
MAPS WITH DISCRETE BRANCH SETS BETWEEN 
MANIFOLDS OF CODIMENSION ONE 

J. G. TIMOURIAN 

1. Introduction. Let Mn and Np be separable manifolds of dimensions 
n and p, respectively, with n ^ p, and without boundary unless otherwise 
indicated. A m a p / : M --> N is proper if, for each compact set K C N, f~l(K) 
is compact. I t is topologically equivalent to g: X —> Y if there exist homeo-
morphisms a oi M onto X and /3 of N onto F such that fifor1 = g. At x £ M, 
/ is locally topologically equivalent to g if, for every neighbourhood I F C M of 
x, there exist neighbourhoods U C Wof # and Fof / (x) such tha t / | £/: {7 —> V 
is topologically equivalent to g. 

Definition 1.1. L e t / be a map of ikP (possibly with boundary) into Np. 
The branch set Bf C M* is defined in (12) by: x is an element of Mn — B f 

if and only if / at x is locally topologically equivalent to the natural product 
projection map of En or E+

n onto Ep, where E+
n is a (closed) euclidean 

half-space. 

THEOREM 1.2. / / / : M"p+1 —» iVp is proper and Bf is discrete, then either 
(a) Bf is empty and f is a fibre bundle map, or 
(b) p = 1 or 3, awd for each q £ Bf the map f at q is locally topologically 

equivalent to 6, where 
(i) 0: E2-^E1by 6{z) = |*|, 

(ii) 0: E2 —» E 1 fry 0(s) = Re zd, d an integer greater than one, or 
(iii) 6: E4 —» E 3 fry the natural extension of the Hopf map from S3 onto S2 

to a map of the open cone of S3 onto the open cone of S2. 

Il f is said to be differentiate of order m, it is understood that Mn and Np 

are differentiate manifolds of order m. The critical set of/ is the collection of 
points in Mn at which the map has rank less than p. 

COROLLARY 1.3. If f: Mp+l —> Np is a Cm proper map with critical set discrete, 
then either (a) or (b) of Theorem 1.2 is satisfied. 

Proof. The set Bf is contained in the set of critical points by the Rank 
Theorem (6, p. 273, Theorem 10.3.1). 

Remark 1.4. If/: M* -> Np and d im/" 1 (y) ^ 0 for each y Ç f(Bf), then for 
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MANIFOLDS 661 

any q (z Bf there are connected open neighbourhoods U C Mn of q and V C Np 

of/(g) such that / | Z7: Z7—> F is proper. (Same proof as in (5, p. 74, Lemma 1.14)). 

COROLLARY 1.5. Let f: Mp+1 —• Np be a Cp+1 map with Bf9*0 and 
dim /-!(y) ^ O/0r *w;ft y G / ( £ / ) . 

(a) 77&ew ^ere is a closed set Y C Bf such that dim Y < dim Z3/, awd at 
each point x £ Bf — Y the map f is locally topologically equivalent to 6 X i*, 
^/zere 0 is the map in (i) or (iii) 0/ Theorem 1.2 awd t* is ^ e identity map on Ek. 

(b) J / / is proper and onto, only 6 in (iii) occurs. 

Proof. By Remark 1.4 there exist neighbourhoods U oî q £ Bf and V of 
f(q) such t h a t / : i7—» V is a proper map. By Theorem 1.2, / restricted to 
U — Bf is a bundle map, and hence Bf = Af'm (5, p. 72, Definition 1.4). I t 
follows from (5, p. 83, Lemma 4.1) t h a t / has the desired local structure. 

Remark 1.6. Although/ is assumed differentiate in Corollaries 1.3 and 1.5, 
the local structure of / about q Ç Bf is given by a topological equivalence, 
and this cannot be improved to a differential equivalence (5, p. 72, Remark 1.6). 

Most of this research formed part of the author's Ph.D. dissertation (13) 
written at Syracuse University and directed by Professor P. T. Church. 

2. Preliminary lemmas. If/: Mp —> Np, then the branch set Bf coincides 
with the set of points at which / fails to be a local homeomorphism, a set 
which has been very significant in studies by Church, Hemmingsen, and 
others; see, for example, (1-4). If/ is proper and is a local homeomorphism, 
then it is a covering map (9, p. 128, Theorem 4.2). 

PROPOSITION 2.1. Let Mp+1 (possibly with boundary) and Np be connected 
manifolds. Iff: Mp+1 —> Np is proper and Bf = 0, then f is a fibre bundle map. 

Proof. By (12, p. 63, Lemma 2.3) there is a factorization of / into hg, where 
g is a monotone map onto the ^-manifold Kp and h is a covering map. Since 
h is a local homeomorphism, Bg is empty, and it suffices to show that g is 
locally trivial. 

If y is an element of Kp, then g~x(y) is homeomorphic to S1 or a closed 
interval. If g_1(;y) is homeomorphic to S1, let {Iff. i = 0, 1, . . . , n — 1} be 
a minimal cover of g~l(y) by open sets of Mp+1, ordered so that UiC\ Uj C\ 
g~l{y) is empty if j ^ (i — 1, i, or i + 1) mod(w), and selected so that there 
exist homeomorphisms a*: Ui~+Ep X El and /3: g(Ui) —* Ep (where 0 and 
g(Ui) are the same for each i) with $ga{~1 the product projection map of 
Ep X E1 onto £p . For each i and j = (i — 1) mod(w) choose a point g* in 
f/i r\ Uj r\ ^_1(y)- Let Wi be a neighbourhood of qt contained in Ui C\ Uj 
such that Wtr\Wk = 0 ior i?£ k mod(»), g(Wt) = g{Wk), 13 restricted to 
g(Wt) is a homeomorphism onto an open £-disk D contained in Ep, and «i 
restricted to Wi is a homeomorphism onto D X {£*} for some ^ in JS1. Without 
loss of generality, assume that tt = 0 for each i and assume that a{ was 
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selected so that its second coordinate function is positive on qkt where k = 
(i + 1) mod(«). 

Define the homeomorphism <£*: D X E1 —» D X E1 by ct>i(x, t) = (x,Si(x,t)) 
where st(x, i) = (nt/2iv — i)ut(x), and ut(x) is the point in E1 such that 
(x> Uf(x)) Ç cti(Wk), k = (i + 1) mod(w). The sets IF* and Wk separate 
g~l($~l{D)) ; therefore, if L* is the union of Wi VJ Wk and the component of 
rHfi-HD)) - (WtKJ Wk) contained in Uu then 

ai(Li) = <t>t(D X [2wi/n, 2irk/n}). 

Since U i ^ = g-l($-l{D)) and U* CD X [27ri/», 2TT£/W]) can be considered 
a s D X S1, the map 7: g~l{fi~l{D)) -^D X Sl defined by 7(2) = ^ ^ ^ ( s ) , 
where z Ç L i ( is a homeomorphism such that figy~l is the natural product 
projection of D X S1 onto D. Hence, / and g are fibre bundle maps. 

When Mn is a manifold with non-empty boundary, a similar proof yields 
t h a t / and g are fibre bundle maps, where the fibre for g is a closed interval. 

LEMMA 2.2. / / / : Mn —» 7VP is a proper map with Bf consisting of isolated 
points, then 

(a) f(Bf) consists of isolated points; 
(b) if Nv is connected and p > 1, then f is open and onto; 
(c) f~~l(y) has a finite number of components for each point y € Nv; 

Proof. The proof of (a) will be omitted. 
The map / restricted to M' = Mn — / _ 1 ( / ( ^ / ) ) is a proper map into 

Np —fiBf), which implies that f(M') is a closed subset of Np — f(Bf). 
Since M' is open a n d / | M ' is interior, f{Mf) is an open subset of Nv — f(Bf). 
If Np is connected and p > 1, then iVp — / (B/) is connected, and t h u s / is an 
onto map. The map / is interior except possibly at points in Bf. If X C Bf 

is the set of all elements in Mn at which / is not interior, suppose that q G X 
and let U be an open neighbourhood of q such that U C\ Bf = {q}. If Q is the 
component of U ^ / _ 1 ( / ( ^ ) ) containing q and Q — {q\ is not empty, then 
f(q) is an interior point of the image of any open neighbourhood of q contained 
in U. Thus, / is interior at q, which is a contradiction; hence, each q G X is a 
point component of tl(j{q)). Since X C\ Cl(Mn - X) = X, f(q) must 
locally separate Np (14, p. 149, Theorem 7.81). If p > 1, however, then/(g) 
cannot locally separate Np; thus, X is empty a n d / is an open map. 

Statement (c) is true for each y Ç Np — f(Bf), since Z - 1 ^ ) is either empty 
or a compact (w — £)-manifold. Consider y £ Np such that there exists at 
least one element q in BfC\f~l{y). If p = 1 and g is a point component of 
Z-1(30> then there exists a neighbourhood F of /(g) such that if U is the 
component of f~l(V) containing g, then U C\ Bf = {g}. By (12, p. 63, 
Lemma 2.3), there exists a positive integer k such that t / P i / - 1 ( ^ ) has k 
components for each x in a component of F — {y}. Suppose that U (~\f~l{y) 
has at least k + 2 components, and let IF be a neighbourhood of y contained 
in V such that U C^f~l{W) has at least k + 2 components <2, Qi, . . . , Qk+i, 
where Q contains g. Since f(Qi) = W, for each x in W — {y} there are at least 
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k + 1 components in U r\f~l(x), which is a contradiction to the choice of k. 
Hence, U r\f~x(y) has a finite number of components if g is a component of 
f~l{y). If q is not a point component of f~l{y), suppose that {qt} is a sequence 
of point components of f~l(y) contained in Bf and converging to qf 6 / _ 1 (y) . 
Then g' is also an element of Bf, which is a contradiction to Bf consisting of 
isolated points; hence, there exists an open neighbourhood V of y with 
V C\f(Bf) = {y} and with the property that if U is the component of f~l{V) 
containing q, then no component of U C\f~l{y) is a single point. By a process 
similar to the one just discussed, U C\f~l(y) has a finite number of compo
nents, and since f~l(y) is compact, it has a finite number of components. 
For p > 1, the desired conclusion follows from (12, p. 64, Lemma 2.5). 

LEMMA 2.3. Let Mn and Np be connected manifolds, n ^ p ^ 2, and let 
f: Mn —> Np be a proper map. If f(Bf) consists of isolated points and 
dimfjf-1^)) â n — 2 for each y G f(Bf), then there exists a unique factorization 
of f into hg, where 

(a) g: Mn —• Kp is a monotone map onto the p-manifold Kp, and either 
(b) p = 2 and h: K2 ^ N2 is locally topologically equivalent at x G K2 to an 

analytic function d{z) = zd, d a positive integer, or 
(c) p ^ 3 and h: Kp —* Np is a &-to-l covering map. 
In particular, if B f is discrete and p ^ 2, then f has such a factorization. 

Proof. If V is an open connected set in Np and U is a component of f~1(V), 
then /(£/) = F. The manifold Np = UiLiXiy where Xt is compact and 
Xt C Xi+1. Since/ is proper, / restricted to / _ 1 (Xi ) has a unique monotone-
light factorization (14, p. 141, Theorem 4.1); it follows t h a t / is also equal to 
hg, where g is a monotone map onto an intermediate space K and h is light. 

The space M' = Mn - f~l(J{Bf)) is connected (7, p. 48, Theorem IV 4), 
and by the proof of (12, p. 75, Lemma 2.3), f\Mf can be factored into the 
restriction of g to a monotone map of M' onto the £-manifold Kf = 
K — h~l(f(Bf)) followed by the restriction of h to a &-to-l covering map of 
Kf onto Np -f(Bf). 

Let y G /(-S/) and let D b e a closed euclidean neighbourhood of y such that 
D r\f(Bf) = {y}. Each component of f~l{D) is mapped b y / onto D; hence, 
h~l(y) contains at most k points. The components of h~l{D — {y}) are 
homeomorphic to D — {y), and thus the components of h~1(D) are each 
topologically the union of disjoint closed euclidean ^-disks identified at their 
centre points. If L is a component of h~l(D) that is separated by an element 
z in h~l(y), then g~l(z) must separate g~l{L). However, g~l(L) is a component 
of f~l(D) and is an ^-manifold with boundary, while dim (g~l{z)) ^ n — 2, 
thus by (7, p. 48, Theorem IV 4), g~l{z) cannot separate g~l(L). Hence, no 
component of h~l(D) is separated by a point in h~l(y), each component of 
h~l(D) is homeomorphic to D, and K is a ^-manifold Kp. 

The set Bh is contained in h~l(f(Bf)). If ^ is empty, then (9, p. 128, 
Theorem 4.2) implies (c) ; if Bh is not empty, then by (3, p. 535, Theorem 5.9), 
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p = 2, and (11) implies (b). If Bf is discrete, then f(Bf) is discrete by 
Lemma 2.2 and dim(/ -1(30) ^ n — p for each y in f(Bf) ; therefore, / has the 
required factorization. 

Remark 2.4. Suppose t h a t / : L —•£" is a locally trivial fibre map with fibre 
homeomorphic to an open, half-open, or closed interval. Then / is trivial 
(topologically equivalent to a product projection) if n > 1, or if n = 1 and 
there exist at least two disjoint cross-sections. 

3. Proof of Theorem 1.2. 

LEMMA 3.1. Iff: Mn+l —+ Nn is a proper map with Bf a non-empty discrete set, 
then for each a G Bt either 

(a) a is a point component of f~l{f(q))y or 
(b) n = 1, a is not a point component of f~l{f(q)), and f~l(f(q)) fails to be 

locally euclidean at q. 

Proof. Let F be the component of f~l{f{q)) containing g, and suppose that 
F is not equal to {q}. The main body of this proof will consist of three parts: 
(I), (II), and (III). In (I), there is an open neighbourhood of q in F which is 
homeomorphic to a half-open interval with q as the end point; in (II) there is 
an open neighbourhood of g in F which is homeomorphic to an open interval, 
and in (III) there is an open neighbourhood of g in F which is homeomorphic 
to a collection of three or more half-open or closed arcs with end points 
identified at q. 

By Lemma 2.2, f(Bf) consists of isolated points a n d / - 1 (/(g)) has a finite 
number of components; therefore, there exists a euclidean neighbourhood V 
of /(g) such that V C\f{Bf) = / ( g ) and if U is the component of f'l{V) 
containing g, F the component of/-1 (/(g)) containing g, then U' C\ f~l (J\Bf)) = 
U r\ F. If X = f\U, then X is proper and Bx = Y Pi Bf. By Lemma 2.2, X is 
open and onto if n > 1 ; however, since no element of B\ is a point component 
of X_1(X(g)), the same proof shows that X is also open and onto when n = 1. 

If n = 1, then by Proposition 2.1, X restricted to each component of U — F 
is a locally trivial fibre map onto a component of V — /(g) homeomorphic to 
an open interval. Hence, X restricted to each component of U — F is trivial 
(10, p. 53, Corollary 11.6) and for each y Ç V — / (g) , ^~1(y) is homeomorphic 
to a finite disjoint union of copies of S1. If n è 2, then Lemma 2.3 indicates 
that there exists a factorization of X into hg. Since V is simply connected, if h 
is a covering map, it actually is a homeomorphism. If n = 2, let x 6 F — Bf 

and let IF be a neighbourhood of x contained in U such that X restricted to W 
is topologically equivalent to the natural projection map of E3 onto E2. There 
exists a point y in X(W) such that (h^Çy)) C\ g(W) has d components 
C\, C2, . . . , Cdl where g_1(C*) is not empty for each i = 1, 2, . . . , d. Thus, 
W r\ X -1(j) is not connected if d > 1, which is a contradiction. Hence, for 
n è 2, h is a homeomorphism, X is monotone, and X_1(^) is homeomorphic to 
S1 for each y in V — /(g) . 
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The set F is compact, connected, and, except for a discrete set, is a 1-
manifold. In addition, F is locally connected, since if it were not it would fail 
to be locally connected on a set contained in Bf that was not discrete (14, p. 18, 
(12.1)). Thus, there exists an open connected neighbourhood W(q) of q with 
compact closure W such that Y P W(q) is connected, W C U, and W P 
B\ = {q}. Since each point # in F P (bdy Wf) is disjoint from B\, there 
exists an open euclidean neighbourhood W{x) of x with compact closure C 
such that C C U> Y P C(x) is homeomorphic to a closed interval disjoint 
from B\, and YP (bdy C(x)) consists of exactly two points. Since 
Y P (bdy W) is compact, there is a finite collection of points xi, x2, . . . , xm 

such that {W(Xi)\ is an open cover. Let X be the closure of the component 
containing q of the open set W(q) — U?=i C(xi). Then X is contained in U, 
X P Y is connected and X P B\ = {q}. In addition, 

bdy(zn (F - {j})) = (bdy(z)) n r. 
Case I. If W(q) can be selected so that W(q) P F is homeomorphic to a 

half-open interval and has end point g, then X P Y is homeomorphic to a 
closed interval. The set X — F is connected ; thus, there exists a component 
U' oî U — Y containing X — F on which X is a monotone map (in fact, if 
w > 1, U' is all of U — F). Let y be an element of \{X — F), and define 
S(y) to be A-1(;y) O Uf (which is homeomorphic to S1). The single point in 
(bdy(X)) H F is not an element of B\, hence there exists an open neighbour
hood Wi of it contained in U such that \\Wi is topologically equivalent to the 
projection of En+l onto En. Let W= W\ \J (int(X)) and suppose that 
{X — W) C\ Siyi) is not empty for an infinite sequence of points {yt} con
tained in \(Wi — F) with limit point f(q). Since X is a proper map, 
lim sup((X — W) r\S(yt)) is not empty and is contained in (X — W) Pi F. 
However, by the selection of X and W\ (X — W) C\ Y is empty. Hence, 
there exists an integer rj such that for k > 77, X Pi S(3^) C W. If y G {3̂ } 
such that S(y) — W\ is homeomorphic to a closed interval with one end point 
in W — Wi and the other end point in U — X, then X P 5(3/) is not contained 
in W, which is a contradiction. Thus, q is not an end point of F and Case I 
cannot occur. 

Case II. If W(q) can be selected so that W(q) P F is homeomorphic to an 
open interval, then X P F is homeomorphic to a closed interval. 

Let a: [— 1, 1 ] — > X P F be a homeomorphism into F such that <r([— 1, 1]) 
is contained in the interior of X and c(0) = q. Since <r(l) and <T( — 1) are not 
elements of B\, there exist open neighbourhoods W(l) of a(l) and W( — l) of 
(j( —1) contained in X such that X restricted to W(i) (i = + 1 , —1) is topo
logically equivalent to the natural projection map of En+1 onto En. In addition, 
W{1) and W{-\) can be selected so that W(l) P W(-l) = 0andX(T7(l)) = 
\(W( — 1)) = Z>, where D is a euclidean neighbourhood of / (g) . Let D(i) 
(i = + 1 , — 1) be a cross-sectional w-disk (for X) contained in W{i) which 
contains <r(i) and which maps onto D. 
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For n = 1, a component of D(\) — F and one of D( — 1) — F is contained 
in a component P of \~1(D — f(q)), while the other components of D(i) — Y 
are contained in a component P' of \~l(D — f(q)). If £>(1) U D ( - l ) does 
not separate a component of X_1(D), then it does not separate P or P ' , 
However, by the choice of D(\) and D{ — 1), their union does separate P and 
P ' ; hence, D(l) U D ( - l ) separates a component of \~l(D). For w > 1, 
d i m O " 1 ^ ) - (5(1) U D ( - l ) ) ) ^ 3 and dim(F) = 1; hence, if X^CP) -
(D(l) U D( — l)) = C is connected, then C — F i s also connected (7, p. 48, 
Theorem IV 4). By choice of {D{i)}y C — F is not connected. Hence, for all 
n ^ 1,P>(1) U f l ( - l ) separates X " 1 ^ ) . Define Y to be the union of 5 (1 ) U 
D( — l) and the component of C containing q. 

Let k be a non-zero integer and let m = \k\. Since o-(^_1) is not an element 
of J3\, there exists for each k with w ^ 2 an open euclidean neighbourhood 
IF(&) of a(k~l) contained in V, such that \\W(k) is topologically equivalent 
to the natural projection map of En+l onto En. The W(k)Js can be selected to 
be pairwise disjoint and disjoint from D{1) \J D( — l). Select in W(k) a pair 
of partial cross-sectional open ^-disks (D(k), D' (k)) through <r{k~l) such that 
D'(k) CD(k), \(D(k), D'(k)) = \(D(-k), D'(-k)), and so that there 
exists a homeomorphism fj,: 5W_1 X (0, 1) —> D — f(q) with 

and 

The map /i_1X restricted to V — Y has empty branch set and is proper; 
thus, by Proposition 2.1 it is a fibre bundle map with fibre homeomorphic to 
[ — 1 , 1]. By (10; p. 53, Theorem 11.4), this map is bundle equivalent to 

*: (r r\ x-i(/i(5*-1 x {/}))) x (o, i) -+S*-1 x (o, i) 
defined by £(#, u) = (M_1X(X), U), where t and u are elements of (0, 1) and 
x £ r n \ - 1 ( / i ( 5 w - 1 X {t})). I t follows from Remark 2.4 that £ is trivial, 
and therefore there exists a homeomorphism a: T — F - ^ 5 W _ 1 X (0, 1) X 
[ — 1 , 1] such that jjr1Xa~1 = TT, where T is the product projection map onto 
S*"1 X (0, 1). 

For z e S"-1 X (0, 1), let vk(z) = TT~1{Z) C\ a(D(k) - F). Let 

um: (0, 1) -> [0, 1] 
be defined by 

um(t) = o if te (o, ^ - ) , 

um(t) = m t + mt — m if / £ 
Y_m + + 1 ' m) ' 

and 

,(0 = 1 i f / € 
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Defines*: Sn X (0, 1) —» [ —1, 1] for m = 1 by sk(z) = vk{z), and for m â 2 by 

**(«) = è«în(0(^-l(z) + S-*»+l(s)) + (1 - #,»(/) H (*), 

where s £ S*"1-X {*}. 
If pk{z) = (z, sk(z)), then a~1pA;/i~

1 is a cross-section for X| T — F. Let 
E(k) = o"(^_1) U (prlpkir

1(D — f(q))). Then E(fe) is a cross-sectional n-disk 
which is an extension of the partial cross-section Dr (k). In addition, E(k) and 
E{ — k) are equal over p,(Sn~1 X [m-1, 1]) while they are otherwise disjoint. 

For m ^ 2, the union of jE(fe) and the component of r — E(k) disjoint 
from E( — k) will be called L(k). Since B\ C\L(k) = 0, L(k) is the total space 
of a product bundle over D with suitable restriction of X as map and fibre 
homeomorphic to a closed interval (Proposition 2.1 and (10, p. 53, 
Corollary 11.6)). In addition, L(m) — L(m — 1) and L{ — m) — L( — m + 1) 
are total spaces of product bundles over ^ ( S ^ 1 X (0, mr1)) U / ( g ) with 
suitable restriction of X as map and fibre a half-open interval. Let Sj(r) be the 
open euclidean j-ball of radius r centred at the origin {0} in Ej. Define 
&: Z>-»S„(1) to be a homeomorphism with ftu^"1 X (0, t)) = Sn(t) - {0} 
for each t G (0, 1). Consider 5n(l) X [ - 1 , 1] as a subset of En X E1 and let 
8: Sn(l) X [ — 1, 1] —> Sn(l) be a product projection. For each m ^ 3 there 
exists a homeomorphism 

hn: L(m) U L ( - r o ) -> (5n(l) X [ - 1 , 1]) - Sn+l{m^) 

so that p\hnrl\Sn{l) X [ —1, 1] — Sn+i(0, m"1) is the appropriate restriction 
of ô, and hm\L(m — 1) U L( — m + 1) = fem_i. If # £ L — {g}, then there 
exists an integer k such that x £ L(k); thus define 7(3;) = hm(x), and let 
7(g) be the origin in En+1. Then 7 is a homeomorphism of T onto Sn(l) X 
[ — 1, 1], and fi\y~1 = 3. However, q g I3\, which is a contradiction; hence, F 
is not locally euclidean at q and Case II cannot occur. 

Case III . Suppose that W(g) is selected so that W(q) n F i s homeomorphic 
to a collection of three or more half-open or closed arcs with end points 
identified at q. Then X C\ ((F) — {q}) has at least three components. Let 
#1, #2, and x3 be three points in the interior of X which are elements of different 
components of X C\ ( F — {q}), and let W(i), i = 1, 2, 3, be a neighbourhood 
of #* contained in X such that X| W(i) is topologically equivalent to the product 
projection of En+1 onto En. Choose {JF(i)} so that their closures are pairwise 
disjoint and disjoint from q. Let D(i) be a partial cross-sectional w-disk in 
W{i) through xt such that \(D(i)) is the same euclidean neighbourhood D of 

/(g) for each i. The map X|\"~1(E>) — F is a bundle map onto D — f(q) with 
fibre 5 1 (by Proposition 2.1) and cross-sections D(i) — xt. Let £ be an open 
neighbourhood of q contained in \~1(D) and disjoint from each cross-section 
D(i). If n > 1, then E — Y is connected (7, p. 48, Theorem IV 4); therefore, 
there exists a component L of X_1(£>) — ((U«=i£Ki)) ^ F) which contains 
£ — F, and X|L is a bundle map onto D — /(g) with fibre homeomorphic to 
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an open interval. By (10, p. 53, Theorem 11.4) and Remark 2.4, X|L is topo-
logically equivalent to the projection map of (D — f(q)) X (0,1) onto 
(D — / (#)) . However, the closure of L has non-empty intersection with each 
D(i), which is a contradiction. Hence, either (a) q is a point component of 
/ _ 1 ( / (g) ) , or (b) n = 1, q is not a point component of f~l(f(q))y a n d / - 1 (/(<?)) 
fails to be locally euclidean at q. 

Now, for the proof of Theorem 1.2, observe that if Bf = 0, t h e n / is a locally 
trivial fibre map by Proposition 2.1; if g is an element of Bf and is a point 
component of/ -1 (/(g)), then by Lemma 2.2, q is an isolated point in f~l(J\B/)), 
and thus Proposition 2.1 implies that q is an isolated point in the set Af 

defined in (13; 12; or 5). I t follows from (12, p. 62, Theorem 1.6) that (i) or 
(ii) must occur. If n — 1, then q is not a point component of / _ 1 ( / (g)) , and 

/ _ 1( / (g)) fails to be locally euclidean at q, then / is an interior map at q and 
Nathan (8) has shown that (ii) must hold. 
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