J. Austral. Math. Soc. (Series A) 50 (1991), 53-66

STRUCTURE OF PSEUDO-SEMISIMPLE RINGS

SAAD MOHAMED and BRUNO J. MÜLLER

(Received 2 May 1989; revised 10 October 1989)

Communicated by B. J. Gardner

Abstract

A ring R is called right pseudo-semisimple if every right ideal not isomorphic to R is semisimple. Rings of this type in which the right socle S splits off additively were characterized; such a ring has $S^2 = 0$. The existence of right pseudo-semisimple rings with zero right singular ideal Z remained open, except for the trivial examples of semisimple rings and principal right ideal domains. In this work we give a complete characterization of right pseudo-semisimple rings with $S^2 = 0$. We also give examples of non-trivial right pseudo-semisimple rings with Z = 0; in fact it is shown that such rings exist as subrings in every infinite-dimensional full linear ring. A structure theorem for non-singular right pseudo-semisimple rings, with homogeneous maximal socle, is given. The general case is still open.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 16 A 48; secondary 16 A 42, 16 A 52.

Throughout this paper, S, Z and J will stand for the right socle, the right singular ideal and the Jacobson radical of a ring R. A local ring R will mean one in which $J \neq 0$ and R/J is a division ring. For a subset X of R, X^0 and ${}^{0}X$ will denote the right and left annihilators in R. It is true in general that $S \leq {}^{0}J$, and if R/J is semisimple (in particular if R is local), then $S = {}^{0}J$. We also note that Z and J contain no non-zero idempotents of R; hence a regular ring R has Z = J = 0.

The split extension $R \rtimes M$ of a ring R by an (R - R)-bimodule M, is the ring of all ordered pairs $(r, m), r \in R$ and $m \in M$; with addition defined componentwise and multiplication defined by $(r, m) \cdot (r', m') = (rr', rm' + mr')$.

This research was supported in part by the NSERC of Canada, grants A4033 and A8778.

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

The set of positive integers will be denoted by \mathbb{N} .

1. General results

LEMMA 1.1. Let R be a right pseudo-semisimple ring. If $R = A \oplus B$ for right ideals A and B, then A or B is semisimple.

PROOF. Assume that A is not semisimple; then $A \cong R$. Hence $A = A_1 \oplus B_1$ with $A_1 \cong A \cong R$ and $B_1 \cong B$. Iterating this process, we obtain $R = A_n \oplus B_n \oplus \cdots \oplus B_1$ for every $n \in \mathbb{N}$. Hence R contains the right ideal $\bigoplus_{i \in \mathbb{N}} B_i$ with $B_i \cong B$. This right ideal is not finitely generated, and therefore not isomorphic to R. Thus it is semisimple, and hence B is semisimple.

COROLLARY 1.2. Let R be a right pseudo-semisimple ring which is not semisimple.

(1) If $R = A \oplus B$ for non-zero right ideals A and B, then exactly one of them is semisimple and the other one is isomorphic to R. In particular neither A nor B is an ideal.

(2) If e is a non-trivial idempotent of R, then $eR(1-e) \neq 0$.

LEMMA 1.3. If R is right pseudo-semisimple, then R/S is a principal right ideal domain.

PROOF. It is obvious that R/S is a principal right ideal ring. Consider $a, b \in R$ with $a \notin S$ and $ab \in S$. Then $aR \cong R$, and hence $R = a^0 \oplus C$ where $C \cong aR \cong R$. Thus $a^0 \leq S$ by Lemma 1.1. Write b = x + y with $x \in a^0$ and $y \in C$. Since $S \geq abR = ayR \cong yR$, we have $y \in S$. Therefore $b = x + y \in S$.

It follows by Lemma 1.3 that a ring R with zero right socle is right pseudosemisimple if and only if it is a principal right ideal domain. We call a right pseudo-semisimple ring R non-trivial if $0 \neq S \neq R$.

LEMMA 1.4. Let R be a non-trivial right pseudo-semisimple ring. The following hold in R:

(1) S is the smallest essential right ideal;

(2) ${}^{0}S = Z \leq S \cap J;$

(3) $S = Z \oplus I$ where Z and I consist of homogeneous components (hence I is also an ideal);

(4) $S = {}^{0}x$ for every $0 \neq x \in J$, in particular if $J \neq 0$, then $S = {}^{0}J$;

(5) if $a \notin S$, then $aR \cap S = aS$ and $S = aS \oplus K$ where K is isomorphic to a direct summand of R (hence finitely generated);

(6) SZ = 0 and Z is torsion-free divisible as a left R/S-module.

PROOF. (1) Consider a non-zero right ideal A of R. Then either $A \leq S$ or $A \cong R$, and hence A contains a copy of S. In either case $A \cap S \neq 0$.

(2) $Z = {}^{0}S$ follows by (1). This also proves that $Z \not\cong R$ and hence $Z \leq S$. Then $Z^{2} \leq ZS = 0$, and consequently $Z \leq J$.

(3) If X and Y are minimal right ideals with $X \le Z$ and $Y \nleq Z$, then XS = 0 and $YS \ne 0$. Thus $X \ncong Y$.

(4) That $S \leq {}^{0}J \leq {}^{0}x$ is obvious. Consider an element $a \in R$ such that $a \notin S$. Then $a^{0} \leq S$ and is a direct summand of R (since $aR \cong R$). Therefore $a^{0} \cap J = 0$ and hence $ax \neq 0$. This proves that ${}^{0}x \leq S$, and consequently $S = {}^{0}J = {}^{0}x$.

(5) That $aS = aR \cap S$ follows by Lemma 1.3. Let $S = aS \oplus K$. Then $R \cong aR + S = aR \oplus K$.

(6) The result is trivial in the case Z = 0. Assume that $Z \neq 0$. Since $Z \leq J$, $S = {}^{0}Z$ by (4). Hence Z is a torsion-free R/S-module.

Next we prove that $Z \leq A$ for every right ideal A not contained in S. Write $Z = (A \cap Z) \oplus B$. Then $A \oplus B \cong R$. Since $B \leq Z$, $B^2 = 0$ by (2), and hence B = 0. Thus $Z = A \cap Z$ and $Z \leq A$.

Now consider an element $a \in R$ such that $a \notin S$. Since $aR \cong R$, aR = bR with $b^0 = 0$. If $br \in Z$, then brS = 0, and hence rS = 0 and $r \in Z$ by (2). Therefore $bR \cap Z = bZ$. Now

$$aZ = aRZ = bRZ = bZ = bR \cap Z = Z.$$

Hence Z is divisible as a left R/S-module.

LEMMA 1.5. Let R be a non-trivial right pseudo-semisimple ring.

(1) Z = S if and only if $S^2 = 0$ and $S \le J \le S^0$.

(2) $Z \neq S$ if and only if S contains a countable set of non-zero orthogonal idempotents and $S^0 = J < S$.

PROOF. (1) is obvious.

(2) Assume that $Z \neq S$. Then $S^2 \neq 0$, and hence S contains a non-zero idempotent. By an argument similar to that given in Lemma 1.1, we conclude that S contains a countable set of non-zero orthogonal idempotents $\{e_n\}$.

Write $S = (J \cap S) \oplus X$. It is clear that the projections of the e_n into X are still non-zero orthogonal idempotents, and hence X is not finitely generated. It then follows by Lemma 1.4(5) that $J \not\cong R$. Thus $J \leq S$, and since $S^2 \neq 0$, J < S.

Let $B = S^0$. Then $J \leq B$ and so $J \leq B \cap S$. Moreover $(B \cap S)^2 = 0$, and hence $B \cap S \leq J$. Thus $B \cap S = J$ and $S = (B \cap S) \oplus X$. Again by Lemma 1.4(5) we get $B \not\cong R$ and hence $B \leq S$. Therefore $B = B \cap S = J$.

The converse is obvious.

COROLLARY 1.6. If R is a right pseudo-semisimple ring, then the right socle of R contains the left socle.

PROOF. The result is obvious in the trivial cases. So assume that R is non-trivial and consider the two cases of Lemma 1.5.

If Z = S, study a minimal left ideal A. Assume that $A^2 \neq 0$. Then A = Re for some idempotent e such that $0 \neq e \neq 1$. However, by Lemma 1.1, either $e \in S$ or $1 - e \in S$, in contradiction to $S^2 = 0$. Hence $A^2 = 0$, and A < S by Lemma 1.3.

If $Z \neq S$, then $S^0 < S$ by Lemma 1.5. It follows readily that S is essential as a left ideal, and therefore contains the left socle.

The following generalization of our theorem in [3] characterizes right pseudo-semisimple rings with socle square zero.

THEOREM 1.7. Let R be a ring with $S^2 = 0$. Then R is right pseudosemisimple if and only if R/S is a principal right ideal domain and S is torsion-free divisible as a left R/S-module.

PROOF. The 'only if' part follows from Lemma 1.3 and Lemma 1.4 ((2) and (6)).

Conversely, assume that R satisfies the conditions. Consider a right ideal A of R which is not contained in S, and select $x \in A - S$. Since $_{R/S}S$ is divisible, $S = xS \le A$. Now R/S is a principal right ideal domain implies A = aR with $a^0 \leq S$. But then $a^0 = 0$ as $_{R/S}S$ is torsion-free. Hence $A = aR \cong R$.

According to Lemma 1.5, a non-trivial right pseudo-semisimple ring with $S^2 = 0$ satisfies $0 \neq S \leq J \leq S^0$. We list examples of the four possible cases.

EXAMPLES 1.8. (1) $S = J = S^0$: any local ring R with $J^2 = 0$.

(2) $S = J < S^0$: $R = F[X] \rtimes F(X)$, the split extension of the polynomial ring over a field F by the rational function field, made into an F[X]bimodule via the natural multiplication on the left and multiplication by the constant coefficient on the right; compare [3].

(3) $S < J = S^0$: the localization of (2) at $\langle X \rangle$. (4) $S < J < S^0$: the localization of (2) at $\langle X \rangle \cap \langle X + 1 \rangle$. **THEOREM** 1.9. Let R be a ring with $S \neq 0$ and $S^2 = 0$. Then R is right and left pseudo-semisimple if and only if R is a local ring with radical square zero.

PROOF. The 'if' part is obvious. Conversely, assume that R is right and left pseudo-semisimple. Then the left-right analogue of Corollary 1.6 implies that S is the left socle of R. Consider a minimal left ideal A. Since $A^2 = 0$, A = Rx with $x \in J$, and $A \cong R/^0 x$. Since $S = {}^0 x$ by Lemma 1.4(4), S is a maximal left ideal. Then S = J as $S \leq J$ and the result follows.

PROPOSITION 1.10. Let R be a non-trivial right pseudo-semisimple ring. Then R/Z is right pseudo-semisimple with Z(R/Z) = 0. Moreover R/Z is semisimple if and only if R is a local ring with radical square zero.

PROOF. Let T/Z be the right socle of R/Z. Then it is obvious that $S \le T$. Moreover T/S is contained in the right socle of R/S. Since R/S is a domain by Lemma 1.3, T = S or T = R.

(i) Consider the case T = S. Let A/Z be a right ideal of R/Z such that $A/Z \leq S/Z$. Then $A \leq S$ and hence A = aR for some $a \in R$ with $a^0 = 0$. Since Z = aZ by Lemma 1.4(6), we obtain

$$R/Z \cong aR/aZ = A/Z.$$

Thus R/Z is right pseudo-semisimple.

Next we prove that Z(R/Z) = 0. If Z = S, then R/Z is a domain by Lemma 1.3, and the result holds trivially. So, assume that $Z \neq S$. Then by Lemma 1.4(3), $S = Z \oplus I$ for a non-zero ideal I of R. Consider $x + Z \in Z(R/Z)$. Then $xS \leq Z$, and hence $xI \leq Z \cap I = 0$. Consequently $xR \not\cong R$, and therefore $x \in S$. Then xZ = 0 by Lemma 1.4(6), and $xS = x(Z \oplus I) = 0$. Thus $x \in Z$.

(ii) Now, assume that T = R. Then R/Z is semisimple, and clearly Z(R/Z) = 0. We claim that Z is a maximal ideal. Let u be a central idempotent in R/Z. Since Z is a nil ideal by Lemma 1.4(2), we may assume that u = e + Z for some idempotent $e \in R$. According to Lemma 1.1, $e \in S$ or $(1 - e) \in S$; we may assume that $e \in S$. Then $Z \cap eR = 0$. Since $eR(1 - e) \leq Z$, eR(1 - e) = 0. It then follows by Corollary 1.2(2) that e = 0 or e = 1. Thus R/Z has no non-trivial central idempotents, and is therefore simple artinian. This proves our claim. Since $Z \leq S \cap J$ by Lemma 1.4(2), we obtain S = J = Z. It then follows by Lemma 1.3 that

57

R/J is a division ring. Hence R is a local ring with $J^2 = 0$. The rest is obvious.

2. Maximal socle

We turn to the second type in Lemma 1.5. Here we do not know of an effective criterion for pseudo-simplicity. However, right pseudo-semisimple rings R of this type are characterized in the special case where S is a maximal right ideal. In view of Lemma 1.3, this additional assumption is automatically satisfied if R is regular.

We start by listing some properties of rings R with maximal socle. Note that such rings are local if and only if $S^2 = 0$. The proofs are straightforward, and hence are omitted.

LEMMA 2.1. Let R be a non-local ring with maximal socle (that is, R/S is a division ring and $S^2 \neq 0$). Then R has the following properties:

(1) S is the only proper essential right ideal;

(2) every right ideal is semisimple or a direct summand;

(3) if $R = A \oplus B$ for right ideals A and B, then precisely one of them is semisimple;

(4) ${}^{0}S = Z \le J < S$, and $J^{2} = 0$;

(5) $J \leq A$ for every right ideal A not contained in S;

(6) R is regular if and only if J = 0 if and only if R is semiprime.

Consider an idempotent g in the socle of an arbitrary ring R. It is well known that $(1-g)R \cong R$ holds if and only if $R \cong R \oplus gR$ if and only if there exist t, $t^* \in R$ such that $t^*t = 1$ and $tt^* = 1-g$ (hence $R(1-g) \cong R$ also holds). We call t a *shift* for g.

Now assume that for every isomorphism type of indecomposable idempotents f in S, there is a representative f' for which there exists a shift. Then $R \oplus fR \cong R \oplus f'R \cong R$. It follows that R has a shift for every idempotent $e \in S$. Indeed, $eR = \bigoplus_{i=1}^{n} e_i R$ with e_i indecomposable, and hence

 $R \oplus eR = R \oplus e_1R \oplus \cdots \oplus e_nR \cong R.$

Such a ring R is said to have enough shifts.

THEOREM 2.2. Let R be a non-local ring with maximal socle. Then R is right pseudo-semisimple if and only if R has enough shifts.

PROOF. From (1) and (2) of Lemma 2.1, the proof is obvious.

COROLLARY 2.3. Let R be a ring with maximal socle. The following are equivalent:

- (1) R is right and left pseudo-semisimple and regular;
- (2) R is right pseudo-semisimple and J = 0;
- (3) R is semiprime and has enough shifts.

PROOF. That (1) implies (2) and that (2) implies (3) are obvious.

Assume (3). Since R is semiprime, $S^2 \neq 0$ and therefore R is non-local. Then (3) implies (1) follows from Lemma 2.1(6) and Theorem 2.2.

The next proposition effectively reduces the study of pseudo-simplicity for rings with maximal socle to the non-singular case.

PROPOSITION 2.4. Let R be a non-local ring with maximal socle. Then R/Z is right pseudo-semisimple if and only if R is right pseudo-semisimple or $R = A \oplus B$, where A is a local ring with radical square zero and B is semisimple.

PROOF. It is clear that R/Z is semisimple for any ring $R = A \oplus B$ as described above; the 'if' part then follows from Proposition 1.10. Conversely, assume that $\overline{R} = R/Z$ is right pseudo-semisimple. The right socle of \overline{R} can either be \overline{S} or \overline{R} .

In the first case, for any right ideal $C \nleq S$ we have $\overline{C} = \overline{cR}$ with $c^0 \le Z$. Since $Z \le C$ by Lemma 2.1 ((4) and (5)), we obtain C = cR. Also C is a direct summand of R, and hence is projective. Thus c^0 is a direct summand of R, and consequently $c^0 = 0$. Therefore $C \cong R$, and R is right pseudo-semisimple.

In the second case, we have Z = J and $J^2 = 0$. Since \overline{R} is semisimple, $\overline{R} = \bigoplus_{i=1}^{n} T_i$, where each T_i is a simple artinian ring. Then $1 = \sum_{i=1}^{n} e_i$ where the e_i are orthogonal idempotents of R, $\overline{e_i}$ is central in \overline{R} and $\overline{e_i}\overline{R} = T_i$. Since for $i \neq j$, $e_i e_j = 0$ and R/S is a domain, all the e_i , except possibly one, are in S. We denote the exceptional one by e. By Lemma 2.1(3), $(1-e)R \leq S$ and therefore $(1-e)Re \leq Z \cap (1-e)R = 0$. Also

$$eR(1-e) \leq Z = {}^{0}S \leq {}^{0}(1-e) = Re$$
,

and hence eR(1-e) = 0. Thus *e* is a central idempotent in *R*. Let A = eReand B = (1-e)R(1-e). Then *B* is semisimple. As $A/J(A) = \overline{eR}$ is simple artinian, J(A) is a maximal ideal in *A*. However $J(A) = A \cap J \le A \cap S$; and so $J(A) = A \cap S$. Now $A/J(A) = A/(A \cap S) \cong A + S/S = R/S$, a division ring. It is obvious that $J(A) \ne 0$ and $J(A)^2 = 0$. Hence *A* is a local ring with radical-square zero. COROLLARY 2.5. Let R be a non-local ring with homogeneous maximal socle. Then R is right pseudo-semisimple if and only if R/Z is.

We end this section by showing that any non-trivial right pseudo-semisimple ring R with Z = 0 can be embedded in one with maximal socle.

PROPOSITION 2.6. Let R be a non-trivial right pseudo-semisimple ring with Z = 0. Then R is isomorphic to a subring of a right pseudo-semisimple ring R_* with $Z(R_*) = 0$ and $S(R_*)$ maximal.

PROOF. Let $\Sigma = \{c \in R : c^0 = 0 \text{ and } cS = S\}$. Clearly Σ is multiplicatively closed and $1 \in \Sigma$. If xc = 0 for $x \in R$ and $c \in \Sigma$, then xS = xcS = 0; hence $x \in Z = 0$. Thus Σ consists of regular elements. Now we prove that Σ is a right Öre set. Let $c \in \Sigma$ and $r \in R$. If $r \in S$, then $r \in cS$; consequently r1 = cr' with $r' \in R$. Assume that $r \notin S$, and let $B = \{b \in R : rb \in cR\}$. It is clear that $S \leq B$. If S = B, then $cR \cap rR = rB \leq S$. This implies $\overline{cR} \cap \overline{rR} = 0$ in \overline{R} , in contradiction of the fact that \overline{R} is a principal right ideal domain. Thus S < B, and therefore B = c'R with $c' \in \Sigma$ (see Lemma 1.4(5)). Then $rc'R \leq cR$, and hence rc' = cr' for $r' \in R$.

Let $R_* = R_{\Sigma}$, the localization of R with respect to Σ , and identify R with its image in R_* . One can easily check that S_* is an essential right ideal in R_* , and is semisimple as a right R_* -module. Thus S_* is the right socle of R_* . We prove that S_* is a maximal right ideal. Clearly $S_* \neq R_*$. If $S_* < M$ for some right ideal M of R_* , then $M = DR_*$ for a right ideal D of R with S < D. Hence D = dR with $d \in \Sigma$, and $M = dRR_* = dR_* = R_*$.

Next we prove that R_* is right pseudo-semisimple. Let A be a right ideal of R. Then $A \leq S$ or A = aR with $a^0 = 0$. Thus $AR_* \leq S_*$ or $AR_* = aRR_* = aR_* \cong R_*$.

Let $x \in Z(R_*)$. Then $xS_* = 0$, and hence xS = 0. Since $x = rc^{-1}$ for some $c \in \Sigma$, rS = xcS = xS = 0. Thus $r \in Z = 0$, and hence x = 0.

REMARK. We note that in Proposition 2.6, Σ is actually the largest right Öre set of R, and hence R_* is the maximal right classical ring of fractions of R.

3. Subrings of full linear rings

If R is a ring with Z = 0, then the maximal right quotient ring of R is a regular right self-injective ring having R as a subring. Moreover if S is

61

essential in R, then $Q = \text{End } S_R$, and is therefore a product of full linear rings (compare [5, Chapter 12]); it is just one full linear ring if and only if S is homogeneous.

In this section we discuss the existence of pseudo-semisimple rings which are subrings of full linear rings; in view of Lemma 1.5(2), non-trivial examples can only occur with linear rings of infinite dimensional vector spaces.

Throughout this section, Q will stand for the endomorphism ring of a vector space V of infinite dimension over a division ring D. We shall call an element $t \in Q$ a shift endomorphism if it is an isomorphism onto a subspace of codimension one. For such t we choose a complement U of tV, so that $V = tV \oplus U$ and dim U = 1. We define $t^* = t^{-1}$ on tV and $t^* = 0$ on U. Let $e = 1 - tt^*$. Then e is the projection onto U along tV, and hence is of rank one. A subring R of Q is said to contain a shift, if $t, t^* \in R$ for some shift t; it is clear that $e \in R$ and $(1 - e)R \cong R$ (also $R(1 - e) \cong R$).

LEMMA 3.1. Let L be a non-zero left ideal of Q consisting of linear transformations of finite rank, and let T be a subring of Q having L as a two sided ideal. If T contains a shift and T/L is a division ring, then T is a right pseudo-semisimple ring with S(T) = L and Z(T) = 0; moreover T is regular if and only if $\bigcap \{ \ker x : x \in L \} = 0$.

PROOF. Let f be an indecomposable idempotent in L. Since L is a left ideal in Q, f stays indecomposable in Q, and therefore fQ is a minimal right ideal. Let $ft \neq 0$ for some $t \in T$. Then there exists $q \in Q$ with ftq = f. Consequently ftqf = f and $qf \in L \leq T$. This proves that fT is a minimal right ideal in T.

Given $x \in L$, there exists $p \in Q$ such that xpx = x. Then g = px is an idempotent in L, and $xT = xgT \cong gT$. One may write $g = g_1 + \dots + g_n$ where the $g_i \in Q$ are orthogonal idempotents of rank one. However $g_i = g_ig \in L$, and it follows by the preceding argument that g_iT is a minimal right ideal. Therefore $xT \cong gT$ is semisimple. Hence L is contained in the right socle of T. Since T contains a shift, T is not semisimple. Then T/L is a division ring implies that L is the right socle of T.

Our argument also shows that any minimal right ideal in L is generated by a rank one idempotent. Since rank one idempotents are isomorphic in Q, they are also isomorphic in T (again since L is a left ideal in Q). Thus Lis homogeneous. Let t be the given shift in T. Then it is clear that the rank one idempotent $e = 1 - tt^*$ is in L, and hence all rank one idempotents in L are isomorphic to e. Then T is right pseudo-semisimple by Theorem 2.2. Given $0 \neq y \in Q$, then $0 \neq yQe \leq L \leq T$ and $Qe \leq L \leq T$. Hence T_T is essential in Q_T , and therefore Z(T) = 0. (This also proves that Q is the maximal quotient ring of T.)

Now we prove the last statement of the theorem. In view of Lemma 1.5(2) and Lemma 2.1(6), T is regular if and only if $L^0 = 0$. Let $W = \bigcap\{\ker x : x \in L\}$. If $W \neq 0$, then there exists $q \in Q$ such that $0 \neq qeV \leq W$ (since QeV = V), and therefore $0 \neq qe \in L^0$; thus $L^0 \neq 0$. Conversely, assume that W = 0 and let $r \in L^0$. Then $rV \leq \ker x$ for every $x \in L$, and therefore r = 0. This proves that $L^0 = 0$ holds if and only if W = 0.

At this point it is convenient to discuss some examples. We start with [2, Example 4.26], which is originally due to G. M. Bergman, and represents a regular, but not unit-regular ring, in which perspectivity is transitive. This example was suggested to us by K. R. Goodearl through a communication by K. M. Rangaswami. Similar examples can be obtained from the more general construction to be discussed in Proposition 3.5.

EXAMPLE 3.2. (A regular right and left pseudo-semisimple ring which is not semisimple.) Let V = F[[t]], the power series ring over a field F considered as an F-space, $Q = \text{End } V_F$, and F((t)) the Laurent series ring, that is, the quotient field of F[[t]]. Let

$$L = \{x \in Q \colon \exists n \in \mathbb{N} \ (xt^n V = 0)\},\$$

$$T = \{x \in Q \colon \exists n \in \mathbb{N}, \ a \in F((t))((x - a)t^n V = 0)\}.$$

It is obvious that t is a shift and $t, t^* \in T$. One can verify that L is a left ideal of Q consisting of linear transformations of finite rank, T is a subring of Q having L as a two sided ideal and $T/L \cong F((t))$. Moreover $\bigcap \{\ker x : x \in L\} = \bigcap_{n \in \mathbb{N}} t^n V = 0$. Thus T is right pseudo-semisimple and regular by Lemma 3.1. According to Corollary 2.3, T is also left pseudo-semisimple.

EXAMPLE 3.3. (A non-singular right pseudo-semisimple ring which is not left pseudo-semisimple.) Modifying the above example by taking $V = F[[t]] \oplus F((t))$, one obtains a right pseudo-semisimple ring T with Z(T) = 0. However

$$J(T) = \bigcap \{\ker x \colon x \in L\} = F((t)).$$

Thus T is not left pseudo-semisimple in view of Corollary 2.3.

A right pseudo-semisimple ring R in which $Z \neq S$ satisfies $0 \leq Z \leq J < S$. Examples 3.2 and 3.3 correspond to the cases 0 = Z = J and 0 = Z < J, respectively. Examples of the other two cases can be obtained using split extensions.

[11]

63

Let A be any right pseudo-semisimple ring with Z(A) = 0 and A/S(A)a division ring. Let $R = A \rtimes A/S(A)$. Then R has right singular ideal $0 \rtimes A/S(A)$, right socle $S(A) \rtimes A/S(A)$ and Jacobson radical $J(A) \rtimes A/S(A)$; and R is right pseudo-semisimple by Proposition 2.4.

For the case 0 < Z = J (respectively 0 < Z < J), take $R = T \rtimes T/L$ where T is the ring of Example 3.2 (respectively 3.3).

LEMMA 3.4. Let $t \in Q = \text{End } V_D$ be a shift. If q is a non-zero polynomial over the centre of D, then q(t) has infinite rank.

PROOF. Let $q = a_m X^m + \dots + a_n X^n$ where $m \le n$ and $a_m \ne 0$. Without loss of generality we may assume that $a_m = 1$. Let $K = \ker q(t)$. Then clearly $t^i K \le K$ for every $i \in \mathbb{N}$. Now

$$0 = t^{*m} q(t) K = (1 + a_{m+1} t + \dots + a_n t^{n-m}) K,$$

and so $K \leq tK$. Thus $K = t^i K \leq t^i V$ for every $i \in \mathbb{N}$. Writing $V = tV \oplus U$, we get

$$V = t^i V \oplus t^{i-1} U \oplus \cdots \oplus t U \oplus U.$$

Therefore $K \cap \bigoplus_{i=0}^{\infty} t^i U = 0$, and hence K has infinite codimension. Thus q(t) is of infinite rank.

Let A denote the prime subring of D, that is, the subring of D generated by the identity element. We shall say that the pair (t, L) is *permissible* if t is a shift endomorphism and L a non-zero left ideal of Q consisting of linear transformations of finite rank such that:

 $(\mathbf{P}_1) \ \forall 0 \neq q \in A[X] \forall x \in Q \ (x \in L \Leftrightarrow xq(t) \in L); \\ (\mathbf{P}_2) \ \forall 0 \neq q \in A[X] \exists y \in L \ (\ker q(t) \cap \ker y = 0).$

REMARK. One particular choice of L is the ideal consisting of all linear transformations of finite rank. For this choice, a shift $t \in Q$ is such that (t, L) is permissible if and only if ker q(t) has finite dimension and Im q(t) has finite codimension for all $0 \neq q \in A[X]$.

A shift t satisfying the above requirements exists in every full linear ring $Q = \operatorname{End} V_D$. Indeed A[X] is countable, and therefore the central localization $D[X, X^{-1}]_*$ at the non-zero elements of A[X] is a countable dimensional D-space. Consequently $V \cong D[X] \oplus D[X, X^{-1}]_*^{(\dim V)}$. Define t as componentwise multiplication by X. This yields a shift with ker q(t) = 0 for every $0 \neq q \in A[X]$. Moreover, if q is of degree n, then by the Euclidean Algorithm

$$D[X] = q(X)D[X] \oplus D \oplus DX \oplus \cdots \oplus DX^{n-1}.$$

[12]

Clearly $q[X]D[X, X^{-1}]_* = D[X, X^{-1}]_*$. Therefore Im q(t) has finite codimension.

The following proposition ensures that subrings as described in Lemma 3.1 exist in every infinite-dimensional full linear ring.

PROPOSITION 3.5. Let (t, L) be a permissible pair. Then

$$T = \{x \in Q \colon \exists p, 0 \neq q \in A[X] (xq(t) - p(t) \in L)\}$$

is a non-singular right pseudo-semisimple ring with L as its right socle and $T/L \cong A(X)$, the quotient field of A[X].

PROOF. From Lemma 3.4 and condition (P_1) , a routine verification establishes that T is a subring of Q, and $\varphi: x \to p/q$ is a well defined ring homomorphism of T into A(X). To show that φ is surjective consider any $p/q \in A(X)$. By (P_2) we have $y \in L$ such that $\ker q(t) \cap \ker y = 0$. Hence $q(t)_{|\ker y|}$ is one-to-one. Let $V = q(t) \ker y \oplus C$. Then the mapping x given by

x(q(t)v) = p(t)v, $v \in \ker y$; $x|_{C} = 0$

is a well defined element in Q. Let $\alpha = xq(t) - p(t)$. Then $\alpha|_{\ker y} = 0$. Write $V = \ker y \oplus W$. Since $yW \cong W$, there exists $\beta \in Q$ such that $\beta y|_W = 1$. It then follows that $\alpha = \alpha\beta y \in L$. This shows that $x \in T$ as well as $\varphi(x) = p/q$.

It is clear that $\ker \varphi = \{x \in Q : \exists 0 \neq q \in A[X] \ (xq(t) \in L)\}$. Then by (P_1) , $L = \ker \varphi$. Hence L is an ideal in T and $T/L \cong A(X)$. Now t1 - t = 0 and $t^*t - 1 = 0$ imply that $t, t^* \in T$. The result now follows from Lemma 3.1.

THEOREM 3.6. A ring R is a non-singular right pseudo-semisimple ring with homogeneous maximal socle if and only if

(1) R is a subring of a full linear ring Q,

(2) there exists a permissible pair (t, L) in Q with L an ideal in R and R/L a division ring, and

(3) the ring T corresponding to (t, L), as in Proposition 3.5, is a subring of R.

PROOF. The 'if' part follows from Lemma 3.1 as $t, t^* \in T \leq R$.

'Only if'. Since R is right non-singular and S is homogeneous, the maximal quotient ring Q of R is a full linear ring; $Q = \text{End } V_D$. Also $Q \cong \text{End } S_R$, and hence S is a left ideal of Q consisting of linear transformations of finite rank. By Theorem 2.2, R has a shift for some indecomposable idempotent $e \in S$. As e is a rank one projection, t is a shift

endomorphism in Q. We verify conditions (\mathbf{P}_1) and (\mathbf{P}_2) for the pair (t, S).

Let $0 \neq q \in A[X]$. Then q(t) is not of finite rank by Lemma 3.4 and hence not in S. It follows by Lemma 2.1 ((2) and (3)) that $R = fR \oplus (1-f)R$ such that q(t)R = fR and $1 - f \in S$. Let f = q(t)r, $r \in R$. Then rq(t) is also an idempotent, and $rq(t) \notin S$; otherwise $q(t) = fq(t) = q(t)rq(t) \in S$, a contradiction.

For the non-trivial implication of (P_1) , assume that $xq(t) \in S$ for some $x \in Q$. Then $xf = xq(t)r \in S$. Also $x(1-f) \in S$. Thus $x \in S$.

To prove (P_2) , note that $1-rq(t) \in S$ by Lemma 2.1(3). Clearly ker $q(t) \cap ker(1-rq(t)) = 0$.

Now (P_1) and (P_2) being established, we may form the subring T of Q according to Proposition 3.5. Let $x \in T$. Then $xq(t) - p(t) = s \in S$, for some p, $0 \neq q \in A[X]$. With f and r as before, we obtain

$$xf = xq(t)r = (p(t) + s)r \in R$$
,

and $x(1-f) \in S \leq R$. Hence $x \in R$.

Added in Proof

Using Lemma 3.1, the referee suggested the following example of a regular pseudo-semisimple ring which is not semisimple (a similar example was suggested by Mark L. Teply). Let Q be the ring of $\aleph_0 \times \aleph_0$ column-finite matrices over a field F, let L = Socle Q (set of matrices with a finite number of non-zero rows), and let M be the subset of Q consisting of all matrices of the form.

$$\begin{bmatrix} a_0 & a_1 & a_2 & & \\ b_1 & a_0 & a_1 & a_2 & \cdot & \cdot & \cdot \\ b_2 & b_1 & a_0 & a_1 & a_2 & & \\ \cdot & b_2 & b_1 & a_0 & & \\ \cdot & & b_2 & & \cdot & \end{bmatrix},$$

where only a finite number of the b_i are non-zero. Let T = L + M. It is clear that T is a ring which contains the standard shift

$$t = \begin{bmatrix} 0 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & \ddots & \\ \end{bmatrix},$$

L is a two sided ideal in T, and $T/L \cong F((t^*))$ where

$$t^* = \begin{bmatrix} 0 & 1 & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots \end{bmatrix}.$$

The authors are thankful to the referee for other comments and suggestions.

References

- [1] J. S. Golan, Localizations of non-commutative rings, (Marcel Dekker, 1975).
- [2] K. R. Goodearl, Von Neumann regular rings, (Pitman, 1979).
- [3] Saad Mohamed and Bruno J. Müller, 'Pseudo-semisimple rings', Proc. Amer. Math. Soc. 85 (1982), 157-160.
- [4] Saad Mohamed and Surjeet Singh, 'Weak q-rings with zero singular ideals', Proc. Amer. Math. Soc. 76 (1979), 25-30.
- [5] Bo Stenström, Rings of quotients, (Springer Verlag, 1975).

Department of Mathematics Kuwait University P.O. Box 5969 Kuwait 13060

Department of Mathematics McMaster University Hamilton Ontario L8S 4K1 Canada