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Abstract

A ring R is called right pseudo-semisimple if every right ideal not isomorphic to R is semisim-
ple. Rings of this type in which the right socle S splits off additively were characterized; such a
ring has S2 = 0 . The existence of right pseudo-semisimple rings with zero right singular ideal
Z remained open, except for the trivial examples of semisimple rings and principal right ideal
domains. In this work we give a complete characterization of right pseudo-semisimple rings with
S2 = 0 . We also give examples of non-trivial right pseudo-semisimple rings with Z = 0; in
fact it is shown that such rings exist as subrings in every infinite-dimensional full linear ring. A
structure theorem for non-singular right pseudo-semisimple rings, with homogeneous maximal
socle, is given. The general case is still open.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 16 A 48;
secondary 16 A 42, 16 A 52.

Throughout this paper, S, Z and / will stand for the right socle, the right
singular ideal and the Jacobson radical of a ring R. A local ring R will
mean one in which J ^ 0 and R/J is a division ring. For a subset X of
R, X° and °X will denote the right and left annihilators in R. It is true in
general that S <°J, and if R/J is semisimple (in particular if R is local),
then S = J. We also note that Z and J contain no non-zero idempotents
of R; hence a regular ring R has Z = / = 0.

The split extension R x M of a ring R by an (R - i?)-bimodule M,
is the ring of all ordered pairs (r, m), r e R and m € M; with addition
denned componentwise and multiplication denned by (r, m) • (r , m) =
(rr , rm + mr).
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54 Saad Mohamed and Bruno J. Muller [2]

The set of positive integers will be denoted by N.

1. General results

LEMMA 1.1. Let R be a right pseudo-semisimple ring. If R = A®B for
right ideals A and B, then A or B is semisimple.

PROOF. Assume that A is not semisimple; then A = R. Hence A =
A{ © B{ with Ax = A = R and BX=B. Iterating this process, we obtain
R = An ® Bn © • • • © 5 j for every n e N. Hence R contains the right ideal
0 / € N Bt with Bt = B. This right ideal is not finitely generated, and therefore
not isomorphic to R. Thus it is semisimple, and hence B is semisimple.

COROLLARY 1.2. Let R be a right pseudo-semisimple ring which is not
semisimple.

(1) If R = A® B for non-zero right ideals A and B, then exactly one
of them is semisimple and the other one is isomorphic to R. In particular
neither A nor B is an ideal.

(2) If e is a non-trivial idempotent of R, then eR{\ - e) ^ 0.

LEMMA 1.3. If R is right pseudo-semisimple, then R/S is a principal right
ideal domain.

PROOF. It is obvious that R/S is a principal right ideal ring. Consider
a,b eR with a £ S and ab eS. Then aR = R, and hence R = a°®C
where C = aR = R. Thus a0 < S by Lemma 1.1. Write b = x + y with
x e a° and y e C. Since S > abR = ayR = yR,we have y e S. Therefore
b = x + yeS.

It follows by Lemma 1.3 that a ring R with zero right socle is right pseudo-
semisimple if and only if it is a principal right ideal domain. We call a right
pseudo-semisimple ring R non-trivial if 0 ̂  S ^ R.

LEMMA 1.4. Let R be a non-trivial right pseudo-semisimple ring. The
following hold in R:

(1) S is the smallest essential right ideal;
(2) °S = Z <SnJ;
(3) S — Z®I where Z and I consist of homogeneous components {hence

I is also an ideal);
(4) S = °x for every 0 ̂  x e J, in particular if J ± 0, then S= °J;
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[3] Structure of pseudo-semisimple rings 55

(5) if a $ S, then aRnS = aS and S = aS®K where K is isomorphic
to a direct summand of R (hence finitely generated);

(6) SZ = 0 and Z is torsion-free divisible as a left R/S-module.

PROOF. (1) Consider a non-zero right ideal A of R. Then either A < S
or A = R, and hence A contains a copy of 5 . In either case A n 5 ^ 0.

(2) Z = °S follows by (1). This also proves that Z ¥ R and hence
Z <S. Then Z2 < ZS = 0, and consequently Z <J.

(3) If X and 7 are minimal right ideals with X < Z and Y £Z , then
XS = 0 and YS # 0. Thus X £ 7 .

(4) That S < ° / < °x is obvious. Consider an element a e R such that
a £ S. Then a0 < S and is a direct summand of R (since aR = R).
Therefore a0 n J = 0 and hence ax ^ 0. This proves that °x < 5 , and
consequently S = °/ = °x .

(5) That aS = aRnS follows by Lemma 1.3. Let S = aS®K. Then
R = aR + S = aR®K.

(6) The result is trivial in the case Z = 0. Assume that Z ^ 0. Since
Z <J, S = °Z by (4). Hence Z is a torsion-free R/S-modu\e.

Next we prove that Z < A for every right ideal A not contained in 5 .
Write Z = (AnZ)@B. Then A@B = R. Since 5 < Z , B2 = 0 by (2),
and hence 5 = 0. Thus Z = ^ n Z and Z <A.

Now consider an element a e R such that a £ S. Since aR = R, aR =
bR with 6° = 0. If br e Z , then 6r5 = 0, and hence rS = 0 and r e Z
by (2). Therefore bRnZ = bZ . Now

aZ = aRZ = bRZ = bZ = bRnZ = Z.

Hence Z is divisible as a left .R/S-module.

LEMMA 1.5. Let R be a non-trivial right pseudo-semisimple ring.
(1) Z = S if and only if S2 = 0 and S < J < S°.
(2) Z ^ S if and only if S contains a countable set of non-zero orthogonal

idempotents and S° = J < S.

PROOF. (1) is obvious.
(2) Assume that Z ^ S. Then S2 ^ 0, and hence S contains a non-zero

idempotent. By an argument similar to that given in Lemma 1.1, we conclude
that S contains a countable set of non-zero orthogonal idempotents {en} .

Write S = (J n S) ® X. It is clear that the projections of the en into
X are still non-zero orthogonal idempotents, and hence X is not finitely
generated. It then follows by Lemma 1.4(5) that J ?R. Thus J <S, and
since S2 # 0, J <S.
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Let B = S°. Then J <B and so J <BnS. Moreover (BnS)2 = 0,
and hence BnS < J. Thus BnS = J and S = (BnS)®X. Again by
Lemma 1.4(5) we get B £ R and hence B < S. Therefore B = BnS = J.

The converse is obvious.

COROLLARY 1.6. If R is a right pseudo-semisimple ring, then the right
socle of R contains the left socle.

PROOF. The result is obvious in the trivial cases. So assume that R is
non-trivial and consider the two cases of Lemma 1.5.

If Z = 5 , study a minimal left ideal A. Assume that A2 ^ 0. Then
A = Re for some idempotent e such that 0 ^ e ^ 1. However, by Lemma
1.1, either e e S or 1 - e e S , in contradiction to S2 = 0. Hence A2 = 0,
and A < S by Lemma 1.3.

If Z ^ S, then 5° < S by Lemma 1.5. It follows readily that S is
essential as a left ideal, and therefore contains the left socle.

The following generalization of our theorem in [3] characterizes right
pseudo-semisimple rings with socle square zero.

THEOREM 1.7. Let R be a ring with S2 = 0. Then R is right pseudo-
semisimple if and only if R/S is a principal right ideal domain and S is
torsion-free divisible as a left R/S-module.

PROOF. The 'only if part follows from Lemma 1.3 and Lemma 1.4 ((2)
and (6)).

Conversely, assume that R satisfies the conditions. Consider a right ideal
A of R which is not contained in S, and select x e A - S. Since R,SS is
divisible, S = xS < A. Now R/S is a principal right ideal domain implies
A = aR with a0 < S. But then a0 = 0 as R,SS is torsion-free. Hence
A = aR = R.

According to Lemma 1.5, a non-trivial right pseudo-semisimple ring with
S2 — 0 satisfies 0 ^ S < J < S°. We list examples of the four possible cases.

EXAMPLES 1.8. (1) S = J = S°: any local ring R with J2 = 0.
(2) S = J < S°: R = F[X] x F{X), the split extension of the polyno-

mial ring over a field F by the rational function field, made into an F[X\-
bimodule via the natural multiplication on the left and multiplication by the
constant coefficient on the right; compare [3].

(3) S < J = S° : the localization of (2) at (X).
(4) S <J <S°: the localization of (2) at (X) n (X + 1).
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THEOREM 1.9. Let R be a ring with S ^ 0 and S2 = 0. Then R is right
and left pseudo-semisimple if and only if R is a local ring with radical square
zero.

PROOF. The 'if part is obvious. Conversely, assume that R is right and
left pseudo-semisimple. Then the left-right analogue of Corollary 1.6 implies
that S is the left socle of R. Consider a minimal left ideal A. Since
A2 = 0, A = Rx with x e / , and A = R/°x. Since S = °x by Lemma
1.4(4), S is a maximal left ideal. Then S = J as S < J and the result
follows.

PROPOSITION 1.10. Let R be a non-trivial right pseudo-semisimple ring.
Then R/Z is right pseudo-semisimple with Z(R/Z) = 0. Moreover R/Z is
semisimple if and only if R is a local ring with radical square zero.

PROOF. Let T/Z be the right socle of R/Z. Then it is obvious that
S < T. Moreover T/S is contained in the right socle of R/S. Since R/S
is a domain by Lemma 1.3, T = S or T = R.

(i) Consider the case T = S. Let A/Z be a right ideal of R/Z such that
A/Z ^ S/Z . Then A ^ S and hence A = aR for some a <E R with a0 = 0.
Since Z — aZ by Lemma 1.4(6), we obtain

R/Z = aR/aZ = A/Z.

Thus R/Z is right pseudo-semisimple.
Next we prove that Z(R/Z) = 0. If Z = S, then R/Z is a domain by

Lemma 1.3, and the result holds trivially. So, assume that Z ^ S. Then
by Lemma 1.4(3), S = Z © / for a non-zero ideal / of R. Consider
x + Z e Z(R/Z). Then xS < Z , and hence xl < Z n / = 0. Consequently
xR ¥ R, and therefore x € S\ Then xZ = 0 by Lemma 1.4(6), and
x5 = JC(Z e /) = 0. Thus xeZ .

(ii) Now, assume that T - R. Then .R/Z is semisimple, and clearly
Z(R/Z) = 0. We claim that Z is a maximal ideal. Let u be a central
idempotent in R/Z. Since Z is a nil ideal by Lemma 1.4(2), we may
assume that u = e + Z for some idempotent e &R. According to Lemma
1.1, e e S or (1 - e) € S; we may assume that e e S . Then ZneR = 0.
Since ei?(l - e) < Z , ei?(l - e) = 0. It then follows by Corollary 1.2(2)
that e = 0 or e = 1. Thus i?/Z has no non-trivial central idempotents,
and is therefore simple artinian. This proves our claim. Since Z < Sn J by
Lemma 1.4(2), we obtain S = J = Z . It then follows by Lemma 1.3 that
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R/J is a division ring. Hence R is a local ring with J2 = 0 . The rest is
obvious.

2. Maximal socle

We turn to the second type in Lemma 1.5. Here we do not know of an effec-
tive criterion for pseudo-simplicity. However, right pseudo-semisimple rings
R of this type are characterized in the special case where 5 is a maximal
right ideal. In view of Lemma 1.3, this additional assumption is automati-
cally satisfied if R is regular.

We start by listing some properties of rings R with maximal socle. Note
that such rings are local if and only if S2 = 0 . The proofs are straightforward,
and hence are omitted.

LEMMA 2.1. Let R be a non-local ring with maximal socle {that is, R/S
is a division ring and S2 ± 0). Then R has the following properties:

(1) S is the only proper essential right ideal;
(2) every right ideal is semisimple or a direct summand;
(3) if R = A® B for right ideals A and B, then precisely one of them is

semisimple,
(4) °S = Z < J < S, and J2 = 0;
(5) J < A for every right ideal A not contained in S;
(6) R is regular if and only if J = 0 if and only if R is semiprime.

Consider an idempotent g in the socle of an arbitrary ring R. It is well
known that (1 - g)R = R holds if and only if R = R ® gR if and only if
there exist t,t*eR such that t*t=\ and tt* = 1 - g (hence R{l-g) = R
also holds). We call t a shift for g.

Now assume that for every isomorphism type of indecomposable idempo-
tents / in S, there is a representative f for which there exists a shift. Then
R®fR^R® /R S R. It follows that R has a shift for every idempotent
e E S. Indeed, eR — ©"=1 efR with et indecomposable, and hence

R © e R = R ® e x R ® • • • ® e n R = R .

Such a ring R is said to have enough shifts.

THEOREM 2.2. Let R be a non-local ring with maximal socle. Then R is
right pseudo-semisimple if and only if R has enough shifts.

PROOF. From (1) and (2) of Lemma 2.1, the proof is obvious.
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COROLLARY 2.3. Let R be a ring with maximal socle. The following are
equivalent:

(1) R is right and left pseudo-semisimple and regular;
(2) R is right pseudo-semisimple and 7 = 0;
(3) R is semiprime and has enough shifts.

PROOF. That (1) implies (2) and that (2) implies (3) are obvious.
Assume (3). Since R is semiprime, 5 2 ^ 0 and therefore R is non-local.

Then (3) implies (1) follows from Lemma 2.1(6) and Theorem 2.2.

The next proposition effectively reduces the study of pseudo-simplicity for
rings with maximal socle to the non-singular case.

PROPOSITION 2.4. Let R be a non-local ring with maximal socle. Then
R/Z is right pseudo-semisimple if and only if R is right pseudo-semisimple
or R — A® B, where A is a local ring with radical square zero and B is
semisimple.

PROOF. It is clear that R/Z is semisimple for any ring R - A ® B as
described above; the 'if part then follows from Proposition 1.10. Conversely,
assume that R~ = R/Z is right pseudo-semisimple. The right socle of !R can
either be S or ~R.

In the first case, for any right ideal C ^ S we have C = 7R with c° < Z .
Since Z < C by Lemma 2.1 ((4) and (5)), we obtain C = cR. Also C
is a direct summand of R, and hence is projective. Thus c° is a direct
summand of R, and consequently c° = 0. Therefore C = R, and R is
right pseudo-semisimple.

In the second case, we have Z = J and J1 = 0. Since R is semisimple,
R = 0" = 1 Tt, where each Ti is a simple artinian ring. Then 1 = Yl"=\ ei
where the ei are orthogonal idempotents of R, et is central in !R and
etR = Ti. Since for i ^ j , e^j = 0 and R/S is a domain, all the et,
except possibly one, are in 5 . We denote the exceptional one by e . By
Lemma 2.1(3), (1 - e)R < S and therefore (1 - e)Re <Zn(l-e)R = 0.
Also

eR{l - e) < Z = °S <°{l - e) = Re,

and hence eR{ 1 -e) = 0. Thus e is a central idempotent in R. Let A = eRe
and B = (l-e)R(l-e). Then B is semisimple. As A/J(A) = e~R is simple
artinian, J{A) is a maximal ideal in A . However J{A) = A n / < A n S;
and so J(A) = A n S. Now A/J(A) = A/{A n 5) = A + S/S = R/S, a
division ring. It is obvious that J{A) ^ 0 and J(A)2 = 0 . Hence A is a
local ring with radical-square zero.
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COROLLARY 2.5. Let R be a non-local ring with homogeneous maximal
socle. Then R is right pseudo-semisimple if and only if R/Z is.

We end this section by showing that any non-trivial right pseudo-semi-
simple ring R with Z = 0 can be embedded in one with maximal socle.

PROPOSITION 2.6. Let R be a non-trivial right pseudo-semisimple ring with
Z = 0. Then R is isomorphic to a subring of a right pseudo-semisimple ring
Rt with Z(RJ = 0 and S(RJ maximal.

PROOF. Let Z = {c e R: c° = 0 andcS = S}. Clearly Z is multi-
plicatively closed and 1 e L If xc - 0 for x e R and c e Z, then
xS — xcS = 0; hence x e Z = 0. Thus Z consists of regular elements.
Now we prove that Z is a right Ore set. Let c e Z and r e R. If r e 5 ,
then r e cS; consequently r\ = cr with r e R. Assume that r $ S,
and let B = {b e R: rb e cR) . J t is clear that S < B. If S = B, then
cR n rR = rB < S. This implies c~R n 7R = 0 in ^ , in contradiction of the
fact that Ti is a principal right ideal domain. Thus S < B, and therefore
B = c'R with c' e l (see Lemma 1.4(5)). Then re R < cR, and hence
re' = cr for r e R.

Let Rt = Rz, the localization of R with respect to Z, and identify R
with its image in Rt. One can easily check that St is an essential right ideal
in Rt, and is semisimple as a right Rt -module. Thus S, is the right socle of
Rt. We prove that St is a maximal right ideal. Clearly Sm ^ Rt. If St < M
for some right ideal M of Rt, then M = DRt for a right ideal D of R
with S < D. Hence D = dR with rf e Z, and Af = dRRt = dRt = Rt.

Next we prove that Rt is right pseudo-semisimple. Let A be a right
ideal of R. Then A < S or A = aR with a0 = 0. Thus ,4/?, < 5, or
y4/?t = aRR, = aRt = i?,,.

Let xeZ(RJ. Then x5» = 0, and hence xS = 0. Since x = re'1 for
some c e Z, AS = xcS = xS = 0 . Thus reZ = 0, and hence * = 0.

REMARK. We note that in Proposition 2.6, Z is actually the largest right
Ore set of R, and hence Rt is the maximal right classical ring of fractions
of R.

3. Subrings of full linear rings

If R is a ring with Z = 0, then the maximal right quotient ring of R is
a regular right self-injective ring having R as a subring. Moreover if S is
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essential in R, then Q = End SR , and is therefore a product of full linear
rings (compare [5, Chapter 12]); it is just one full linear ring if and only if
S is homogeneous.

In this section we discuss the existence of pseudo-semisimple rings which
are subrings of full linear rings; in view of Lemma 1.5(2), non-trivial exam-
ples can only occur with linear rings of infinite dimensional vector spaces.

Throughout this section, Q will stand for the endomorphism ring of a
vector space V of infinite dimension over a division ring D. We shall
call an element t e Q a shift endomorphism if it is an isomorphism onto a
subspace of codimension one. For such t we choose a complement U of
tV, so that V = tV e U and dim U = 1. We define t* = t~l on tV and
/* = 0 on U. Let e = 1 - tt*. Then e is the projection onto U along tV,
and hence is of rank one. A subring R of Q is said to contain a shift, if
t,t* eR for some shift t; it is clear that e e R and (1 - e)R = R (also
R(l-e)^R).

LEMMA 3.1. Let L be a non-zero left ideal ofQ consisting of linear trans-
formations of finite rank, and let T be a subring of Q having L as a two
sided ideal. If T contains a shift and T/L is a division ring, then T is a
right pseudo-semisimple ring with S(T) = L and Z(T) = 0; moreover T is
regular if and only if f|{ker x: x e L) = 0.

PROOF. Let / be an indecomposable idempotent in L. Since L is a left
ideal in Q, f stays indecomposable in Q, and therefore fQ is a minimal
right ideal. Let ft^O for some t e T. Then there exists q € Q with
ftq = / . Consequently ftqf = f and qfeL<T. This proves that fT
is a minimal right ideal in T.

Given x e L, there exists p e Q such that xpx = x. Then g = px is an
idempotent in L, and xT - xgT = gT. One may write g = gt H \- gn

where the g( e Q are orthogonal idempotents of rank one. However gt =
gtg € L, and it follows by the preceding argument that gtT is a minimal
right ideal. Therefore xT = gT is semisimple. Hence L is contained in
the right socle of T. Since T contains a shift, T is not semisimple. Then
T/L is a division ring implies that L is the right socle of T.

Our argument also shows that any minimal right ideal in L is generated
by a rank one idempotent. Since rank one idempotents are isomorphic in Q,
they are also isomorphic in T (again since L is a left ideal in Q). Thus L
is homogeneous. Let t be the given shift in T. Then it is clear that the rank
one idempotent e = 1 - tt* is in L, and hence all rank one idempotents
in L are isomorphic to e. Then T is right pseudo-semisimple by Theorem
2.2.
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Given 0 ̂  y e Q, then 0 # yQe <L<T and Qe < L < T. Hence TT

is essential in QT, and therefore Z(T) = 0. (This also proves that Q is the
maximal quotient ring of T.)

Now we prove the last statement of the theorem. In view of Lemma
1.5(2) and Lemma 2.1(6), T is regular if and only if L° = 0. Let W =
f|{kerx: x e L}. If W ^ 0, then there exists qeQ such that 0 ̂  qeV <
W (since QeV = V), and therefore O^qe&L0; thus L° ^ 0. Conversely,
assume that W = 0 and let r € L°. Then r F < kerx for every x e L , and
therefore r = 0 . This proves that L° = 0 holds if and only if W — 0.

At this point it is convenient to discuss some examples. We start with [2,
Example 4.26], which is originally due to G. M. Bergman, and represents a
regular, but not unit-regular ring, in which perspectivity is transitive. This
example was suggested to us by K. R. Goodearl through a communication by
K. M. Rangaswami. Similar examples can be obtained from the more general
construction to be discussed in Proposition 3.5.

EXAMPLE 3.2. (A regular right and left pseudo-semisimple ring which is
not semisimple.) Let V = F[[t]], the power series ring over a field F con-
sidered as an F-space, Q = End VF, and F((t)) the Laurent series ring,
that is, the quotient field of F[[t]]. Let

L = {x € Q: 3n €N (xt"V = 0)},

T = {xeQ:3neN, aeF((t))((x - a)t"V = 0)}.

It is obvious that t is a shift and t, t* e T. One can verify that L is a
left ideal of Q consisting of linear transformations of finite rank, T is a
subring of Q having L as a two sided ideal and T/L = F((t)). Moreover
f|{kerx: x e L } = C\neN'"^ = 0- Thus T is right pseudo-semisimple and
regular by Lemma 3.1. According to Corollary 2.3, T is also left pseudo-
semisimple.

EXAMPLE 3.3. (A non-singular right pseudo-semisimple ring which is not
left pseudo-semisimple.) Modifying the above example by taking V =
F[[t]] ®F{(t)), one obtains a right pseudo-semisimple ring T with Z(T) =
0. However

Thus T is not left pseudo-semisimple in view of Corollary 2.3.

A right pseudo-semisimple ring R in which Z / S satisfies 0 < Z <
J < S. Examples 3.2 and 3.3 correspond to the cases 0 = Z = J and
0 = Z < J, respectively. Examples of the other two cases can be obtained
using split extensions.
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Let A be any right pseudo-semisimple ring with Z(A) = 0 and A/S(A)
a division ring. Let R = A x A/S(A). Then R has right singular ideal
OxA/S(A), right socle S(A)>iA/S(A) and Jacobson radical J(A)xA/S(A);
and R is right pseudo-semisimple by Proposition 2.4.

For the case 0 < Z = J (respectively 0 < Z < / ) , take R = T » T/L
where T is the ring of Example 3.2 (respectively 3.3).

LEMMA 3.4. Let t e Q = End VD be a shift. If q is a non-zero polynomial
over the centre of D, then q(t) has infinite rank.

PROOF. Let q = amXm H — + anX
n where m < n and am^0. Without

loss of generality we may assume that am = 1. Let K — ksr q{t). Then
clearly t'K < K for every ieN. Now

a n d s o K < tK. T h u s K = tiK<tiV f o r e v e r y ieN. Wr i t ing V = tV®U,
we get

V = tiV®ti~lU@---®tU@U.

Therefore K n 0 ° ! o t'U — 0, and hence K has infinite codimension. Thus
q(t) is of infinite rank.

Let A denote the prime subring of D, that is, the subring of D generated
by the identity element. We shall say that the pair (t, L) is permissible if
Ms a shift endomorphism and L a non-zero left ideal of Q consisting of
linear transformations of finite rank such that:

(P^ VO ^ q € A[X\ix eQ(x(=L*> xq(t) e L);
(P2) VO ^ q € A[X]3y e L (ker q(t) n kery = 0).

REMARK. One particular choice of L is the ideal consisting of all linear
transformations of finite rank. For this choice, a shift t e Q is such that
(t, L) is permissible if and only if ker q(t) has finite dimension and \m.q(t)
has finite codimension for all 0 ̂  q e A [X].

A shift t satisfying the above requirements exists in every full linear ring
Q = End VD. Indeed A[X] is countable, and therefore the central localiza-
tion D[X, X'1]^ at the non-zero elements of A[X] is a countable dimen-
sional Z)-space. Consequently V s D[X] ®D[X, x~l]fmV). Define t as
componentwise multiplication by X. This yields a shift with ksr q(t) = 0 for
every 0 ̂  q & A[X]. Moreover, if q is of degree n, then by the Euclidean
Algorithm

D[X] = q(X)D[X] ®D " l
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Clearly q[X]D[X, X~\ = D[X, X~\ . Therefore lmq(t) has finite codi-
mension.

The following proposition ensures that subrings as described in Lemma
3.1 exist in every infinite-dimensional full linear ring.

PROPOSITION 3.5. Let (t,L) be a permissible pair. Then

T = {xeQ:3p,0*qe A[X] (xq(t) - p{t) e L)}

is a non-singular right pseudo-semisimple ring with L as its right socle and
T/L = A(X), the quotient field of A[X].

PROOF. From Lemma 3.4 and condition (P,), a routine verification es-
tablishes that T is a subring of Q, and <p: x —• p/q is a well defined ring
homomorphism of T into A (X). To show that q> is surjective consider any
p/q € A(X). By (P2) we have y &L such that ker q{t) n kery = 0. Hence
q{t),ker is one-to-one. Let V = q(t)kery ®C. Then the mapping x given
by

x{q(t)v) = p(t)v , v e kery ; x\c = 0
is a well defined element in Q. Let a = xq{t) - p(t). Then a|kery = 0.
Write V = kery e W. Since yW s W, there exists j8 € Q such that
Py\w = 1. It then follows that a = afty e L. This shows that x e T as
well as q>{x) = p/q.

It is clear that kerp = {x e Q: 30 # q e A[X] {xq(t) e L)}. Then
by (P,), L = Very. Hence L is an ideal in T and T/L = A(X). Now
t\ - t = 0 and t*t - 1 = 0 imply that t,t* e T. The result now follows
from Lemma 3.1.

THEOREM 3.6. A ring R is a non-singular right pseudo-semisimple ring
with homogeneous maximal socle if and only if

(1) R is a subring of a full linear ring Q,
(2) there exists a permissible pair (t, L) in Q with L an ideal in R and

R/L a division ring, and
(3) the ring T corresponding to (t,L),as in Proposition 3.5, is a subring

of R.

PROOF. The 'if part follows from Lemma 3.1 as t,t* eT <R.
'Only if. Since R is right non-singular and S is homogeneous, the

maximal quotient ring Q of R is a full linear ring; Q = End VD. Also
Q = End SR , and hence S is a left ideal of Q consisting of linear trans-
formations of finite rank. By Theorem 2.2, R has a shift for some inde-
composable idempotent e e S. As e is a rank one projection, t is a shift
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endomorphism in Q. We verify conditions (Pj) and (P2) for the pair
(t,S).

Let 0 ^ q e A[X]. Then q(t) is not of finite rank by Lemma 3.4 and
hence not in S. It follows by Lemma 2.1 ((2) and (3)) that R = fR®(l -f)R
such that q(t)R = fR and 1-feS. Let f = q{t)r, reR. Then rq(t) is
also an idempotent, and rq(t) £ S; otherwise q{t) = fq(t) = q(t)rq(t) e S,
a contradiction.

For the non-trivial implication of (P,) , assume that xq(t) e S for some
x e Q. Then xf = xq{t)r e S. Also x(l - f) e S. Thus xeS.

To prove (P2), note that l-rq(t) eS by Lemma 2.1(3). Clearly

Now (P,) and (P2) being established, we may form the subring T of Q
according to Proposition 3.5. Let x e T. Then xq(t) - p{t) = 5 e S, for
some p, 0 ^ q e A[X]. With / and r as before, we obtain

and x(l - / ) e S < R. Hence xeR.

Added in Proof

Using Lemma 3.1, the referee suggested the following example of a regu-
lar pseudo-semisimple ring which is not semisimple (a similar example was
suggested by Mark L. Teply). Let Q be the ring of No x No column-finite
matrices over a field F, let L = Socle Q (set of matrices with a finite number
of non-zero rows), and let M be the subset of Q consisting of all matrices
of the form.

a, a2
0

bi

where only a finite number of the bt are non-zero. Let T = L + M. It is
clear that T is a ring which contains the standard shift

ro
1

t =
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L is a two sided ideal in T, and T/L = F((t*)) where

•0 1
1

1t =
1

The authors are thankful to the referee for other comments and sugges-
tions.
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