MAPS WITH DISCRETE BRANCH SETS BETWEEN MANIFOLDS OF CODIMENSION ONE

J. G. TIMOURIAN

1. Introduction. Let M^n and N^p be separable manifolds of dimensions n and p, respectively, with $n \ge p$, and without boundary unless otherwise indicated. A map $f: M \to N$ is proper if, for each compact set $K \subset N$, $f^{-1}(K)$ is compact. It is topologically equivalent to $g: X \to Y$ if there exist homeomorphisms α of M onto X and β of N onto Y such that $\beta f \alpha^{-1} = g$. At $x \in M$, f is locally topologically equivalent to g if, for every neighbourhood $W \subset M$ of x, there exist neighbourhoods $U \subset W$ of x and V of f(x) such that $f|U: U \to V$ is topologically equivalent to g.

Definition 1.1. Let f be a map of M^n (possibly with boundary) into N^p . The branch set $B_f \subset M^n$ is defined in (12) by: x is an element of $M^n - B_f$ if and only if f at x is locally topologically equivalent to the natural product projection map of E^n or E_+^n onto E^p , where E_+^n is a (closed) euclidean half-space.

THEOREM 1.2. If $f: M^{p+1} \to N^p$ is proper and B_f is discrete, then either

(a) B_f is empty and f is a fibre bundle map, or

(b) p = 1 or 3, and for each $q \in B_f$ the map f at q is locally topologically equivalent to θ , where

(i) $\theta: E^2 \to E^1 by \ \theta(z) = |z|,$

(ii) $\theta: E^2 \to E^1$ by $\theta(z) = \operatorname{Re} z^d$, d an integer greater than one, or

(iii) $\theta: E^4 \to E^3$ by the natural extension of the Hopf map from S^3 onto S^2 to a map of the open cone of S^3 onto the open cone of S^2 .

If f is said to be differentiable of order m, it is understood that M^n and N^p are differentiable manifolds of order m. The *critical set* of f is the collection of points in M^n at which the map has rank less than p.

COROLLARY 1.3. If $f: M^{p+1} \to N^p$ is a C^m proper map with critical set discrete, then either (a) or (b) of Theorem 1.2 is satisfied.

Proof. The set B_f is contained in the set of critical points by the Rank Theorem (6, p. 273, Theorem 10.3.1).

Remark 1.4. If $f: M^n \to N^p$ and dim $f^{-1}(y) \leq 0$ for each $y \in f(B_f)$, then for

Received December 21, 1967. Work supported in part by the National Science Foundation Grant GP 2193.

any $q \in B_f$ there are connected open neighbourhoods $U \subset M^n$ of q and $V \subset N^p$ of f(q) such that $f|U: U \rightarrow V$ is proper. (Same proof as in (5, p. 74, Lemma 1.14)).

COROLLARY 1.5. Let $f: M^{p+1} \to N^p$ be a C^{p+1} map with $B_f \neq \emptyset$ and $\dim f^{-1}(y) \leq 0$ for each $y \in f(B_f)$.

(a) Then there is a closed set $Y \subset B_f$ such that dim $Y < \dim B_f$, and at each point $x \in B_f - Y$ the map f is locally topologically equivalent to $\theta \times \iota_k$, where θ is the map in (i) or (iii) of Theorem 1.2 and ι_k is the identity map on E^k . (b) If f is proper and onto, only θ in (iii) occurs.

Proof. By Remark 1.4 there exist neighbourhoods U of $q \in B_f$ and V of f(q) such that $f: U \to V$ is a proper map. By Theorem 1.2, f restricted to $U - B_f$ is a bundle map, and hence $B_f = A_f$ in (5, p. 72, Definition 1.4). It follows from (5, p. 83, Lemma 4.1) that f has the desired local structure.

Remark 1.6. Although f is assumed differentiable in Corollaries 1.3 and 1.5, the local structure of f about $q \in B_f$ is given by a topological equivalence, and this cannot be improved to a differential equivalence (5, p. 72, Remark 1.6).

Most of this research formed part of the author's Ph.D. dissertation (13) written at Syracuse University and directed by Professor P. T. Church.

2. Preliminary lemmas. If $f: M^p \to N^p$, then the branch set B_f coincides with the set of points at which f fails to be a local homeomorphism, a set which has been very significant in studies by Church, Hemmingsen, and others; see, for example, (1-4). If f is proper and is a local homeomorphism, then it is a covering map (9, p. 128, Theorem 4.2).

PROPOSITION 2.1. Let M^{p+1} (possibly with boundary) and N^p be connected manifolds. If $f: M^{p+1} \to N^p$ is proper and $B_f = \emptyset$, then f is a fibre bundle map.

Proof. By (12, p. 63, Lemma 2.3) there is a factorization of f into hg, where g is a monotone map onto the p-manifold K^p and h is a covering map. Since h is a local homeomorphism, B_g is empty, and it suffices to show that g is locally trivial.

If y is an element of K^p , then $g^{-1}(y)$ is homeomorphic to S^1 or a closed interval. If $g^{-1}(y)$ is homeomorphic to S^1 , let $\{U_i: i = 0, 1, \ldots, n-1\}$ be a minimal cover of $g^{-1}(y)$ by open sets of M^{p+1} , ordered so that $U_i \cap U_j \cap$ $g^{-1}(y)$ is empty if $j \neq (i-1, i, \text{ or } i+1) \mod(n)$, and selected so that there exist homeomorphisms $\alpha_i: U_i \to E^p \times E^1$ and $\beta: g(U_i) \to E^p$ (where β and $g(U_i)$ are the same for each i) with $\beta g \alpha_i^{-1}$ the product projection map of $E^p \times E^1$ onto E^p . For each i and $j \equiv (i-1) \mod(n)$ choose a point q_i in $U_i \cap U_j \cap g^{-1}(y)$. Let W_i be a neighbourhood of q_i contained in $U_i \cap U_j$ such that $W_i \cap W_k = \emptyset$ for $i \neq k \mod(n), g(W_i) = g(W_k), \beta$ restricted to $g(W_i)$ is a homeomorphism onto an open p-disk D contained in E^p , and α_i restricted to W_i is a homeomorphism onto $D \times \{t_i\}$ for some t_i in E^1 . Without loss of generality, assume that $t_i = 0$ for each i and assume that α_i was

J. G. TIMOURIAN

selected so that its second coordinate function is positive on q_k , where $k \equiv (i + 1) \mod(n)$.

Define the homeomorphism $\phi_i: D \times E^1 \to D \times E^1$ by $\phi_i(x, t) = (x, s_i(x, t))$ where $s_i(x, t) = (nt/2\pi - i)u_i(x)$, and $u_i(x)$ is the point in E^1 such that $(x, u_i(x)) \in \alpha_i(W_k), \ k \equiv (i + 1) \mod(n)$. The sets W_i and W_k separate $g^{-1}(\beta^{-1}(D))$; therefore, if L_i is the union of $W_i \cup W_k$ and the component of $g^{-1}(\beta^{-1}(D)) - (W_i \cup W_k)$ contained in U_i , then

$$\alpha_i(L_i) = \phi_i(D \times [2\pi i/n, 2\pi k/n]).$$

Since $\bigcup_i L_i = g^{-1}(\beta^{-1}(D))$ and $\bigcup_i (D \times [2\pi i/n, 2\pi k/n])$ can be considered as $D \times S^1$, the map $\gamma: g^{-1}(\beta^{-1}(D)) \to D \times S^1$ defined by $\gamma(z) = \phi_i^{-1}\alpha_i(z)$, where $z \in L_i$, is a homeomorphism such that $\beta g \gamma^{-1}$ is the natural product projection of $D \times S^1$ onto D. Hence, f and g are fibre bundle maps.

When M^n is a manifold with non-empty boundary, a similar proof yields that f and g are fibre bundle maps, where the fibre for g is a closed interval.

LEMMA 2.2. If $f: M^n \to N^p$ is a proper map with B_f consisting of isolated points, then

(a) $f(B_f)$ consists of isolated points;

(b) if N^p is connected and p > 1, then f is open and onto;

(c) $f^{-1}(y)$ has a finite number of components for each point $y \in N^p$;

Proof. The proof of (a) will be omitted.

The map f restricted to $M' = M^n - f^{-1}(f(B_f))$ is a proper map into $N^p - f(B_f)$, which implies that f(M') is a closed subset of $N^p - f(B_f)$. Since M' is open and f|M' is interior, f(M') is an open subset of $N^p - f(B_f)$. If N^p is connected and p > 1, then $N^p - f(B_f)$ is connected, and thus f is an onto map. The map f is interior except possibly at points in B_f . If $X \subset B_f$ is the set of all elements in M^n at which f is not interior, suppose that $q \in X$ and let U be an open neighbourhood of q such that $U \cap B_f = \{q\}$. If Q is the component of $U \cap f^{-1}(f(q))$ containing q and $Q - \{q\}$ is not empty, then f(q) is an interior point of the image of any open neighbourhood of q contained in U. Thus, f is interior at q, which is a contradiction; hence, each $q \in X$ is a point component of $f^{-1}(f(q))$. Since $X \cap Cl(M^n - X) = X$, f(q) must locally separate N^p ; thus, X is empty and f is an open map.

Statement (c) is true for each $y \in N^p - f(B_f)$, since $f^{-1}(y)$ is either empty or a compact (n - p)-manifold. Consider $y \in N^p$ such that there exists at least one element q in $B_f \cap f^{-1}(y)$. If p = 1 and q is a point component of $f^{-1}(y)$, then there exists a neighbourhood V of f(q) such that if U is the component of $f^{-1}(V)$ containing q, then $U \cap B_f = \{q\}$. By (12, p. 63, Lemma 2.3), there exists a positive integer k such that $U \cap f^{-1}(x)$ has kcomponents for each x in a component of $V - \{y\}$. Suppose that $U \cap f^{-1}(y)$ has at least k + 2 components, and let W be a neighbourhood of y contained in V such that $U \cap f^{-1}(W)$ has at least k + 2 components Q, Q_1, \ldots, Q_{k+1} , where Q contains q. Since $f(Q_i) = W$, for each x in $W - \{y\}$ there are at least

k + 1 components in $U \cap f^{-1}(x)$, which is a contradiction to the choice of k. Hence, $U \cap f^{-1}(y)$ has a finite number of components if q is a component of $f^{-1}(y)$. If q is not a point component of $f^{-1}(y)$, suppose that $\{q_i\}$ is a sequence of point components of $f^{-1}(y)$ contained in B_f and converging to $q' \in f^{-1}(y)$. Then q' is also an element of B_f , which is a contradiction to B_f consisting of isolated points; hence, there exists an open neighbourhood V of y with $V \cap f(B_f) = \{y\}$ and with the property that if U is the component of $f^{-1}(V)$ containing q, then no component of $U \cap f^{-1}(y)$ is a single point. By a process similar to the one just discussed, $U \cap f^{-1}(y)$ has a finite number of components. For p > 1, the desired conclusion follows from (12, p. 64, Lemma 2.5).

LEMMA 2.3. Let M^n and N^p be connected manifolds, $n \ge p \ge 2$, and let $f: M^n \to N^p$ be a proper map. If $f(B_f)$ consists of isolated points and $\dim(f^{-1}(y)) \le n - 2$ for each $y \in f(B_f)$, then there exists a unique factorization of f into hg, where

(a) g: $M^n \to K^p$ is a monotone map onto the p-manifold K^p , and either

(b) p = 2 and $h: K^2 \to N^2$ is locally topologically equivalent at $x \in K^2$ to an analytic function $\theta(z) = z^d$, d a positive integer, or

(c) $p \ge 3$ and $h: K^p \to N^p$ is a k-to-1 covering map.

In particular, if B_f is discrete and $p \geq 2$, then f has such a factorization.

Proof. If V is an open connected set in N^p and U is a component of $f^{-1}(V)$, then f(U) = V. The manifold $N^p = \bigcup_{i=1}^{\infty} X_i$, where X_i is compact and $X_i \subset X_{i+1}$. Since f is proper, f restricted to $f^{-1}(X_i)$ has a unique monotonelight factorization (14, p. 141, Theorem 4.1); it follows that f is also equal to hg, where g is a monotone map onto an intermediate space K and h is light.

The space $M' = M^n - f^{-1}(f(B_f))$ is connected (7, p. 48, Theorem IV 4), and by the proof of (12, p. 75, Lemma 2.3), f|M' can be factored into the restriction of g to a monotone map of M' onto the p-manifold $K' = K - h^{-1}(f(B_f))$ followed by the restriction of h to a k-to-1 covering map of K' onto $N^p - f(B_f)$.

Let $y \in f(B_f)$ and let D be a closed euclidean neighbourhood of y such that $D \cap f(B_f) = \{y\}$. Each component of $f^{-1}(D)$ is mapped by f onto D; hence, $h^{-1}(y)$ contains at most k points. The components of $h^{-1}(D - \{y\})$ are homeomorphic to $D - \{y\}$, and thus the components of $h^{-1}(D)$ are each topologically the union of disjoint closed euclidean p-disks identified at their centre points. If L is a component of $h^{-1}(D)$ that is separated by an element z in $h^{-1}(y)$, then $g^{-1}(z)$ must separate $g^{-1}(L)$. However, $g^{-1}(L)$ is a component of $f^{-1}(D)$ and is an n-manifold with boundary, while dim $(g^{-1}(z)) \leq n - 2$, thus by (7, p. 48, Theorem IV 4), $g^{-1}(z)$ cannot separate $g^{-1}(L)$. Hence, no component of $h^{-1}(D)$ is separated by a point in $h^{-1}(y)$, each component of $h^{-1}(D)$ is homeomorphic to D, and K is a p-manifold K^p .

The set B_h is contained in $h^{-1}(f(B_f))$. If B_h is empty, then (9, p. 128, Theorem 4.2) implies (c); if B_h is not empty, then by (3, p. 535, Theorem 5.9),

p = 2, and (11) implies (b). If B_f is discrete, then $f(B_f)$ is discrete by Lemma 2.2 and dim $(f^{-1}(y)) \leq n - p$ for each y in $f(B_f)$; therefore, f has the required factorization.

Remark 2.4. Suppose that $f: L \to S^n$ is a locally trivial fibre map with fibre homeomorphic to an open, half-open, or closed interval. Then f is trivial (topologically equivalent to a product projection) if n > 1, or if n = 1 and there exist at least two disjoint cross-sections.

3. Proof of Theorem 1.2.

LEMMA 3.1. If $f: M^{n+1} \to N^n$ is a proper map with B_f a non-empty discrete set, then for each $q \in B_f$ either

(a) q is a point component of $f^{-1}(f(q))$, or

(b) n = 1, q is not a point component of $f^{-1}(f(q))$, and $f^{-1}(f(q))$ fails to be locally euclidean at q.

Proof. Let Y be the component of $f^{-1}(f(q))$ containing q, and suppose that Y is not equal to $\{q\}$. The main body of this proof will consist of three parts: (I), (II), and (III). In (I), there is an open neighbourhood of q in Y which is homeomorphic to a half-open interval with q as the end point; in (II) there is an open neighbourhood of q in Y which is homeomorphic to an open interval, and in (III) there is an open neighbourhood of q in Y which is homeomorphic to a collection of three or more half-open or closed arcs with end points identified at q.

By Lemma 2.2, $f(B_f)$ consists of isolated points and $f^{-1}(f(q))$ has a finite number of components; therefore, there exists a euclidean neighbourhood Vof f(q) such that $V \cap f(B_f) = f(q)$ and if U is the component of $f^{-1}(V)$ containing q, Y the component of $f^{-1}(f(q))$ containing q, then $U \cap f^{-1}(f(B_f)) =$ $U \cap Y$. If $\lambda = f|U$, then λ is proper and $B_{\lambda} = Y \cap B_f$. By Lemma 2.2, λ is open and onto if n > 1; however, since no element of B_{λ} is a point component of $\lambda^{-1}(\lambda(q))$, the same proof shows that λ is also open and onto when n = 1.

If n = 1, then by Proposition 2.1, λ restricted to each component of U - Yis a locally trivial fibre map onto a component of V - f(q) homeomorphic to an open interval. Hence, λ restricted to each component of U - Y is trivial (10, p. 53, Corollary 11.6) and for each $y \in V - f(q)$, $\lambda^{-1}(y)$ is homeomorphic to a finite disjoint union of copies of S^1 . If $n \ge 2$, then Lemma 2.3 indicates that there exists a factorization of λ into hg. Since V is simply connected, if his a covering map, it actually is a homeomorphism. If n = 2, let $x \in Y - B_f$ and let W be a neighbourhood of x contained in U such that λ restricted to W is topologically equivalent to the natural projection map of E^3 onto E^2 . There exists a point y in $\lambda(W)$ such that $(h^{-1}(y)) \cap g(W)$ has d components C_1, C_2, \ldots, C_d , where $g^{-1}(C_i)$ is not empty for each $i = 1, 2, \ldots, d$. Thus, $W \cap \lambda^{-1}(y)$ is not connected if d > 1, which is a contradiction. Hence, for $n \ge 2$, h is a homeomorphism, λ is monotone, and $\lambda^{-1}(y)$ is homeomorphic to S^1 for each y in V - f(q).

664

The set Y is compact, connected, and, except for a discrete set, is a 1manifold. In addition, Y is locally connected, since if it were not it would fail to be locally connected on a set contained in B_f that was not discrete (14, p. 18, (12.1)). Thus, there exists an open connected neighbourhood W(q) of q with compact closure W' such that $Y \cap W(q)$ is connected, $W' \subset U$, and $W' \cap$ $B_{\lambda} = \{q\}$. Since each point x in $Y \cap$ (bdy W') is disjoint from B_{λ} , there exists an open euclidean neighbourhood W(x) of x with compact closure C such that $C \subset U, Y \cap C(x)$ is homeomorphic to a closed interval disjoint from B_{λ} , and $Y \cap$ (bdy C(x)) consists of exactly two points. Since $Y \cap$ (bdy W') is compact, there is a finite collection of points x_1, x_2, \ldots, x_m such that $\{W(x_i)\}$ is an open cover. Let X be the closure of the component containing q of the open set $W(q) - \bigcup_{i=1}^m C(x_i)$. Then X is contained in U, $X \cap Y$ is connected and $X \cap B_{\lambda} = \{q\}$. In addition,

$$\mathrm{bdy}(X \cap (Y - \{q\})) = (\mathrm{bdy}(X)) \cap Y.$$

Case I. If W(q) can be selected so that $W(q) \cap Y$ is homeomorphic to a half-open interval and has end point q, then $X \cap Y$ is homeomorphic to a closed interval. The set X - Y is connected; thus, there exists a component U' of U - Y containing X - Y on which λ is a monotone map (in fact, if n > 1, U' is all of U - Y). Let y be an element of $\lambda(X - Y)$, and define S(y) to be $\lambda^{-1}(y) \cap U'$ (which is homeomorphic to S^1). The single point in $(bdy(X)) \cap Y$ is not an element of B_{λ} , hence there exists an open neighbourhood W_1 of it contained in U such that $\lambda | W_1$ is topologically equivalent to the projection of E^{n+1} onto E^n . Let $W = W_1 \cup (int(X))$ and suppose that $(X - W) \cap S(y_i)$ is not empty for an infinite sequence of points $\{y_i\}$ contained in $\lambda(W_1 - Y)$ with limit point f(q). Since λ is a proper map, $\limsup((X - W) \cap S(y_i))$ is not empty and is contained in $(X - W) \cap Y$. However, by the selection of X and W', $(X - W) \cap Y$ is empty. Hence, there exists an integer η such that for $k > \eta$, $X \cap S(y_k) \subset W$. If $y \in \{y_k\}$ such that $S(y) - W_1$ is homeomorphic to a closed interval with one end point in $W - W_1$ and the other end point in U - X, then $X \cap S(y)$ is not contained in W, which is a contradiction. Thus, q is not an end point of Y and Case I cannot occur.

Case II. If W(q) can be selected so that $W(q) \cap Y$ is homeomorphic to an open interval, then $X \cap Y$ is homeomorphic to a closed interval.

Let $\sigma: [-1, 1] \to X \cap Y$ be a homeomorphism into Y such that $\sigma([-1, 1])$ is contained in the interior of X and $\sigma(0) = q$. Since $\sigma(1)$ and $\sigma(-1)$ are not elements of B_{λ} , there exist open neighbourhoods W(1) of $\sigma(1)$ and W(-1) of $\sigma(-1)$ contained in X such that λ restricted to W(i) (i = +1, -1) is topologically equivalent to the natural projection map of E^{n+1} onto E^n . In addition, W(1) and W(-1) can be selected so that $W(1) \cap W(-1) = \emptyset$ and $\lambda(W(1)) =$ $\lambda(W(-1)) = D$, where D is a euclidean neighbourhood of f(q). Let D(i)(i = +1, -1) be a cross-sectional *n*-disk (for λ) contained in W(i) which contains $\sigma(i)$ and which maps onto D. For n = 1, a component of D(1) - Y and one of D(-1) - Y is contained in a component P of $\lambda^{-1}(D - f(q))$, while the other components of D(i) - Yare contained in a component P' of $\lambda^{-1}(D - f(q))$. If $D(1) \cup D(-1)$ does not separate a component of $\lambda^{-1}(D)$, then it does not separate P or P'. However, by the choice of D(1) and D(-1), their union does separate P and P'; hence, $D(1) \cup D(-1)$ separates a component of $\lambda^{-1}(D)$. For n > 1, $\dim(\lambda^{-1}(D) - (D(1) \cup D(-1))) \ge 3$ and $\dim(Y) = 1$; hence, if $\lambda^{-1}(D) - (D(1) \cup D(-1)) = C'$ is connected, then C' - Y is also connected (7, p. 48, Theorem IV 4). By choice of $\{D(i)\}, C' - Y$ is not connected. Hence, for all $n \ge 1, D(1) \cup D(-1)$ separates $\lambda^{-1}(D)$. Define Γ to be the union of $D(1) \cup$ D(-1) and the component of C' containing q.

Let k be a non-zero integer and let m = |k|. Since $\sigma(k^{-1})$ is not an element of B_{λ} , there exists for each k with $m \ge 2$ an open euclidean neighbourhood W(k) of $\sigma(k^{-1})$ contained in Γ , such that $\lambda|W(k)$ is topologically equivalent to the natural projection map of E^{n+1} onto E^n . The W(k)'s can be selected to be pairwise disjoint and disjoint from $D(1) \cup D(-1)$. Select in W(k) a pair of partial cross-sectional open n-disks (D(k), D'(k)) through $\sigma(k^{-1})$ such that $D'(k) \subset D(k), \ \lambda(D(k), \ D'(k)) = \lambda(D(-k), \ D'(-k))$, and so that there exists a homeomorphism $\mu: S^{n-1} \times (0, 1) \to D - f(q)$ with

$$\mu\left(S^{n-1}\times\left(0,\frac{1}{m}\right)\right)=\lambda(D(k)-y)$$

and

$$\mu\left(S^{n-1}\times\left(0,\frac{1}{m+1}\right)\right)=\lambda(D'(k))-Y).$$

The map $\mu^{-1}\lambda$ restricted to $\Gamma - Y$ has empty branch set and is proper; thus, by Proposition 2.1 it is a fibre bundle map with fibre homeomorphic to [-1, 1]. By (10; p. 53, Theorem 11.4), this map is bundle equivalent to

 $\xi: (\Gamma \cap \lambda^{-1}(\mu(S^{n-1} \times \{t\}))) \times (0,1) \to S^{n-1} \times (0,1)$

defined by $\xi(x, u) = (\mu^{-1}\lambda(x), u)$, where *t* and *u* are elements of (0, 1) and $x \in \Gamma \cap \lambda^{-1}(\mu(S^{n-1} \times \{t\}))$. It follows from Remark 2.4 that ξ is trivial, and therefore there exists a homeomorphism $\alpha: \Gamma - Y \to S^{n-1} \times (0, 1) \times [-1, 1]$ such that $\mu^{-1}\lambda\alpha^{-1} = \pi$, where π is the product projection map onto $S^{n-1} \times (0, 1)$.

For
$$z \in S^{n-1} \times (0, 1)$$
, let $v_k(z) = \pi^{-1}(z) \cap \alpha(D(k) - Y)$. Let
 $u_m: (0, 1) \to [0, 1]$

be defined by

$$egin{aligned} u_m(t) &= 0 \quad ext{if } t \in \left(0, rac{1}{m+1}
ight), \ u_m(t) &= m^2 t + mt - m \quad ext{if } t \in \left[rac{1}{m+1}, rac{1}{m}
ight), \end{aligned}$$

and

$$u_m(t) = 1$$
 if $t \in \left\lfloor \frac{1}{m}, 1 \right)$.

666

Define
$$s_k: S^n \times (0, 1) \to [-1, 1]$$
 for $m = 1$ by $s_k(z) = v_k(z)$, and for $m \ge 2$ by
 $s_k(z) = \frac{1}{2}u_m(t)(s_{m-1}(z) + s_{-m+1}(z)) + (1 - u_m(t))v_k(z),$

where $z \in S^{n-1} \times \{t\}$.

If $\rho_k(z) = (z, s_k(z))$, then $\alpha^{-1}\rho_k\mu^{-1}$ is a cross-section for $\lambda | \Gamma - Y$. Let $E(k) = \sigma(k^{-1}) \cup (\alpha^{-1}\rho_k\mu^{-1}(D - f(q)))$. Then E(k) is a cross-sectional *n*-disk which is an extension of the partial cross-section D'(k). In addition, E(k) and E(-k) are equal over $\mu(S^{n-1} \times [m^{-1}, 1])$ while they are otherwise disjoint.

For $m \geq 2$, the union of E(k) and the component of $\Gamma - E(k)$ disjoint from E(-k) will be called L(k). Since $B_{\lambda} \cap L(k) = \emptyset$, L(k) is the total space of a product bundle over D with suitable restriction of λ as map and fibre homeomorphic to a closed interval (Proposition 2.1 and (10, p. 53, Corollary 11.6)). In addition, L(m) - L(m-1) and L(-m) - L(-m+1)are total spaces of product bundles over $\mu(S^{n-1} \times (0, m^{-1})) \cup f(q)$ with suitable restriction of λ as map and fibre a half-open interval. Let $S_j(r)$ be the open euclidean *j*-ball of radius *r* centred at the origin $\{0\}$ in E^j . Define $\beta: D \to S_n(1)$ to be a homeomorphism with $\beta\mu(S^{n-1} \times (0, t)) = S_n(t) - \{0\}$ for each $t \in (0, 1)$. Consider $S_n(1) \times [-1, 1]$ as a subset of $E^n \times E^1$ and let $\delta: S_n(1) \times [-1, 1] \to S_n(1)$ be a product projection. For each $m \geq 3$ there exists a homeomorphism

$$h_m: L(m) \cup L(-m) \to (S_n(1) \times [-1, 1]) - S_{n+1}(m^{-1})$$

so that $\beta \lambda h_m^{-1}|S_n(1) \times [-1, 1] - S_{n+1}(0, m^{-1})$ is the appropriate restriction of δ , and $h_m|L(m-1) \cup L(-m+1) = h_{m-1}$. If $x \in L - \{q\}$, then there exists an integer k such that $x \in L(k)$; thus define $\gamma(x) = h_m(x)$, and let $\gamma(q)$ be the origin in E^{n+1} . Then γ is a homeomorphism of Γ onto $S_n(1) \times$ [-1, 1], and $\beta \lambda \gamma^{-1} = \delta$. However, $q \notin B_{\lambda}$, which is a contradiction; hence, Yis not locally euclidean at q and Case II cannot occur.

Case III. Suppose that W(q) is selected so that $W(q) \cap Y$ is homeomorphic to a collection of three or more half-open or closed arcs with end points identified at q. Then $X \cap ((Y) - \{q\})$ has at least three components. Let x_1, x_2 , and x_3 be three points in the interior of X which are elements of different components of $X \cap (Y - \{q\})$, and let W(i), i = 1, 2, 3, be a neighbourhood of x_i contained in X such that $\lambda | W(i)$ is topologically equivalent to the product projection of E^{n+1} onto E^n . Choose $\{W(i)\}$ so that their closures are pairwise disjoint and disjoint from q. Let D(i) be a partial cross-sectional n-disk in W(i) through x_i such that $\lambda(D(i))$ is the same euclidean neighbourhood D of f(q) for each i. The map $\lambda | \lambda^{-1}(D) - Y$ is a bundle map onto D - f(q) with fibre S^1 (by Proposition 2.1) and cross-sections $D(i) - x_i$. Let E be an open neighbourhood of q contained in $\lambda^{-1}(D)$ and disjoint from each cross-section D(i). If n > 1, then E - Y is connected (7, p. 48, Theorem IV 4); therefore, there exists a component L of $\lambda^{-1}(D) - ((\bigcup_{i=1}^3 D(i)) \cup Y)$ which contains E - Y, and $\lambda | L$ is a bundle map onto D - f(q) with fibre homeomorphic to

J. G. TIMOURIAN

an open interval. By (10, p. 53, Theorem 11.4) and Remark 2.4, $\lambda | L$ is topologically equivalent to the projection map of $(D - f(q)) \times (0, 1)$ onto (D - f(q)). However, the closure of L has non-empty intersection with each D(i), which is a contradiction. Hence, either (a) q is a point component of $f^{-1}(f(q))$, or (b) n = 1, q is not a point component of $f^{-1}(f(q))$, and $f^{-1}(f(q))$ fails to be locally euclidean at q.

Now, for the *proof of Theorem* 1.2, observe that if $B_f = \emptyset$, then f is a locally trivial fibre map by Proposition 2.1; if q is an element of B_f and is a point component of $f^{-1}(f(q))$, then by Lemma 2.2, q is an isolated point in $f^{-1}(f(B_f))$, and thus Proposition 2.1 implies that q is an isolated point in the set A_f defined in (13; 12; or 5). It follows from (12, p. 62, Theorem 1.6) that (i) or (ii) must occur. If n = 1, then q is not a point component of $f^{-1}(f(q))$, and $f^{-1}(f(q))$ fails to be locally euclidean at q, then f is an interior map at q and Nathan (8) has shown that (ii) must hold.

References

- 1. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc. 109 (1963), 87-100.
- **2.** Factorization of differentiable maps with branch set dimension at most n 3, Trans. Amer. Math. Soc. 115 (1965), 370–387.
- 3. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J. 27 (1960), 527-536.
- 4. Light open maps on n-manifolds. III, Duke Math. J. 30 (1963), 379-390.
- 5. P. T. Church and J. G. Timourian, Fiber bundles with singularities, J. Math. Mech. 18 (1968), 71-90.
- 6. J. Dieudonné, Foundations of modern analysis (Academic Press, New York, 1960).
- W. Hurewicz and H. Wallman, *Dimension theory*, 2nd ed. (Princeton Univ. Press, Princeton, N.J., 1948).
- 8. W. D. Nathan, *Open mappings on manifolds*, Doctoral dissertation, Syracuse University, Syracuse, New York, 1968.
- 9. R. S. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125-141.
- 10. N. Steenrod, The topology of fiber bundles (Princeton Univ. Press, Princeton, N.J., 1951).
- S. Stoïlow, Sur les transformations continues et la topologie des fonctions analytiques, Ann. Sci. École Norm. Sup. (III) 45 (1928), 347–382.
- 12. J. G. Timourian, Fiber bundles with discrete singular set, J. Math. Mech. 18 (1968), 61-70.
- 13. ——— Singular fiberings of manifolds, Doctoral dissertation, Syracuse University, Syracuse, New York, 1967.
- 14. G. T. Whyburn, Analytic topology, 2nd ed., Amer. Math. Soc. Colloq. Publ., Vol. 28 (Amer. Math. Soc., Providence, R.I., 1963).

Syracuse University, Syracuse, New York; University of Tennessee, Knoxville, Tennessee