

24n−1
Tn(8x2 y2 − 1)

is an error function of type {2n, 2n} on D. Hence, by Proposition 2,

1

24n−1
Tn(8xy − 1)

is an error function of type {n, n} on S.
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3 Polynomials of Least L2-Deviation on the Disk

The inner product

( f , g) :=
∫∫

D

f (x, y)g(x, y) dx dy

on D induces the L2-norm

‖ f ‖D,2 :=




∫∫
D

f 2(x, y) dx dy




1
2

.

We shall consider the problem of describing the polynomials of the form

(12) xm yn − Q(x, y), Q ∈ πm+n−1(R2),

which have least L2-norm on the unit disk D. Because of the strict convexity of the
ball in L2, for a fixed pair (m, n) there is only one polynomial of the form (12) of least
deviation from zero on D, say Lm,n. As is well known, Lm,n is characterized by the
orthogonality conditions

(13) (Lm,n, g) = 0 for each g ∈ πm+n−1(R2).

On the other hand, it is also known that the Tchebycheff polynomials of the second
kind {Uk(t)} generate an orthonormal basis in π(R2). More precisely, let θk, j := jπ

k+1

and ξ̄k, j := (cos θk, j , sin θk, j ) for k = 0, 1, . . . , m + n, j = 0, 1, . . . , k. Put

Uk, j(x̄) :=
1√
π

Uk(x̄ · ξ̄k, j), where x̄ = (x, y).

The system {Uk, j}m+nk
k=0, j=0 constitutes an orthonormal basis in πm+n(R2), see for ex-

ample [3, Lemma 6]. Therefore, Lm,n can be represented as a linear combination
of the polynomials from this system. However, because of the orthogonality (13),
only terms of degree m + n will occur in this representation. Precisely, the following
theorem holds true:

Theorem 4 The unique polynomial Lm,n of the form (12) with minimal L2-deviation
on D has the representation

Lm,n(x, y) =
m+n∑
j=0

a j(m, n)Um+n, j(x, y),

where

(14) a j(m, n) =
√

π

2m+n

∫ 1

−1
(sin θm+n, j − is cos θm+n, j)

m(cos θm+n, j + is sin θm+n, j)
n ds,
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for j = 0, . . . , m + n (and i2 = −1). Moreover, the least deviation ‖Lm,n‖2,D is given
by

‖Lm,n‖2,D

=
√

m + n + 1

2m+n+3/2

{∫ 2π

0

(∫ 1

−1
(sin θ − is cos θ)m(cos θ + is sin θ)n ds

)2

dθ

} 1
2

.

(15)

Proof We have
a j = (Lm,n,Um+n, j) = (xm yn,Um+n, j).

For the sake of convenience, we shall write θ j instead of θm+n, j . After change of vari-
ables

x = t sin θ j − s cos θ j , y = t cos θ j + s sin θ j ,

we get

a j(m, n) =
1√
π

∫∫
D

(t sin θ j − s cos θ j)
m(t cos θ j + s sin θ j)

nUm+n(t) ds dt

=
1√
π

∫ 1

−1
Um+n(t)

m∑
k=0

n∑
=0

ck,(θ j)

∫ √
1−t2

−√
1−t2

sm+n−k− ds tk+ dt,

where

ck,(θ j) := (−1)m−k

(
m

k

)(
n



)
sinn+k− θ j cosm−k+ θ j .

But clearly ∫ √
1−t2

−√
1−t2

sN ds =

{
0 if N is odd,

2
√

1−t2

N+1 (1 − t2)
N
2 if N is even.

Denote, for brevity,

γk, :=

{
0 if m + n − k −  is odd,

2 (−1)(m+n−k−)/2

m+n−k−+1 if m + n − k −  is even.

Therefore, for even m + n − k − ,

tk+

∫ √
1−t2

−√
1−t2

sm+n−k− ds =
2
√

1 − t2

m + n − k −  + 1
tk+(1 − t2)(m+n−k−)/2

= γk,

√
1 − t2

(
tm+n − h(t)

)
,

where h is a polynomial of degree less than m+n. By the definition of γk, the first and
the last expression coincide in the case m+n−k− odd, too. Taking into account that
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Um+n is orthogonal on [−1, 1] with respect to the weight
√

1 − t2 to each polynomial
of degree not exceeding m + n − 1 (and, in particular to h), we get

a j(m, n) =
1√
π

m∑
k=0

n∑
=0

ck,(θ j)γk,l

∫ 1

−1

√
1 − t2Um+n(t)tm+n dt.

The crucial observation for the proof of (14) is the equality

γk, =
∫ 1

−1
(is)m+n−k− ds

with i2 = −1. Using this, we can write the double sum above as

m∑
k=0

n∑
=0

ck,(θ j)γk,l =
∫ 1

−1
(sin θ j − is cos θ j)

m(cos θ j + is sin θ j)
n ds.

To complete the proof of (14), we only need to note that

∫ 1

−1

√
1 − t2Um+n(t)tm+n dt =

1

2m+n

∫ 1

−1

√
1 − t2U 2

m+n(t) dt =
π

2m+n+1
.

To prove the second claim of Theorem 4, we introduce the function

F(m, n; θ) :=
(∫ 1

−1
(sin θ − is cos θ)m(cos θ + is sin θ)n ds

)2

.

Obviously, F(m, n; θ) as a function of θ is a trigonometric polynomial of degree at
most 2(m + n), and, in addition, F(m, n; θ + π) ≡ F(m, n; θ). We have

‖Lm,n‖2
2,D =

m+n∑
j=0

a j(m, n)2

=
π

22m+2n+2

m+n∑
j=0

F(m, n; θm+n, j)

=
m + n + 1

22m+2n+3
Q2m+2n+2[F(m, n; ·)],

where

Q2m+2n+2[ f ] :=
2π

2m + 2n + 2

2m+2n+1∑
j=0

f (θm+n, j)

and θm+n, j = 2 jπ/(2m + 2n + 2), j = 0, . . . , 2m + 2n + 1. It is well-known that

Q2m+2n+2[ f ] calculates exactly
∫ 2π

0 f (t) dt whenever f is a trigonometric polynomial
of degree at most 2m + 2n + 1 (see, e.g., Braß [5, p. 229, Satz 125]). In particular,
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Q2m+2n+2[F(m, n; ·)] =
∫ 2π

0
F(m, n; θ) dθ,

and this completes the proof of Theorem 4.

As is well-known, the calculation of polynomials of least L2-deviation reduces to
solution of a linear system of equations. The first polynomials Lm,n are

L1,0(x, y) = x,

L1,1(x, y) = xy,

L2,0(x, y) = x2 − 1

4
,

L2,1(x, y) = x2 y − 1

6
y,

L2,2(x, y) = x2 y2 − 1

8
x2 − 1

8
y2 +

1

48
,

L3,0(x, y) = x3 − 1

2
x,

L3,1(x, y) = x3 y − 3

8
xy,

L3,2(x, y) = x3 y2 − 1

10
x3 − 3

10
xy2 +

3

80
,

L3,3(x, y) = x3 y3 − 1

4
x3 y − 1

4
xy3 +

3

40
xy,

L4,0(x, y) = x4 − 3

4
x2 +

1

16
,

L4,1(x, y) = x4 y − 3

5
x2 y +

3

80
y,

L4,2(x, y) = x4 y2 − 1

12
x4 − 1

2
x2 y2 +

1

20
x2 +

1

40
y2 − 1

320
,

L4,3(x, y) = x4 y3 − 3

14
x4 y − 3

7
x2 y3 +

3

28
x2 y +

1

56
y3 − 3

560
y,

L4,4(x, y) = x4 y4 − 3

8
x4 y2 − 3

8
x2 y4 +

3

224
x4 +

9

56
x2 y2

+
3

224
y4 − 3

448
x2 − 3

448
y2 +

3

8960

(note that Ln,m(x, y) = Lm,n(y, x)). An interesting observation for the above polyno-
mials is that the monomials xk y appearing in Lm,n satisfy k ≤ m,  ≤ n.

The calculation of the least L2-deviation can be performed with the help of (15)
without prior knowledge of Lm,n. In Table 1 on the next page we give the values of
‖Lm,n‖2,D for 0 ≤ n ≤ m ≤ 8.
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n \ m 1 2 3 4 5 6 7 8

0
√

π
2

√
π

4

√
π

8

√
π

16

√
π

32

√
π

64

√
π

128

√
π

256

1
√

6π
12

√
5π

24

√
2π

32

√
105π
480

√
π

96

√
21π

896

√
15π

1536

√
33π

4608

2
√

95π
240

√
9π

160

√
73π

960

√
133π

2688

√
14π

1792

√
555π

23040

√
537π

46080

3
√

91π
1120

√
321π

4480

√
47π

3584

√
11π

3584

√
3π

3840

√
5577π

337920

4
√

2509π
26880

√
817π

32256

√
2105π

107520

√
44121π

1013760

√
42097π

2027520

5
√

88594π
709632

√
9061π

473088

√
6238π

811088

√
250081π

104543104

6
√

1400451π
12300288

√
26633π

3514368

√
1232329π

49201152

7
√

1389270π
52715520

√
5225273π

210862080

8
√

1414593953π
7169310720

Table 1: The L2-deviation ‖Lm,n‖2,D, 0 ≤ n ≤ m ≤ 8

4 A Nonlinear Lp-Problem on D

Let P2
n be defined as the set of all polynomials f from πn(R2) which can be represented

in the form

f (x, y) =
n∏

k=1

k(x, y),

where

k(x, y) = x cos αk + y sin αk + ck, αk ∈ [0, π), ck ∈ R, k = 1, . . . , n.

Note that each k represents a straight line with a unit normal vector. The lines
∗k (x, y) defined by the equispaced angles

α∗
k :=

{
(2k−1)π

2n if n even
(k−1)π

n if n odd

and by ck = 0 for k = 1, . . . , n play a special role in P2
n. Set

f ∗(x, y) :=
n∏

k=1

∗k (x, y).

Then we get

Theorem 5 For all n ∈ N and 1 ≤ p ≤ ∞, the polynomial f ∗ has a minimal Lp-norm
on D among all f ∈ P2

n, that is

‖ f ∗‖D,p ≤ ‖ f ‖D,p for all f ∈ P2
n.

In the case 1 ≤ p < ∞, the solution f ∗ is unique up to rotation. In the case p = ∞, f ∗

and its rotations are not the only solutions.
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Proof Let f ∈ P2
n. We introduce polar coordinates x = cos ϕ, y = sin ϕ and get

(16) f (x, y) =
rn

2n−1
cos(nϕ − α1 − · · · − αn) − g(r, ϕ),

where g (as a function of ϕ) is a trigonometric polynomial of degree at most n − 1.
After a suitable rotation, we can assume without loss of generality that

∑n
k=1 αk =

2qπ, q ∈ Z. Hence we have

(17) f (x, y) =
rn

2n−1
cos nϕ + g(r, ϕ).

For 1 ≤ p < ∞ we get

‖ f ‖p
D,p =

∫ 1

0
r

∫ 2π

0

∣∣∣∣ rn

2n−1
cos nϕ + g(r, ϕ)

∣∣∣∣
p

dϕ dr

≥
∫ 1

0

rnp+1

2(n−1)p
dr · (En−1,p(cos nϕ)

) p
.

(18)

Here
Em,p(h) := inf ‖h − g‖D,p

denotes the distance of the best Lp[0, 2π]-approximation from the function h with
respect to trigonometric polynomials of degree not exceeding m. It is well known
(see Achieser [1, pp. 12–13]) that for p ≥ 1

Em,p(cos nϕ) = ‖ cos nϕ‖[0,2π],p

(that is, the unique best Lp-approximant to cos nϕ is zero). Thus, for 1 ≤ p < ∞,

(19) ‖ f ‖p
D,p ≥ ‖ cos nϕ‖p

[0,2π],p

2(n−1)p(np + 2)
.

The lower bound in (19) is attained in the class P2
n if we choose ck = 0 and αk = α∗

k
for k = 1, . . . , n. Therefore f ∗ is a polynomial of least deviation from zero. Actually,
f ∗ is the only polynomial with this property. Indeed, if there would be another one,
say h ∈ P2

n, then it must deviate least from zero in Lp on any circle ∂Dρ := {(x, y) :
x2 + y2 = ρ2}, 0 ≤ ρ ≤ 1, and thus the restriction of h to ∂Dρ must vanish at
2n equispaced points on ∂Dρ. Since this holds for any sufficiently small ρ < 0, the
lines {k} associated with h must pass through the origin. This property and the
normalization condition α1 + · · · + αn = 2qπ determine the extremal polynomial
uniquely.

In the case p = ∞, we have

‖ f ‖D,∞ = sup
0≤r≤1

max
{(x,y):x2+y2=r2}

∣∣∣∣ rn

2n−1
cos nϕ + g(r, ϕ)

∣∣∣∣
≥ sup

0≤r≤1

rn

2n−1
En−1,∞(cos nϕ) ≥ sup

0≤r≤1

rn

2n−1
‖ cos nϕ‖[0,2π],∞

=
1

2n−1
.

https://doi.org/10.4153/CJM-2001-021-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-021-3


Bivariate Polynomials of Least Deviation from Zero 503

For the last inequality we used the fact that zero is the best uniform approximation to
cos nϕ by trigonometric polynomials of degree not exceeding n−1 on [0, 2π]. Hence

‖ f ‖D,∞ ≥ 1

2n−1

and equality holds if f|∂D = cos(nϕ + ϑ) for some ϑ ∈ R, and | f (x, y)| ≤ 2−(n−1) in
the interior of D.

Therefore, up to rotation, we have the same extremizer in the case p = ∞, too.
However, we have no uniqueness in this case, as can be seen by taking the polynomials

1

2n−1
Tn(x) and

1

2n−1
Tn(y)

which belong to P2
n and have the same uniform norm on D.

5 Remarks

In the univariate case the polynomials of least Lp deviation on [−1, 1] are known
explicitly for p = 1, 2,∞. We presented in this paper bivariate polynomials of least
deviation on D in the uniform and L2-norm. As probably expected, polynomials of
least L1 norm should be found as well. Unfortunately, a careful study of the L1 case
shows that finding the extremal polynomials in L1 is a fairly hard task. As known
from the general theory, it suffices to find a polynomial g(x, y) of the form

g(x, y) = xn ym + lower degree terms

such that sign g(x, y) is orthogonal on D to all polynomials of total degree n + m− 1.
Computer experiments show that the curves of sign change of the extremal polyno-
mials look too complicated to hope to find some simple characterization like in the
univariate case. However, there are some particular cases in which error functions in
L1, and even in Lp for 1 ≤ p ≤ ∞, can be easily found using the corresponding re-
sult in the univariate case. We shall give such an example. It is based on the following
fact mentioned by Oskolkov [14]: The polynomial of best Lp-approximation of a ra-
dial function on D is also radial. Oskolkov gave a nice proof of this observation using
Jensen’s inequality. We shall derive it here even simpler: Let f be a radial function,
that is, f (x, y) = F(

√
x2 + y2) with some univariate F. For any p, 1 < p < ∞, the

polynomial of best approximation to f on D is unique. Denote it by q. Since f is
radial, any rotation in the disk D would transform the function f − q into function
of the same form f − q1 which has the same Lp-deviation from zero as the original
one. Thus any rotation of q produces a polynomial q1 of least deviation. Since the
extremal polynomial is unique, it follows that q does not change after rotation, there-
fore q is radial, q(x, y) = Q(

√
x2 + y2) with some univariate polynomial Q. Now it

is seen that the problem

‖ f − q‖p → inf over q ∈ πn(R2)
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reduces to the univariate one

‖F − Q‖p → inf over Q ∈ πn(R).

The existence of a radial polynomial of least deviation for p = 1 and p = ∞ follows
as the limiting case p → 1 and p → ∞. As a consequence, the polynomials of least
Lp deviation of the form (x2 + y2)m −q(x, y), q ∈ π4m−1(R2) can be characterized. In
particular for p = 1, 2,∞ one can write the explicit form of the error function using
the corresponding univariate polynomials of least deviation.

Similarly, as shown by Oskolkov [14], the polynomial of best Lp approximation of
a ridge function f (that is, a function of the form f (x, y) = F(ax + by) with some
univariate F and constants a and b) on D is a ridge polynomial, too. Again, in this case
the bivariate least deviation problem is reduced to a univariate one. Theorem 3 of
Reimer [17] is dealing with a problem of this kind, since the polynomials he considers
are actually ridge functions.

Another particular case can be derived from recent results in [2]. To do this, de-
note by V (x, y) the polynomial

V (x, y) =
n∏

k=1

(x2 + y2 − ρk)

with {ρk} being the zeros of the polynomial v(t) = tn + · · · of least L1-deviation on
[0, 1] with a weight µ(t) = t . It was shown in [2] that sign V (x, y) is orthogonal on
D to every polyharmonic function of order n− 1 and consequently to every bivariate
polynomial of total degree 2n − 3. This means that V deviates least from zero in L1

among all polynomials of the form

n∏
k=1

(x2 + y2 − rk)

with any constants r1, . . . , rn.
Finally, let us note that in studying polynomials of least deviation there are various

normalization conditions different from the one we imposed in Sections 1–3, namely,
a fixed leading monomial xm yn with coefficient 1. We only mention a recent paper of
Kroó [11] where, instead of our normalization, the homogenious part of the highest
total degree is assumed to have a prescribed value at a given point ξ.
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