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An artificial intelligence (AI) control system is developed to maximize the mixing
rate of a turbulent jet. This system comprises of six independently operated unsteady
minijet actuators, two hot-wire sensors placed in the jet and genetic programming
for the unsupervised learning of a near-optimal control law. The ansatz of this
law includes multi-frequency open-loop forcing, sensor feedback and nonlinear
combinations thereof. Mixing performance is quantified by the decay rate of the
centreline mean velocity of the jet. Intriguingly, the learning process of AI control
discovers the classical forcings, i.e. axisymmetric, helical and flapping achievable from
conventional control techniques, one by one in the order of increased performance,
and finally converges to a hitherto unexplored forcing. Careful examination of the
control landscape unveils typical control laws, generated in the learning process, and
their evolutions. The best AI forcing produces a complex turbulent flow structure
that is characterized by periodically generated mushroom structures, helical motion
and an oscillating jet column, all enhancing the mixing rate and vastly outperforming
others. Being never reported before, this flow structure is examined in various
aspects, including the velocity spectra, mean and fluctuating velocity fields and their
downstream evolution, and flow visualization images in three orthogonal planes, all
compared with other classical flow structures. Along with the knowledge of the
minijet-produced flow and its effect on the initial condition of the main jet, these
aspects cast valuable insight into the physics behind the highly effective mixing of
this newly found flow structure. The results point to the great potential of AI in
conquering the vast opportunity space of control laws for many actuators and sensors
and in optimizing turbulence.
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1. Introduction
The turbulent jet is one of the classical shear flows discussed in virtually every

textbook. Its control finds important industrial applications, including dilution jets
in combustors, fuel injection of combustion engines, noise mitigation of sub- and
supersonic jets for civil and military aircrafts, thrust augmenting ejectors, thrust vector
control, etc. The key to control entrainment and mixing processes in a turbulent jet
is, as in other shear layers, to manipulate the coherent motions. When a jet issues
from a round nozzle, a free shear layer is formed from the nozzle lip and develops
downstream. A Kelvin–Helmholtz instability (Ho & Huerre 1984) inherent in the
shear layer rapidly grows, resulting in the formation of axisymmetric ring vortices.
The vortices, along with their subsequent interaction (e.g. merging and breakdown),
dominate the shear-layer growth and entrainment (Crow & Champagne 1971). Shortly
downstream of the nozzle exit, three-dimensionality becomes an important feature of
the flow structure; streamwise vorticity contributes predominantly to the entrainment
of fluid from the surroundings (Liepmann & Gharib 1992). These motions, formed
near the nozzle exit, are featured by a wide range of scales, varying convection
velocity and a rich set of three-dimensional patterns (Garnaud et al. 2013); they are
sensitive to initial conditions (e.g. the turbulence level, boundary layer thickness,
nozzle geometry) and external periodic disturbances (Vlasov & Ginevskii 1973), thus,
highly susceptible for control.

Jet control can be active or passive. Passive control involves a change in geometry
such as tabs (e.g. Bradbury & Khadem 1975), non-circular nozzles (e.g. Husain
& Hussain 1983) and chevron nozzles (e.g. Alkislar, Krothapalli & Butler 2007).
Although often highly effective, passive techniques are characterized by permanent
fixtures. Once mounted, tabs are difficult to be relocated. Likewise, it is impractical
for any engineering application to implement frequently non-circular nozzle geometry
alteration due to cost and physical constraints. Furthermore, there are other penalties,
e.g. thrust loss and drag. Active control requires the input of external power,
e.g. acoustic excitation (e.g. Zaman & Hussain 1981), piezo-electric actuators (e.g.
Wiltse & Glezer 1993), plasma actuators (e.g. Samimy et al. 2007), synthetic jet (e.g.
Tamburello & Amitay 2007), flip-flop jets (e.g. Raman, Hailye & Rice 1993) and
steady/unsteady minijets (Zhou et al. 2012; Yang & Zhou 2016). The active method
has potential to achieve more flexible and drastic flow modifications, which is a great
advantage over the passive (e.g. Zaman, Reeder & Samimy 1994; Longmire & Duong
1996; Reeder & Samimy 1996).

Many active control studies of turbulent jets involve the open-loop periodic forcing
of a prespecified form, e.g. axisymmetric, flapping or helical forcing. Broze & Hussain
(1994) deployed four speakers upstream of the nozzle to add a longitudinal component
of perturbation to the mean flow. The acoustic source produced axisymmetric forcing
which was found to amplify vortex ring structures and subsequent vortex pairing.
Koch et al. (1989) generated helical forcing on a turbulent round air jet using four
speakers, each being 90◦ out of phase with the adjacent speaker. Yang et al. (2016)
used two unsteady radial minijets separated by 60◦ or 120◦ to produce a flapping jet
column, which enhanced greatly jet mixing. The combination of individual forcings
is also investigated. Juvet (1987) optimized experimentally the combinations of
axisymmetric axial and helical forcing to augment mixing. The axial excitation
was produced by a loudspeaker placed upstream of the jet and perpendicularly to
the centreline. The helical excitation was generated by four external loudspeakers.
Their acoustic excitations were directed via waveguides at an angle around the
jet exit lip to the shear layer where the flow is most sensitive to acoustic forcing.
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While the axial excitation led to the early formation of large-scale vortices, the helical
caused the shear layer to roll up into staggered vortex structures. This combined
excitation generated a bifurcating jet with a much larger spreading angle than the
single excitation when the frequency ratio of the axial to that of the helical excitation
was equal to 2 (Reynolds et al. 2003). Three-dimensional direct numerical simulation
of a turbulent jet by Hilgers & Boersma (2001) demonstrated that the superposition
of two counter-rotating helical modes of the same excitation frequency fe and one
axial excitation of 2fe produced a bifurcating jet whose centreline mean velocity and
scalar concentration decayed faster than those of the counter-rotating helical actuation
alone.

Tyliszczak & Geurts (2015) and Tyliszczak (2018) simulated highly mixed
multi-armed bifurcating jets using axial and helical excitations. However, it would be
very difficult or time-consuming for conventional active controls to find the globally
optimal solution for the combined excitations where many control parameters are
generally involved. For instance, the control optimization of a turbulent jet has so far
typically involved up to two control parameters, such as the actuation amplitude and
frequency. Then, the optimization of combined modes, like axisymmetric forcing and
flapping forcing, may involve at least four independent control parameters, i.e. the
amplitude and frequency of each mode (e.g. Hilgers & Boersma 2001). The search
for its optimal solution is then already a challenge. If the control parameters for each
mode is increased to three or four such as the amplitude, frequency, duty cycle and
diameter ratio of an unsteady jet (e.g. Perumal & Zhou 2018) or multiple independent
actuators are deployed, the search for the globally optimal solution of the combined
modes would be a daunting task. Koumoutsakos, Freund & Parekh (2001) and Hilgers
& Boersma (2001) have pioneered the jet mixing optimization with three and four
actuation parameters using Rechenberg’s (1973) evolutionary strategy.

Model-based control comes, if doable, with the deep understanding of actuation
dynamics, regardless of open or closed loops. In simulations, the linear dynamics
can be accurately resolved by discretized Navier–Stokes (N–S) equations (Kim
& Bewley 2007; Sipp et al. 2010). In experiments, linear stochastic estimation
(Tinney et al. 2006) has been successfully applied to resolve the flow physics from
measurement signals and PIV measurements. The linearized N–S dynamics can be
encapsulated in reduced-order models employing several dominant non-normal global
stability eigenmodes. The downstream evolution of wavepackets can be real-time
estimated in a high-Reynolds-number turbulent jet thanks to the development of
transfer functions based on the parabolized stability equations (Sasaki et al. 2017).
So can the closed-loop control of fluctuations in a low-Reynolds-number shear layer
(Sasaki et al. 2018). These control-oriented models have significantly contributed to
the understanding of the manipulated jet dynamics.

Model-free approaches may yield performance benefits from nonlinear dynamics
which is too complex for control-oriented models. A new model-free self-learning
approach for general nonlinear control laws has been developed by Dracopoulos
(1997) for commanding satellite motion and was rediscovered in fluid mechanics as
machine learning control or MLC (Gautier et al. 2015). A review of dozens of MLC
experiments and simulations is provided by Noack (2019). The first MLC experiment
was set to enhancing shear-layer mixing with 96 jet actuators driven in unison and 25
hot-wire sensors for feedback control (Parezanović et al. 2016). The optimization of
shear-layer mixing resulted in destabilizing phasor control, i.e. the feedback excitation
of the dominant frequency. The control enhanced and synchronized downstream
large-scale vortices with a frequency of one sixth of the initial Kelvin–Helmholtz
(K–H) instability. Li et al. (2017) deployed four Coanda jet actuators placed at the
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trailing edge of an Ahmed body and 12 pressure sensors at the back side, achieving
a drag reduction by 22 % (where about 10 % was attributed to the Coanda effect)
when the excitation frequency was much higher than the predominant and even the
shear-layer frequencies in the wake. Using an unsteady single jet actuator driven by
an online PIV-based sensing, Gautier et al. (2015) cut short the reattachment length
of flow over a backward-facing step. They observed surprisingly the enhancement
of a low-frequency flapping mode, instead of the excitement of the dominant K–H
vortex shedding. Machine learning control has matched with or outperformed existing
control strategies and solved the combined task of picking the nonlinear mechanisms
for performance optimization and selecting the best sensors. These model-free control
studies show that the actuation mechanism can be very difficult to anticipate, thus
implying a challenge to any model-based control.

It is worth pointing out that MLC has never been applied to multiple independently
operated actuators, resembling a distributed actuation, in experiments so far. Machine
learning control laws, previously developed, have been of small to moderate
complexity, e.g. the phasor control, threshold-level based control, periodic or
two-frequency forcing (Duriez, Brunton & Noack 2016), as the actuators are typically
driven by a single actuation command. Indeed, the use of independent actuators
may increase dramatically the level of control complexity. For example, assume
that one unsteady minijet, used to maximize jet mixing, involves three parameters,
i.e. the actuation frequency fa, velocity Ua and duty cycle α. Then, if the number is
increased to up to say six independent minijets spatially distributed around the main
jet, the independent control parameters will be tremendously increased. Then one
naturally wonders what the globally optimal solution of the problem is and whether
an AI control technique could be developed to find this solution. Furthermore, what
turbulent flow structure might this global optimal solution or forcing produce?

This experimental work aims to address the issues raised above and to optimize
jet entrainment/mixing with six independently unsteady minijets placed upstream of
the nozzle exit, extending the MLC jet control using a single unsteady minijet (Wu
et al. 2018a). The manuscript is organized as follows. The experimental setup and
minijet-produced flow, along with its effect on the jet initial conditions, are described
in §§ 2 and 3, respectively. In §§ 4, 5 and 6 we respectively describe the AI control
system developed, the outcome of the AI-based learning and the resulting turbulent
flow structures. The work is concluded in § 7.

2. Experimental details
2.1. Jet facility

Experiments were conducted in a round air jet facility, as schematically shown
in figure 1. The facility was placed in an air-conditioned laboratory where the
room temperature remains constant within ±0.5◦C, centrally deployed in an area
of approximately 2.5 m in width and 2 m in height, enclosed by fabric walls. In
order to minimize the effects of the wall on the jet, the nozzle exit is 4.0 m away
from the fabric partition wall and the distance is well over 70 times the jet exit
diameter required for neglecting the wall effects (Malmstrom et al. 1997). As the
jet is highly sensitive to background noise, careful measures are taken to avoid any
external interference to airflow.

The compressed air of the round jet comes from a constant 5 bar gauge pressure,
mixed with seeding particles in the mixing chamber in the case of the particle image
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FIGURE 1. Sketch of the experimental setup: (a) main jet facility; (b) minijet assembly;
(c) minijet arrangement.

velocimetry (PIV) or flow visualization measurements, and then enters into a plenum
chamber, composed of a 300 mm long diffuser of 15◦ in half-angle and a 400 mm
long cylindrical settling chamber with an inner diameter of 114 mm. The flow passes
two screens before entering the smooth contraction nozzle (Perumal & Zhou 2018),
which is extended by a 47 mm long smooth tube of the same diameter as the nozzle
exit D (= 20 mm). The Reynolds number ReD = UjD/ν of the main jet is fixed at
8000, where Uj is the centreline velocity measured at the nozzle exit, the overbar
denotes time-averaging and ν is the kinematic viscosity of air. A Cartesian coordinate
system (x, y, z) is defined in figure 1(a,c), with its origin at the centre of the jet exit
and the x-axis pointing in the direction of flow. Measurements were conducted in the
x–z, x–y and y–z planes of the main jet. The instantaneous and fluctuating velocities
in the x, y and z directions are denoted by (U, V,W) and (u, v,w), respectively.

Six unsteady control minijets issued from orifices with a diameter of 1 mm are
equidistantly placed around the extension tube at xi = −0.85D, yi = (D/2) cos θi,
zi = (D/2)θi, where θi = (i − 1)2π/6, i = 1, 2, . . . , 6 (figure 1b,c). Their mass flow
rate is determined by a flow-limiting valve and monitored by a mass flow meter,
with a measurement uncertainty of 1 %, and the frequencies and duty cycles are
independently controlled by individual electromagnetic valves that are operated in
an ON/OFF mode. The maximum operating frequency of the valves is 500 Hz,
exceeding three times the preferred-mode frequency, f0= 135 Hz, of the unforced jet,
the corresponding Strouhal number being St = f0D/Uj = 0.45, where f0 is obtained
from the power spectral density function Eu of the streamwise fluctuating velocity u
measured in the absence of control (Yang & Zhou 2016).
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2.2. Flow measurements
The fluctuating flow velocities are monitored by two tungsten wire sensors of 5 µm
in diameter, operated on a constant temperature circuit (Dantec streamline) at an
overheat ratio of 0.6, one placed at (x/D, y/D, z/D) = (0, 1/4, 0) and the other
at (x/D, y/D, z/D) = (5, 0, 0). The time-averaged velocity at the latter position
is denoted by U5D. This choice is based on the following considerations. Firstly,
Zhou et al. (2012) demonstrated that the decay rate of the centreline mean velocity
of jet defined by K = (Uj − U5D)/Uj is correlated approximately linearly with an
equivalent jet half-width Req = [RHRV]

0.5, where RH and RV are the jet half-widths
in two orthogonal planes, implying that K is directly connected to the entrainment
rate of the manipulated jet. Secondly, Fan et al. (2017) found that the difference 4K
between the K values with and without control reaches the maximum at x/D≈ 5, that
is, the centreline mean streamwise velocity measured at x/D= 5 is most sensitive to
the change in the control parameters. Finally, the variation in K is almost linear from
x/D= 0 to x/D≈ 7 under control (figure 7, Fan et al. (2017)), that is, a single value
of K may be used to describe reasonably well the jet decay rate in the near field
under control. Both hot wires are calibrated at the jet exit using a pitot-static tube
connected to a micromanometer (Furness Controls FCO510). The cutoff and sampling
frequencies are 3 kHz and 6 kHz for open-loop control experiments, respectively. The
experimental uncertainty of the hot-wire measurement is estimated to be less than 2 %.

A planar high-speed PIV system, with a high-speed camera (Dantec speed sensor
90C10, 2056 × 2056 pixels resolution) and a pulsed laser source (Litron LDY304-
PIV, Nd: YLF, 30 mJ pulse−1), is deployed for velocity field measurements in the
x–z, x–y and y–z planes. An oil droplet generator (TSI MCM-30) is used to generate
fog from olive oil with an averaged particle size of 1 µm for flow seeding. Flow
illumination is provided by a laser sheet of 1 mm in thickness generated by the pulsed
laser via a cylindrical lens. For velocity measurements in the x–z and x–y planes,
the captured image covers the area of x/D ∈ [0, 6] and y/D, z/D ∈ [−2, 2]. The
longitudinal and lateral image magnifications are identical, 0.09 mm per pixel. The
time interval between two consecutive images is presently chosen to be 25 µs, which
is found to yield satisfactory results. There are 253× 253 velocity vectors, the same
for the two planes. A total of 200 pairs of flow images are captured at a sampling rate
of 405 Hz for each set of PIV data. In post-processing, a built-in adaptive correlation
function of the flow map processor (PIV 2001 type) is applied with an interrogation
window of 32× 32 pixels and a 75 % overlap along both directions.

The same PIV system is used for flow visualization in the three orthogonal planes.
So are the seeding particles, though their concentration is higher than in the PIV
measurements to provide a clear picture for the flow structure. The captured images
cover the area of x/D ∈ [0, 6] and y/D or z/D ∈ [−2, 2] in the x–y and x–z planes
and the area of y/D= z/D ∈ [−2, 2] at x/D= 0.25 in the y–z plane.

2.3. Real-time system
A national instrument PXIe-6356 multifunction I/O device, connected to a computer,
is used in experiments to generate the real-time control command at a sampling rate
of Frf = 1 kHz. A LabVIEW real-time module is used to execute the program. Sensor
data acquisition and control command generation for the AI control experiments are
operated under the same sampling frequency of 1 kHz. It has been confirmed that the
ON/OFF command lasts at least 1 ms to ensure the actuators work effectively. The
available fa can be derived from fa = Frf /Nsp, where Nsp is the number of sampling
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FIGURE 2. Time histories of minijet injection velocity Ua at duty cycles α = 0.1, 0.4
and 1 (see legend) in the absence of the main jet measured at (x/D, y/D, z/D) =
(−0.85,−0.35, 0) for Cm = 1.2 %, fa/f0 = 0.5. Uj = 0.

points in one period 1/fa. The working frequency range of actuators [0, 500 Hz]
imposes a minimum value for Nsp, i.e. Nsp > 2. For a given frequency, α can be
deduced from m/Nsp, m = 1, . . . , Nsp − 1. The m range ensures a response time of
1 ms for the effective working of the actuators, which is adequate as the maximum
sampling rate Frf is 1 kHz due to the limitation of hardware. Thus, the number of
possible duty cycles Nα for a given fa is Nα = Nsp − 1= Frf /fa − 1, which increases
with Frf and decreases with fa. This process is similar to the one used by Li et al.
(2017) and Wu et al. (2018a).

3. Minijet actuation
3.1. Minijet-produced flow

It is important to document the flow produced by a minijet and the effect of minijets
on the initial condition of the main jet. This information is crucial for understanding
physically the manipulated jet. The instantaneous velocity Ua of a single radial minijet
is first examined in the absence of the main jet. A hot wire is placed 17 mm or x/D=
−0.85 upstream of the main jet exit and 3 mm radially from the exit of minijet 1
(figure 1c). The hot wire is oriented normal to the minijet axis – recording the signal
Ua, which changes with α (figure 2). For α= 0.1, Ua displays sharp peaks which are
periodic and clearly separated. But these peaks are less pronounced at α = 0.4. The
signal Ua is almost steady at α= 1, though showing a small variation, as observed by
Johari, Pachecotougas & Hermanson (1999). Apparently, a small α produces a large
instantaneous velocity, implying a large penetration depth into the main jet.

Consider the simultaneous injection of minijets 1 and 4 (figure 1c) without the
main jet. Two hot wires are placed perpendicularly to the x–y plane at x/D=−0.85
and 3 mm from each of the corresponding measured minijet exit. The two minijets
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FIGURE 3. Time histories of two minijet injection velocity signals Ua1, Ua2 measured
simultaneously at (x/D, y/D, z/D) = (−0.85, ±0.35, 0) for Cm = 1.2 %, fa/f0 = 0.5 and
α= 0.1. There is a phase difference Φ between two minijets control signals: (a–b) Φ = 0,
(c–d) Φ = 60◦, (e–f ) Φ = 180◦. Uj = 0.

are injected with a phase shift Φ, which may be varied by changing the phase shift
between the two square wave signals of input voltages. At Φ = 0◦, the Ua1 signal
exhibits a very sharp peak value, with a magnitude of close to 0 at the off-state
of the minijet and about 13 at the on-state (figure 3a). Note that, even after the
electromagnetic valve is closed, there may be some fluid injecting into the main jet
(Sailor, Rohli & Fu 1999). A similar observation can be made for Φ = 60◦ and 180◦

(figure 3b,c). The characteristics of Ua2 resemble those of Ua1, regardless of the Φ
value. It may be inferred that each of the minijets does not depend on Φ and is rather
independent of each other.
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FIGURE 4. Typical hot-wire signals of instantaneous streamwise velocity U/Uj along x–y
plane at x/D= 0.05 for minijet numbers N = 1, 3, 4 and 6 ( fa/f0 = 0.5, α = 0.15, Cm =

1.2 %). The same scale is applied for all signals. The dots within the circle represent the
hot-wire measurement points.

3.2. Penetration depth and minijet number
The penetration depth of control jets may have a pronounced impact upon jet mixing
(Davis 1982). Thus, its influence on the main jet is examined for various minijet
numbers and configurations with given Uj and control parameters, i.e. α, fa/f0 and
mass flow ratio Cm = mmini/mj, where mmini and mj are the mass flow rates of a
single minijet and main jet, respectively. The minijet penetration depth could be
approximately estimated from the U signals along the y-direction, measured at
x/D = 0.05 using a hot wire placed perpendicularly to the x–y plane, as shown in
figure 4, where the scale of the abscissa or ordinate is made the same for all cases
to facilitate comparison. The U signals are essentially constant throughout the range
of y/D ∈ [−0.3, 0.3] for the unforced jet. The periodic fluctuations of U appear
at y/D = −0.3 for one minijet injection (N = 1), and its magnitude grows first and
then retreats with increasing y/D. The fluctuations remain discernible at y/D=−0.1.
Note that the minijet is issued along the y-direction. Beyond y/D=−0.1, the velocity
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fluctuations are negligibly small and in fact comparable to that in the unforced
jet. These observations indicate that the minijet has reached a penetration depth of
y/D = −0.1. With three adjacent minijets on (N = 3), the velocity fluctuations are
appreciably larger in magnitude than their counterparts of N = 1, and the maximum
amplitude is shifted to a deeper position, i.e. from y/D=−0.1 at N = 1 to y/D= 0
at N = 3. The fluctuations are now discernible at y/D= 0.2, indicating an increased
penetration depth, though the minijets clearly have not impinged on the wall opposite
to the injecting minijets. With N increasing to 4, the maximum magnitude of the
velocity fluctuations is appreciably larger than that of N = 3, and again occurs at
the centre (y/D = 0), where all minijets contribute to an increase in the velocity
fluctuations. Furthermore, the fluctuations are now even discernible at y/D = 0.3. It
is worth pointing out that we did not move the hot wire closer to the wall because
of its high fragility; therefore, we could not tell whether the minijets have penetrated
through the main jet in this case. At N= 6, the velocity fluctuations display symmetry
about the centre, the maximum magnitude exceeding all other cases and taking place
at the centre.

3.3. Power spectral density function and minijet number
Figure 5 compares Eu measured on the centreline at x/D= 0.05 with and without the
main jet operated, where the log–log scale is used to emphasize the low-frequency
components. This function Eu yields u2=

∫
∞

0 Eu df , where f is frequency. In figure 5e,
Eu measured in the unforced jet shows a pronounced peak at f0, indicating clearly the
occurrence of the preferred mode structure. When the minijets as well as the main jet
are operated, Eu exhibits more pronounced peaks at f /fa= 1 and its harmonics. These
observations result from the interaction between the main jet and minijet, referred
to as the parametric resonance by Huang & Hsiao (1999). Evidently, the unsteady
injection produces the periodic structures upstream of the nozzle exit, as noted by
Zhou et al. (2012). With increasing N, the peaks become more pronounced and occur
at more harmonics, echoing the enhanced periodic structures (figure 4) and, hence,
the enhanced excitation of the shear layer. The predominant frequencies do not vary
with N though. Note that Eu is normalized by u2 so that its integration over the entire
frequency range is always equal to unity. As a result, Eu drops appreciably over the
low frequency range.

3.4. Fluctuating velocity and minijet number
The number and configuration of minijets may profoundly affect the main jet issuing
from the nozzle, as in the case of passive delta tabs (Zaman et al. 1994). This
effect plays an important role in the downstream evolution of flow. As such, the
radial profiles of the hot-wire measured root-mean-square (r.m.s.) velocity urms at
x/D= 0.05 are examined in the manipulated jets, along the y and z axes, respectively,
for N = 1, 2, 3, 6. The data of the unforced jet are also presented for the purpose of
comparison. Given the symmetrically arranged minijets (N= 2, 6) about the x–z plane
(figure 6b1,d1), the urms distributions along the y-axis exhibit reasonable symmetry.
The urms displays a pronounced peak at about y/D=±0.45, where the shear layer is
expected, in the injection or x–y plane for N = 2 (figure 6b1), but remains unchanged
in the orthogonal or x–z plane (figure 6b2), indicating that the shear layer between
the two minijets is essentially undisturbed. Being symmetrical about the z-axis, the
urms distributions are given only for z/D > 0 in figure 6(a2–d2). A broad bump
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FIGURE 5. Power spectral density function Eu of hot-wire signals u measured at
(x/D, y/D, z/D) = (0.05, 0, 0) with and without the main jet: (a) N = 1, (b) N = 3,
(c) N = 4, (d) N = 6, (e) N = 0, (x/D, y/D, z/D)= (3, 0, 0).

is evident at y/D ≈ 0.2 for N = 2 (figure 6b1). The flow structure induced by an
unsteady injecting minijet is similar to a pulsed jet in cross-flow, which forms a series
of periodical vortex rings (M’closkey, King & Cortelezzi 2002). It seems that these
minijet-produced periodic vortices may occur most likely at y/D ≈ 0.2, accounting
for the broad bump. For N = 3 and 6, this bump moves to near the centre, with a
significantly increased magnitude (figure 6c1,d1). Two factors may be responsible
for this increase. Firstly, as the separation angle θ decreases from 180◦ to 120◦ and
then 60◦, two neighbouring minijets become close and their induced unsteady flows
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FIGURE 6. Radial distributions of fluctuating velocity urms/Uj measured at x/D =
0.05 ( fe/f0 = 0.5, Cm = 1.2 %) depend on minijet number: (a1–d1) along the y-axis,
(a2–d2) along the z-axis.

interact more and more intensely. Zaman et al. (1994) noted that, as the neighbouring
delta tabs approach each other, streamwise vortices interact more vigorously, resulting
in the jet core fluid ejection. Secondly, as demonstrated in figure 4, every minijet
generates a velocity fluctuation at the centre. For N = 6, θ is smallest and all six
minijets contribute to flow perturbations, thus producing the most pronounced bump
at y/D= 0.

4. Artificial intelligence control system
4.1. Artificial intelligence control system

Artificial intelligence methods allow us to explore the rich universe of nonlinear
actuation mechanisms opened by independent spatially distributed actuators. Hence,
we see the actuation and sensing hardware and control logic as intimately interwoven.
The AI control system is sketched in figure 7. Generally, a control system facilitates a
control goal for a plant by control hardware and a control logic/controller. The control
hardware includes sensors and actuators as discussed in § 2. This hardware monitors
the plant output (velocity signals) and executes instructions from the controller.
The open-loop arrangement is shown in figure 1(a) for calculating the cost value
J =U5D/Uj. A minimized cost J corresponds to the maximized decay rate K = 1− J
of jet centreline mean velocity, which is an indicator of the mixing efficacy of a jet
(Perumal & Zhou 2018).

4.2. Control optimization using linear genetic programming

The six-dimensional vector b = [b1, b2, . . . , b6]
† comprises all actuation commands.

The ith minijet is ‘ON’ if the actuation command bi is positive and is ‘OFF’ otherwise.
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Hot wire
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Control
goal

Control
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Control
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FIGURE 7. Principle sketch of the artificial intelligence control which consists of a plant
(yellow), sensors (green), actuators (blue) and a controller (red) that includes a linear
genetic programming (LGP) algorithm or other machine learning methods.

In the sequel, we assume that bi = 1 for ‘ON’ and bi = 0 for ‘OFF’. Following Wu
et al. (2018a), we search for a control law including sensor feedback with hot-wire
signals s, multi-frequency open-loop forcing with harmonic functions contained in h=
[h1, h2, . . . , h6]

†. Here, hi = sin(ωat − φi), i = 1, 2, . . . , 6, where t is time, ωa is a
reference frequency to be determined in § 5.1 and φi is the phase. Then,

b=K(s, h), (4.1)

where the vector function K = [K1, . . . , K6] comprises the actuation laws for each
minijet. The time-averaged duty cycle of the ith minijet is determined by the control
law K and the arguments, i.e. sensor signals and harmonic functions. For open-loop
forcing b = K(h), the duty cycle of the ith minijet becomes the sensor-independent
time-average of the actuation command K i(h). Thus, helical forcing may have
a particularly simple representation, e.g. bi = hi. In general, only two harmonic
functions, typically sin ωat and cos ωat, are sufficient for harmonic functions with
arbitrary phases. Following Paschereit, Wygnanski & Fiedler (1995) and others, we
add the cosine and sine components of ωa/2 and ωa/4, yielding a ten-dimensional
vector h = [h1, h2, . . . , h10]

†. The nonlinear function K can create arbitrary higher
harmonics, arbitrary phase relationships between ωa, ωa/2, ωa/4 and higher harmonics,
e.g. 1 − 2h10

= cos(10ωat), as well as arbitrary sum and difference frequencies. The
control optimization searches for a law of form (4.1) that minimizes the cost,

K?
= arg min

K
J[K]. (4.2)
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The regression problem implies a search for a mapping from multiple inputs to a
multiple-output signal. Even in case of a linear function this implies the optimization
of a large number of parameters. We employ the powerful linear genetic programming
(LGP) as a regression solver and take the same parameters for the control law
representation and for the genetic operations as Wu et al. (2018a). The first generation
of LGP, n = 1, contains Ni = 100 random control laws, also called individuals.
Each individual ‘i’ is experimentally tested for 5 s to yield the measured cost Jn

i ,
where the superscript ‘n’ denotes the generation number. Subsequent generations
are produced from the previous ones with genetic operations (elitism, crossover,
mutation and replication) and tested analogously. In the case of elitism, top-ranking
individuals pass directly to the next generation. Replication copies a stochastically
selected number of individuals into the next generation, which acts to preserve some
well performing individuals. Crossover involves two selected individuals and then
produces two individuals, with part of their elements exchanged. This operation
tends to generate better individuals by exploitation. For the mutation operation,
the instructions of a selected individual are randomly changed. Both crossover and
mutation serve to explore potentially new and better minima of J. After the in situ
performance measurements, the individuals are renumbered in order of performance,
Jn

1 6 Jn
2 6 · · ·6 Jn

Ni
, where the subscript i represents the individual index and Ni and

n respectively denote the size and number of generations. We have noted in trial
tests that all the winning individuals always involve every actuator. Therefore, when
generating the 100 individuals of the first generation, we exclude the possibility
of a permanently inactive actuator to accelerate the learning process, that is, as a
plant-specific rule, we discard and replace any individual for testing if one or more
actuators are not active.

It is worth mentioning that the present jet control is formulated as a model-free
regression problem: determine the law which minimizes the given cost function. The
considered search space of control laws significantly extends hitherto considered
actuations. Firstly, general multiple-input actuation is allowed without any imposed
symmetry constraints. Thus, actuations with arbitrary combinations of minijets thereof
can be realized. Secondly, the search space includes broadband multi-frequency
actuation. Thirdly, nonlinear sensor feedback is included, which is made by nonlinear
operations with the sensor signal s, e.g. b= log10(s) (Wu et al. 2018a). However, this
feature is not found improving appreciably the control performance and is therefore
removed eventually in the learning process. Fourthly, the control law may include
nonlinear combinations of multi-frequency forcing and sensor feedback. The key
enabler for the control optimization in this search space is genetic programming as a
powerful regression solver. Genetic programming may be considered as an example
for the many powerful regression solvers of AI.

4.3. Parameters and control landscape
The LGP parameters for this study are displayed in table 1. These values are adopted
from a previous MLC jet mixing study in the same facility with a single minijet
(Wu et al. 2018a). The parameters are identical or close to the ones employed in
numerous experimental studies as summarized by Duriez et al. (2016) and Noack
(2019). Elitism is set to Ne = 1, i.e. the best individual of a generation is copied to
the next one. The replication, crossover and mutation probabilities are 10 %, 70 % and
20 %, respectively. The individuals on which these genetic operations are performed
come from a tournament selection of size Nt = 7. The instruction number varies from
10 to 50. The operations comprise +,−,×,÷, sin, cos, tanh, log10 and g2, where g is
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Parameters Value

Individuals Ni = 100
Tournament size Nt = 7
Elitism Ne = 1
Crossover Pc = 70 %
Mutation Pm = 20 %
Replication Pr = 10 %
Min. instruction number 10
Max. instruction number 50
Operations Ni =+,−,×,÷, sin, cos, tanh, log, g2

Number of constants Nc = 3
Constant range [−1, 1]

TABLE 1. Linear genetic programming parameters employed for experiments. The
symbol g indicates an input argument.

the input argument. The operations ÷ and log10 are protected to prevent an undefined
expression with a vanishing argument; for example, log10(g) is modified to log10(|g|).
In addition, LGP uses three random constants in the range [−1, 1].

The evolution of control laws is depicted with a proximity map following Duriez
et al. (2016). The main idea is that the considered ensemble of Ki(h) is represented
as points in a two-dimensional feature plane γi= (γi,1, γi,2), where i= 1, 2, . . . ,Ni× n,
so that the difference between the control laws is optimally indicated by the distance
between feature vectors. The key is the definition of a metric Dij between the control
laws Ki(h) and Kj(h). For the considered open-loop actuation, this metric is the root-
mean-square averaged Euclidean difference between the actuation command vectors
accounting for a potential time-delay, given by

Mij = min
τ∈[0,Ta]

√
‖Ki(h(t))−Kj(h(t− τ))‖2. (4.3)

In the employed metric, we incorporate also the control performance Ji by a
penalization term, i.e.

Dij =Mij + β|Ji − Jj|. (4.4)

The parameter β is chosen so that the maximum actuation distance Mij is equal to the
maximum difference in the performance terms:

max
i,j=1,2...Ni×n

Mij = β max
i,j=1,2...Ni×n

|Ji − Jj|. (4.5)

Given the resulting configuration matrix D = (Dij) (i, j = 1, 2, . . . , Ni × n), classical
multi-dimensional scaling (Cox & Cox 2000) uniquely determines feature vectors γi,
i= 1, 2, . . . ,Ni × n, so that the distances are optimally preserved:

Ni×n∑
i=1

Ni×n∑
j=1

(‖γi − γj‖ −Dij)
2
=min . (4.6)

The translational degree of freedom is removed by centring the feature vectors∑Ni×n
i=1 γi = 0. The feature vectors are sorted and rotated so that the first coordinate
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Mode Benchmark forcing AI control

Unforced jet Ju = 0.974 —
Axisymmetric forcing Ja = 0.665 J1

1 = 0.626
Helical forcing Jh = 0.568 J2

1 = 0.555
Flapping forcing Jf = 0.423 J5

1 = 0.419
Combined forcing — J11

1 = 0.305

TABLE 2. Cost function J for different actuations at ReD = 8000.

has the largest variance, the second coordinate the second largest, etc. The coordinates
are indeterminate by a sign (mirroring), like POD modes and their amplitudes.

Finally, a control landscape J(γ ) is interpolated from the three-dimensional data
points (γi,1, γi,2, Ji), i = 1, 2, . . . , Ni × n. The two-dimensional feature vectors γi

are connected by an unstructured grid from a Delaunay (1934) triangulation. This
triangulation guarantees that the mesh triangles are optimally equilateral. The J-values
in each mesh triangle i1, i2, i3 ∈ {1, 2, . . . , Ni × n} are interpolated from the known
values at the vertices Ji1, Ji2, Ji3 . These control landscapes have been employed in
several AI-based control schemes (Kaiser et al. 2017). They indicate the complexity
of the actuation response and the learning progress of AI-based control. Often, the
feature coordinates can be linked with the physical properties of actuation a posteriori,
thus providing additional insights.

5. Outcome of the AI control
5.1. Representative reference actuations

A few well-known reference forcings are firstly presented to facilitate the understanding
of the AI learning process and highlight the uniqueness of this method. In our earlier
studies, turbulent jet mixing has been optimized for the same cost function and
experimental conditions. For single unsteady minijet forcing, the optimal fa is found
to be 67 Hz (Wu et al. 2018a), 0.5f0, and the optimal Cm is 1.2 % based on a
dual-input-and-one-output closed-loop control technique (Wu, Wong & Zhou 2018b).
As such, we choose the same fa or ωa= 2πfa and Cm= 1.2 % for every minijet. With
Cm fixed for each minijet, the overall mass flow of injected fluid in one actuation
period Ta is the same for all actuations, that is, the input/actuation energy is the
same, irrespective of control modes or laws. Consider three reference forcings (e.g.
Hilgers & Boersma 2001; Yang & Zhou 2016; Yang 2017), viz.

axisymmetric forcing bi = h1 − αa, i= 1, 2, . . . , 6; (5.1a)
helical forcing bi = hi − αh, i= 1, 2, . . . , 6; (5.1b)

flapping forcing b1 = b2 = b3 = h1 − αf , b4 = b5 = b6 = h4 − αf . (5.1c)

The constants αa, αh and αf correspond to the duty cycles and have been optimized
with respect to the cost. As mentioned before, actuation is performed only when bi>0.
The cost functions are found to be Ja = 0.665, Jh = 0.568 and Jf = 0.423 for the
optimized axisymmetric, helical and flapping forcings (table 2), respectively, based on
the conventional open-loop control, which provide the benchmarks for the AI control
performance to be discussed below.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.392


Artificial intelligence control of a turbulent jet 897 A27-17

302520151050

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Co
st 

fu
nc

tio
n 

J

0.1

0

Generation n

Ju

Ja

Jh

Jf

(u)

(a)

(h)

(f)

(c)

FIGURE 8. Learning curve (3000 individuals) of AI control for (u) unforced jet,
(a) axisymmetric forcing, (h) helical forcing, ( f ) flapping forcing and (c) combined
forcings. Here Ju, Ja, Jh and Jf are costs corresponding to the benchmarks of unforced,
open-loop axisymmetric, helical and flapping forcings, respectively (see table 2).

5.2. Learning process of AI control
In the initial stage of the learning process we included a feedback signal s(t) =
[u3D, u5D] as one input (equation (4.1)) for the AI system, where u3D and u5D are the
fluctuating velocity signals measured at x/D= 3 and 5, respectively. It is found from
dozens of experiments that the search for the optimal solution benefits neither from
the subharmonic components of h7, . . . , h10 nor from the feedback signals. Therefore,
the AI control laws (4.1) may be cast in the periodic open-loop form, bi =

Ki(h1, h2, . . . , h6), i= 1, 2, . . . , 6. Hence, we restrict our following discussion to this
open-loop actuation.

The learning curve of the AI control is presented in figure 8, where the square
symbol marks the first and best individual of each generation with Ni = 100 control
laws. The remaining costs grow monotonously with their indices, and the 100
individuals of each generation form a colour bar. The square symbol curve unveils
the best performance from generation n = 1 to 30. The best individual of the first
generation or stage 1 is characterized by an axisymmetric control law (see (A 1) in
appendix A).

This law is equivalent to (5.1a) except for a time shift, reflected by 4/6π. The
performance J1

1 = 0.626 (see figure 8 and table 2) is slightly better, about 5.8 % lower,
than the benchmark of axisymmetric forcing (5.1a), though much higher than that
(Ju= 0.947 or K≈ 0.05) of the unforced jet. Note that the centreline mean velocity for
calculating K or Ja is measured over a duration of 60 s in the benchmark experiments,
but only 5 s for estimating Ji as the measured Ji is used to evaluate control laws
and does not need to be very accurate in the learning process of AI control. An
accurate long-time evaluation of J is performed only in the last generation n=30. This
difference in evaluating the cost function could account for the deviation between J1

1
and Ja. However, the AI control or specifically genetic programming breeds several

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.392


897 A27-18 Y. Zhou, D. Fan, B. Zhang, R. Li and B. R. Noack

copies of the winning individual, covering all possible combinations of the control
parameters, and then takes the best performing one. This process differs in essence
from the searching process of the conventional open-loop control which optimizes one
control parameter first and then moves to next with the first parameter fixed. The
advantage of the former over the latter is obvious. Therefore, different search strategies
cannot be excluded from the mechanisms behind the deviation, which will be further
substantiated by the fact that all the best cost functions of the different stages in the
learning curve are less, albeit slightly, than their corresponding benchmarks produced
from the conventional open-loop control.

Stage 2 starts with the second generation when the AI control discovers a better
performing helical forcing (equation (A 2) in appendix A). This forcing differs in form
from (5.1b), but clearly shows a uniformly travelling wave in the azimuthal direction
(to be demonstrated in § 5.3), its cost J2

1 being again slightly lower than Jh (table 2).
Helical forcing reduces J further as found from the numerical simulation study of
a similar jet mixing optimization (Hilgers & Boersma 2001). Local spatial stability
analysis indicates that, unlike axisymmetric forcing, helical perturbations are spatially
amplified downstream of the potential core (Garnaud et al. 2013).

Flapping forcing takes place in stage 3, starting from the fifth generation. The law
(equation (A 3) in appendix A) is similar to (5.1c) but incorporates an asymmetry. An
optimized asymmetry yields a reproducibly better mixing, again J5

1 6 Jf (table 2).
The eleventh generation marks the emergence of stage 4. The AI control discovers

a very sophisticated control law. See (A 3) in appendix A. This forcing significantly
outperforms the flapping forcing found in generation 5, the corresponding J11

1 plunging
to 0.305, a drop of 27 % compared with the smallest J5

1 in generation 5 and less
than 1/3 of the unforced jet. The actuation mechanism does not change any more
in following generations with little variation in costs, pointing to the convergence
of the AI learning process. It is worth highlighting that this actuation mechanism is
reproducible, that is, approximately the same converged cost has been observed in all
experiments, notwithstanding a change in the initial parameters of the first generation.
However, not all AI learning curves go through the stages of axisymmetric, helical
and flapping forcings; some AI experiments may find only two of the three stages in
the learning process.

5.3. Representative control laws and flow responses
The control mechanisms may be elucidated from the analysis of the spatio-temporal
actuations, shown in figure 9, extracted from the control laws of n= 1, 2, 5 and 11.
Each circular pie corresponds to one sixth of the excitation period, while its six sectors
represent the six minijets. The arrow indicates that the minijet is on and the radial
depth of the blue area is proportional to the duration when the minijet is injecting. The
spatio-temporal actuation is found to be internally consistent with the cross-sectional
and streamwise flow structure shown in figures 10 and 11. Axisymmetric forcing
(figure 9a1–a6) is characterized by simultaneous blowing of all minijets and a small
α of 13.3 %. As a result, the cross-sectional flow structure (figure 10a1–a6) is
axisymmetric, and the ring vortex is evident. Yang & Zhou (2016) discussed in detail
the distortion, formation of longitudinal structures and generation of mushroom-like
structures in the braid region between ring vortices, and presented a scenario on how
the interactions between the longitudinal structures, mushroom-like structures and ring
vortices enhance entrainment and mixing. The six synchronized minijet excitations
greatly strengthen the ring vortices, as shown in figure 11(a) (cf. figure 11u).
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13.3 % 6.7 % 0

(a1) (h1) (f1) (c1)

(a2) (h2) (f2) (c2)
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(a6) (h6) (f6) (c6)

FIGURE 9. Actuation associated with the best individuals of generation n = 1, 2, 5
and 11 of figure 8. From top to bottom: six instances associated with φ =
Ta/6, 2Ta/6, 3Ta/6, . . . , Ta in one excitation period. Each of the six sectors of the circles
corresponds to one minijet.

For helical forcing (figure 9h1–h6), two or three minijets are blowing simultaneously
at any instant, with α reaching 40 %. These blowing actions rotate clockwise from
(h1) to (h6). The greatly increased α, probably required for the generation of helical
motion, may act to inhibit the occurrence of mushroom-like structures (Perumal &
Zhou 2018), which are absent in figure 10(h1–h6). The jet (figure 11h) exhibits
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FIGURE 10. Sequential photographs of the cross-sectional flow structure captured at x?=
0.25. From top to bottom: six instances at ti = iTa/6 (i = 1, 2, . . . , 6) in one actuation
period Ta (= 1/fa).

more spread than axisymmetric forcing (figure 11a). In case of flapping forcing
(figure 9f 1–f 6), three adjacent minijets are blowing simultaneously at one instant
with α = 13.3 % and are switched to the other three after a phase shift of π, thus
creating the asymmetric flapping jet column (figures 10f 1–f 6, 11f 1–f 2). The actuation
configuration of the rightmost column (n = 11) in figure 9 is complex. Firstly, the
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FIGURE 11. Flow visualization of (u) unforced jet, (a) axisymmetric, (h) helical,
( f ) flapping and (c) combined forcings from figure 8, respectively. White ellipses and
crooked arrows indicate vortex rings and their rotation, respectively, and yellow arrows
highlight the jet column oscillation.

number of simultaneously injecting minijets can be 1, 2, 3 or 4, mostly adjacent to
each other. Secondly, the injecting minijets tend to rotate clockwise. The resulting
effect is to produce both helical and flapping motions (figures 10c1–c6, 11c). For
convenience, hereinafter we refer to this forcing as the combined mode. Thirdly, α
varies from one blowing minijet to another, from about 6.7 % to 53 %. The effect
could be twofold. On one hand, the varying duty cycles of the blowing minijets may
yield a resultant blowing force not going through the jet centreline (figure 9c1–c6).
This may produce a precession effect, causing additional jet column oscillation
(Wong, Nathan & O’Doherty 2004). On the other hand, whilst a small α facilitates
the generation of mushroom-like structures (figure 10c1–c6), a large value enhances
the strength of the flapping motion (figure 11c), as noted by Perumal & Zhou
(2018). All the features, confirmed by more detailed analysis in § 6, act to promote
mixing, consistent with the observed minimum J (figure 8). The generation of such
a sophisticated control mode, along with the generation of a complex turbulent flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.392


897 A27-22 Y. Zhou, D. Fan, B. Zhang, R. Li and B. R. Noack

0.50
©1

©2

-0.5 0.50
©1

-0.5

Region 1

Region 1

Region 1 Region 2

Region 2

Combined
Region 2

Axisymmetric

Region 3 Region 3

Region 3

Helical

Flapping

0.5

0

-0.5

©2

0.5

(a) (b)

(c) (d)

0

-0.5
A

CB

D
E

F

1.0
J

0.9

0.8

0.7

0.6

0.5

0.4

FIGURE 12. Control landscape associated with generations 1, 2, 5 and 11 (400
individuals). Each symbol represents an individual control law. The colour scheme
corresponds to the cost value J of the control laws, e.g. (a) n= 1, (b) n= 2, (c) n= 5,
(d) n = 11. The white circle of bigger size corresponds to the best individual of one
generation. The elliptic contours enclose similar control laws.

structure, would have been extremely challenging for conventional control techniques,
be it open- or closed-loop and model-based or model-free approaches.

5.4. Control landscape: cartographing all actuation laws
Proximity maps (§ 4.3) provide a very revealing illustration of the evolution process
of the control laws. The underlying metric between two control laws b and b′ is
given by Dij (4.4). Figure 12 presents the proximity map of the control laws in a two-
dimensional plane such that this metric is optimally preserved. This plane is spanned
by the feature coordinates γ1 and γ2 (§ 4.3), which are derived from a mathematical
optimization process. The details of deriving γ1 and γ2 from individual generations are
given in Cox & Cox (2000). Physically, the distance between two points, which are
given in terms of (γ1, γ2), in the plane is directly linked to the extent of how closely
similar to each other two control laws are.

The subfigures display the feature coordinates of the four discussed generations
(n = 1, 2, 5 and 11). Interesting observations and inferences could be made from
the subfigures. For n= 1 (figure 12a), the points appear rather randomly distributed.
The optimal solution of axisymmetric forcing, indicated by an open circle, occurs at
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(γ1, γ2)= (−0.04, 0.54), where γ2 is the largest of all points. At n= 2 (figure 12b),
these points appear forming three separated regions numbered 1 through 3, as
enclosed by the elliptic contours, where most of the control laws fall in. The optimal
solution that appears in region 2 and corresponds to helical forcing now occurs at
(γ1, γ2)= (0.39,−0.01), where γ1 is the largest of all points. At n= 5, the individual
points tend to populate along discrete curves (figure 12c), which is a commonly
observed phenomenon of the AI control, e.g. Li et al. (2017) and Wu et al. (2018a).
The optimal solution now takes place at (γ1, γ2) = (0.49, −0.01), where γ1 is again
the largest of all, within region 3, and corresponds to flapping forcing. It has been
confirmed that most of the data points within regions 1, 2 and 3 correspond to
axisymmetric, helical, and flapping forcings, respectively. By n= 11 (figure 12d), the
optimal solution occurs at (γ1, γ2) = (0.31, 0.17) within region 2, corresponding to
the combined mode. It is noteworthy that those points in this region now correspond
to either helical or combined forcing; this very fact may suggest that the so-called
combined forcing may have been developed from and more closely related to helical
forcing. Interestingly, region 1, where axisymmetric forcing takes place, contracts to
a single point, while region 2 or 3 is reduced to a curve.

The cost J associated with each point is colour coded from red (J = 0) to pink
(J = 1), as indicated by the colour bar. The cost values within each coloured area
are interpolated from the 100 individuals in each generation. The control landscape
at n = 1 displays quite a few minima, as indicated by the green coloured areas, in
the feature plane (figure 12a), suggesting the complexity of the learning task in the
early stage, internally consistent with the rather random distribution of the points.
The landscape becomes simpler towards the rightmost boundary of the generation.
As n increases, the individuals tend to line up on the ridge-curves marking the cost
valleys.

The feature coordinates have technically no a priori meaning. However, an
approximate physical meaning of γ1 and γ2 may be inferred from the careful
analysis of the control laws. The coordinate γ1 is correlated with the degree of
asymmetric forcing, while γ2 is linked to the number of simultaneously injecting
minijets. Consider six arbitrarily chosen control laws A–F in the first generation
(figure 12a). Figure 13 shows the on- and off-states of the minijets corresponding
to the six control laws. Evidently, the maximum number of simultaneously injecting
minijets increases from one (law A) to six (law F).

6. Discussion: representative control laws and flow structures
6.1. Jet spread and predominant flow structures

Axisymmetric forcing at n= 1 (figure 11a) leads to an early disruption of the potential
core and a significantly improved entrainment, as suggested by the substantially
reduced ‘neck’ due to ambient fluid (dark colour) brought into the jet by the greatly
increased strength of vortices near the nozzle exit. The flow structure exhibits an
appreciably increased lateral spread than the unforced jet (figure 11u). The Eu of
the centreline u (figure 14a) measured at x/D = 1.0 displays the most pronounced
peaks of all at f /fa = 1.0 and its harmonics, though the peaks at higher harmonics
vanish rapidly from x/D = 1.0 to 4.0. These peaks become very sharp because
of the minijet excitation. The ring vortices remain axisymmetric (figure 10a1–a6),
which is corroborated by the spectral phase Φ12, about zero over the entire range
of f /fa = 0–2.0, between two simultaneously measured hot-wire signals u1 and u2
at x/D = 1 and y/D = ±0.3 (figure 15a). The Φ12 is calculated by tan−1(Q12/Co12),
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FIGURE 13. Actuation associated with control laws A–F, extracted from figure 12(a). The
symbols are as in figure 9.

where Co12 and Q12 represent the cospectrum and quadrature spectrum of u1 and u2,
respectively (Zhou, Zhang & Yiu 2002).

An even larger lateral spread is achieved for helical forcing at n = 2 (figure 11h)
due to the rotating flow structure (figure 10h1–h6). The Eu measured on the centreline
shows less pronounced peaks at f /fa = 1.0 and its harmonics than its counterpart for
axisymmetric forcing. This is because there are only two or three injecting minijets
at any instant for helical forcing (figure 9h1–h6), which produce considerably less
velocity fluctuations at the jet centre than six minijets (figures 5 and 6). Furthermore,
the peaks at f /fa > 2.0 disappear at x/D > 1. The Φ12 is about π over a range of
frequencies about f /fa = 1.0 (figure 15h), as is expected based on figure 9(h1–h6).

At n= 5, the jet column wobbles right and left, as indicated by yellow arrows in
figure 11( f 1), in the flapping plane (the x–y plane) but not in the orthogonal x–z
plane (figure 11f 2), which is symmetrical about y = 0. The lateral spread appears
exceeding appreciably that for helical forcing, echoing the considerably improved
mixing shown in figure 8. Interestingly, the peaks at f /fa = 1.0 and its harmonics
in Eu are less pronounced than their counterparts of helical forcing (figure 14). The
peaks of the former decay more rapidly, completely vanishing by x/D = 4.0, than
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FIGURE 14. Normalized streamwise power spectra of fluctuating velocity u measured on
the centreline in the presence of the main jet: (a) axisymmetric, (h) helical, ( f ) flapping
and (c) combined forcings.

the latter. The observation is consistent with the perception that it is the flapping
motion, not the large-scale vortices, that plays a predominant role in enhancing
mixing in this case. The flapping motion of the jet is characterized by a negative
correlation between the two fluctuating streamwise velocities obtained on the opposite
side of the jet (Goldschmidt & Bradshaw 1973). Indeed, Φ12 is about π over a very
narrow frequency band about f /fa = 1.0 in the flapping plane but zero over a rather
broad range of frequencies in the non-flapping plane (figure 15f 1, f 2), as observed
by Yang & Zhou (2016). Note that the peak at f /fa = 2.0 is larger than at f /fa = 1.0
for flapping forcing (figure 14f ). This behaviour is ascribed to the flapping motion
(figure 11f 1) caused by two separate excitations with a phase shift of π within each
excitation cycle (figure 9), which are captured by the hot wire.

The combined mode is distinct from all other forcings. Firstly, its spread shown
in figure 11(c) is clearly the largest of all, due to the presence of both flapping and
helical motions (figures 9c1–c6 and 10c1–c6), internally consistent with the smallest
J in figure 8. Secondly, its Eu (figure 14c) displays a number of differences from
other forcings. The peak at f /fa= 1.0 grows in amplitude from x/D= 1 to 3, while its
counterpart for the other three forcings all decay quickly. Furthermore, the peaks at
the higher harmonics of f /fa = 1.0 decay little for the same range of x/D, in distinct
contrast to their counterparts of other forcings where these peaks retreat rapidly.
Naturally, compared with the other three forcing modes, there are many peaks at
the higher harmonics of f /fa = 1.0, especially at x/D = 3. When manipulating the
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FIGURE 15. Phase spectrum Φ12 between two streamwise fluctuating velocity signals u
from hot wires measured at x/D= 1 and y/D or z/D=±0.3. Sta = faD/Uj.

main jet using a single unsteady minijet, Perumal & Zhou (2018) made a similar
observation, which was ascribed to the use of a small duty cycle. The small duty
cycle occurs in every phase of the combined mode (figure 9c1–c6). Another note is
that the peak at f /fa = 2.0 is larger than at f /fa = 1.0 for x/D= 1 and remains very
pronounced downstream, similarly to the flapping forcing case (figure 14f ). Thirdly,
its Φ12 (figure 15c) approaches anti-phase at f /fa = 1.0 for both orthogonal planes
examined. A rather broad plateau occurs at about f /fa = 1.0, where Φ12 ≈ −0.86π.
This phase shift differs appreciably in value from flapping or helical forcing where
Φ12 ≈ π, and is probably connected to the presence of the oscillating component in
this mode. Note that the combined mode produces the nearly anti-phased behavior for
all planes through the x-axis. However, in flapping forcing, this anti-phased behavior
takes place only in the flapping plane.
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6.2. Momentums impinging upon the main jet and jet centre trajectory
Additional insight may be gained into the flow physics of the combined mode by
examining the sum of the momentums due to individual injecting minijets impinging
upon the main jet and the direction of their resultant momentum. As the averaged
mass flux is the same for all minijets, the maximum actuation velocity scales roughly
with the inverse of the duty cycle α, as demonstrated in figure 2. As such, the
maximum actuation velocity Ua,i of the ith minijet is proportional to the product of
bi(t) and 1/αi, viz.

Ua,i(t)∝
bi(t)
αi
, (6.1)

where bi(t) is a signal generated by Ki(s(t), h(t)), given in (4.1), its values 0 and 1
corresponding to the on- and off-states, respectively. The time-averaged mass flow rate
is the same, 1.2 %, for every minijet. The sum of the momentums due to individual
injecting minijets impinging upon the main jet is parameterized by

A(t)=
N∑

i=1

bi(t)
αi
. (6.2)

By definition, the time-averaged amplitude is the number of active minijets, i.e. 0 for
unforced flow and A(t)=N=6 for actuation, implying a total time-averaged mass-flow
rate of 7.2 %. On the other hand, the resultant momentum vector of the momentums
associated with individual injecting minijets is given by

Q(t)=
N∑

i=1

bi(t)
αi

ei, (6.3)

where ei =−(cos θi, sin θi) is a unit vector in the direction of the ith minijet located
at angle θi in the y–z plane. The minus sign refers to an inward velocity towards the
jet centre. Here N is the number of injecting minijets.

Figure 16 shows the variation in angle θ(t) of Q(t), with respect to the y-axis, and
A(t) with time t over two actuation periods Ta for the axisymmetric, helical, flapping
and combined forcing modes (n = 1, 2, 5 and 11). For axisymmetric forcing, θ(t)
is undetermined as Q(t) vanishes identically, as b1 = b2 = · · · = b6 and

∑
ei = 0

(figure 9a1). Therefore, A(t), albeit large (figure 16a2), would not make the jet column
oscillate (figure 11a). In the case of helical forcing, θ varies essentially linearly with
t, as indicated by the red dashed line (figure 16h1). The stepwise behaviour is caused
by the discontinuous on–off actuation bi(t). A large A(t) or one half of the strength
of axisymmetric forcing (figure 16a2, f 2) occurs at t/Ta = 0.2 and 0.7 for flapping
forcing, which correspond to a phase shift of π (figure 16f 1). The behaviours of both
A(t) and θ(t) are fully consistent with our understanding of axisymmetric, helical and
flapping forcings, thus providing a validation for applying A(t) and θ(t) to describe
the forcing on the main jet.

For the combined mode, the variations in both A(t) and θ(t) with t/Ta are more
complicated. Nevertheless, a number of features can be identified. Firstly, after
reaching the first maximum, as highlighted by a circle, θ(t) decreases, albeit not
monotonically, over a duration of 1.3π (figure 16c1), similarly to helical forcing, as
indicated by the red arrow. This feature implies a swirling forcing on the main jet.
Secondly, the maxima of A exceed those of helical forcing, suggesting a stronger

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.392


897 A27-28 Y. Zhou, D. Fan, B. Zhang, R. Li and B. R. Noack

1.00.5
t/Ta

0 1.00.5
t/Ta

1

Îœ = π

Îœ = π

(c1)

0

-1

œ/π

6
(c2)

3

0

A

1
(f1)

0

-1

œ/π

6
(f2)

3

0

A

1
(h1)

0

-1

œ/π

6
(h2)

3

0

A

1
(a1)

0

-1

œ/π

6
(a2)

3

0

A

FIGURE 16. The angle θ (a1,h1, f 1,c1) and magnitude A(t) (a2,h2, f 2,c2) of the effective
minijet actuation vector Q(t) for the best control law of n= 1, 2, 5 and 11.

swirl actuation. Thirdly, the phase shift between the second local maximum θ(t) and
a local minimum θ(t) at t/Ta = 0.67 is π, as highlighted by the vertical arrow in
figure 16(c1), pointing to the signature of flapping forcing. The local maximum A
at t/Ta = 0.67 (figure 16c2) is associated with a phase change of π (figure 16c1),
highlighted by a circle. All the observations suggest that the combined mode is rather
unique, featured by both helical and flapping motions, and further by the stronger
strengths of flapping and vortical motions than other cases, thus accounting for the
largest entrainment and mixing of all.

Evidently, the jet centre rc = (yc, zc) responds to Q(ti) (6.3), and it is plausible
to that assume the jet centre trajectory is correlated with Q(ti). This centre can be
characterized as the ‘centre of gravity’ of the streamwise velocity in a cross-stream
plane of x= const.:

rc(t)=
∫∫

dr r u(r, t)
/∫∫

dr u(r, t). (6.4)

Here, r = (y, z) represents the coordinate in the cross-stream plane. For simplicity,
the x-dependency of (yc, zc) will be dropped out hereafter. Over one excitation period
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with a time step 4t= T/6, the jet centre takes six positions, i.e. rc(ti)= (yc(ti), zc(ti)),
ti = i4t, i = 0, 1, . . . , 5. We make the most simple assumption that the jet centre
displacement (4yc,4zc)(ti)= (yc(ti+1)− yc(ti), zc(ti+1)− zc(ti)) over 4t is proportional
to the actuation momentum, viz.

rc(ti+1)= rc(ti)+Q(ti) (6.5)

for i= 0, . . . , 5, where the proportionality constant is set to unity again for simplicity.
The discrete time dynamics (6.5) can be considered to be a rough discretization of
the dynamics equation d(rc)/dt = Q, which describes the jet centre motion under
the external momentum. Equation (6.5) represents 10 equations for 12 unknown jet
centre coordinates. The remaining equations are obtained from the observation that the
control law is periodic in time and the time-averaged actuation momentum vanishes
based on experimental constraints, i.e. the same averaged mass flow through each
minijet. Hence, the average jet centre position can be expected to vanish:

5∑
i=0

rc(ti)= 0. (6.6)

Equations (6.5) and (6.6) constitute 12 linear equations for 12 unknowns, describing
the motion of the jet centre over one excitation period. The jet centre dynamics is
most easily solved by starting the integration at the origin with xc(t0) = yc(t0) = 0,
iteratively computing the positions at ti, i=1, . . . ,5 with (6.5) and adding a translation
consistent with a vanishing averaged jet centre (6.6).

Figure 17 presents the trajectories of the jet centre within each excitation period for
the four forcings, which are calculated based on the control laws shown in figure 9
or (A 1)–(A 3) and (6.5)–(6.6). Apparently, the jet centre vanishes identically for
axisymmetric forcing where Q(ti) ≡ 0 and oscillates along the y-direction between
two extremes in the x–y plane for flapping forcing, where Q(ti) changes from the
positive y-direction at one phase to the negative at the next phase or vice versa.
Helical forcing, i.e. a uniformly rotating Q vector, leads to a uniformly precessing
jet and the jet centre moves along a circle around the axis of symmetry. The result
conforms to previous reports. Koenig et al. (2016) experimentally investigated the
turbulent jet under the helical mode excitation and observed a precessing jet column
when the helical structures were spatially amplified in the shear layer. Zhang & Turner
(2016) found in a similar experiment that the jet centreline under helical excitation
was offset slightly and precessed around the initial axis of the core flow. For the
combined forcing, the motion of the jet centre is more complicated. Its trajectory
is apparently ellipse-like, suggesting the occurrence of a precession jet. In contrast
to helical forcing, the distance of the jet centre from the centre of symmetry varies,
along with the separation between the centres of two consecutive phases, suggesting
the speed of swirling changes with time. Furthermore, this ellipse-like path indicates
an oscillating jet column, a feature of the flapping motion.

6.3. Velocity field
The velocity field may provide us with the crucial information on the flow structure.
Figure 18 presents the radial profiles of the hot wire measured U/Uj at x/D= 0.05.
A number of observations could be made. Firstly, for all controlled cases except
helical forcing, the mean velocity profile displays an overshoot at the nozzle exit, as
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FIGURE 17. Jet centre trajectory (yc, zc) predicted from the resultant momentum vector
Q(ti) of the momentums due to individual injecting minijets at phases ti = iTa/6 (i =
1, 2, . . . , 6).

noted by Wu et al. (2018a) who used a single unsteady minijet to manipulate the main
jet. Andreopoulos & Rodi (1984) made the same experimental observation in case of
a circular jet in a cross-stream. They explained that the cross-stream fluid acted like
a partial cover over the jet exit, causing the jet flow to bend around and to accelerate
so that the velocity of the bent-over jet was somewhat higher than the cross-stream
velocity. Secondly, the widths of the mean velocity profiles under control are larger
than that of the unforced jet, indicating that the shear layer grows laterally, and the
main jet becomes wider right at the nozzle exit. Thirdly, the mean velocity profiles of
the axisymmetric and helical forcing at the jet exit are almost symmetrical about y/D
or z/D = 0, in general with its maximum at the centre (figure 18a,h). The velocity
profile of flapping forcing is also symmetric about y/D and z/D = 0 (figure 18f ),
though displaying two peaks off the centre in the x–y or flapping plane and indicating
the occurrence of bifurcation. As shown in figure 11( f 1), two consecutive rings are
locally connected, forming a zigzag flow structure, as observed in Carlos & Olivier’s
(2002) numerical investigation of a bifurcating jet (their figure 4a). Furthermore, the
cross-flow distributions U/Uj at x/D = 3–5 (figure 18f ) display two peaks in the
bifurcation (x–y) plane, while those in the bisection (x–z) plane show only one peak
on the centreline. Also, the jet grows slowly in width in the bisection plane. All the
features are similar to Lee & Reynolds’s (1985) data where loudspeakers were used to
produce a bifurcating water jet at ReD= 4300. The present data deviate quantitatively
from Lee & Reynolds (1985) as a result of distinct actuation techniques, experimental
setups and ReD between the two investigations. Finally, the velocity profile under the
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FIGURE 18. Radial distributions of U/Uj measured at different x/D in both x–z and x–y
planes for (u) unforced jet; (a) axisymmetric; (h) helical; ( f ) flapping, the bifurcation jet
of Lee & Reynolds (1985) is included for comparison; (c) combined.

combined forcing mode (figure 18c) is distinct from others and a little tilted at the
nozzle exit. Further downstream, U/Uj remains asymmetrical about the jet centre but,
unlike the flapping mode (figure 18f ), does not show the twin-peak distribution. Wong
et al. (2003) produced a precession jet by issuing a jet into a cylindrical chamber
with a small axisymmetric inlet at one end and an exit lip at the other. The inlet
flow separates at the abrupt inlet expansion and reattaches asymmetrically to the wall
of the chamber. Asymmetry of the flow within the chamber causes the reattaching
flow to precess around the inner wall of the chamber, resulting in a precessing
exit flow. An asymmetric and rotating pressure field is thus established so that the
entire flow field, including the emerging jet, precesses (Nathan, Hill & Luxton 1998).
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FIGURE 19. Radial distributions of urms/Uj measured at different x/D in both x–z and
x–y planes for (u) unforced jet; (a) axisymmetric; (h) helical; ( f ) flapping; (c) combined.

The precessing jet proves to be highly effective in increasing the near-field spreading.
Interestingly, the present distributions of U/Uj exhibit a similarity to their counterparts
of the precession jet (please refer to figure 10 in Wong et al. (2003)) at the nozzle
exit and downstream development.

The radial distributions of urms/Uj (figure 19) are reasonably symmetrical about y/D
or z/D = 0 under control, except under combined forcing. The urms rises greatly at
x/D= 0.05 throughout the main jet, as compared to the uncontrolled jet (figure 19u)
where urms/Uj = 0.3 % at y/D= 0 and 2.5 % at y/D≈±0.43 due to the shear layer.
The peak in the shear layer becomes very pronounced. The result suggests a turbulent
jet at the nozzle exit, which is internally consistent with flow visualization data
(figure 11), and the shear-layer instabilities are significantly amplified. The urms/Uj
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for axisymmetric forcing in the centre region is largest of all, due to the simultaneous
injection of six minijets into the main jet, which causes a strong disturbance in the
central region (figure 19a). The urms/Uj distribution displays twin peaks for helical
forcing (figure 19h). This is reasonable as helical forcing may produce a hurricane-like
helical motion with a centre that is more stable than the surrounding motion. The
urms/Uj at x/D = 0.05 under flapping forcing in the x–y plane is larger than in
the x–z plane in the shear layer (figure 19f ), as observed by Hussain & Husain
(1989) and Zaman (1996). The twin-peak behavior is evident along the z-axis due
to the flapping motion, but not so along the y-axis. The urms/Uj distributions under
combined forcing are asymmetrical about the centre at the jet exit (figure 19c),
and again resemble the precession jet (Mi & Nathan 2005). Unlike the case under
flapping forcing, the urms/Uj profiles under combined forcing display marked twin
peaks along the y and z axes, where the right peak is more pronounced than the left,
which is probably linked to the helical motion. Furthermore, the urms/Uj peaks at
x/D= 3 are substantially higher along the y-axis than along the z-axis, which remains
discernible at x/D= 5. All the features have been observed in the precession jet. Mi
& Nathan (2005) investigated the streamwise development of urms in a precession jet.
As shown in their figure 18, the urms of the precessing jet is asymmetric compared
with a non-precession jet and exhibits two peaks, located tangentially ‘in front of’
and ‘behind’ the jet centre. The ‘front’ peak is more pronounced than the ‘rear’ peak.
The similar behaviours between the jet under combined forcing and a precessing jet
may suggest that the so-called combined forcing may have produced a precession
jet. This suggestion is further corroborated by the downstream development of the
centreline mean and fluctuating velocities Ucl/Uj and ucl,rms/Uj presented below.

The variations in Ucl/Uj, ucl,rms/Uj and Uj/Ucl are presented in figure 20 for
various forcing modes as well as the unforced jet. It is worth pointing out that our
contraction nozzle is extended by a 47 mm long smooth tube of the same diameter as
the nozzle exit D where the minijet assembly is mounted. In spite of this difference,
the unforced jet displays the well-known features. Firstly, f0D/Uj is 0.45, falling
in the expected range 0.24–0.64 (e.g. Gutmark & Ho 1983; Zhou et al. 2012).
Secondly, Ucl/Uj and Uj/Ucl (figure 20a,c) agree both qualitatively and quantitatively
with Mi & Nathan (2005) (ReD = 8050) and Seidel et al.’s (2005) (ReD = 8800)
measurements. Following Todde, Spazzini & Sandberg (2009), we may fit the data
to Ucl/Uj = B[(x − x0)/D]−1, where x0 and B denote the virtual origin and decay
constant, respectively. Then, x0/D=−0.49 and Ucl/Uj decays at a rate of x−1 beyond
x/D = 5, as reported by previous investigations (e.g. Mi, Nobes & Nathan 2001).
Thirdly, the streamwise distribution of ucl,rms exhibits one peak at x/D = 3.5 and
another at x/D= 7.5 (figure 20b). The former is connected to the breakdown of the
primary ring vortices, and the latter is due to early transition to turbulence (Mi, Xu
& Zhou 2013). Similar observations were made by Todde et al. (2009) (their figure
6) and by Mi et al. (2013), whose data are included in figure 20(b). Departures
between the present and other’s data are not unexpected in view of differences in,
inter alia, experimental setup and ReD among the investigations. The potential core
length of the unforced jet is approximately 5D, beyond which Ucl appears dropping
approximately linearly. Note that Ucl/Uj for axisymmetric forcing exceeds 1.0 given
x/D 6 2, higher than those of the other modes. This is due to an increase in the
mass flow rate by 7.2 %. A similar observation is made by Seidel et al. (2005)
who observed, with 16 minijets blowing, an increase in the centreline mean velocity
near the jet exit. Under all control modes, Ucl/Uj decays rapidly right from the
beginning. The minijet actuation reduces Ucl/Uj significantly at x/D 6 8 (figure 20a),
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FIGURE 20. Streamwise variations of hot-wire measured centreline mean and
r.m.s. velocities: (a) Ucl/Uj, (b) ucl,rms/Uj, (c) Uj/Ucl.

demonstrating the efficacy of minijet injections. This efficacy can be attributed to the
earlier increase in the turbulence levels when the radial injections are present; a large
turbulence level (figure 20b) is correlated with a rapid drop in Ucl/Uj (figure 20a).
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Interestingly, the variations in ucl,rms/Uj for helical and combined forcings are quite
similar to each other, growing almost linearly first and then experiencing a small
drop before fluctuating slightly around 0.15 (figure 20b). This similarity is ascribed
to the common feature of the two control modes, i.e. the swirling motion. However,
it is combined forcing that maintains the rapid and linear growth further downstream,
up to x/D = 3, and retreats little by x/D = 3.5. It is noted earlier in figure 14(c)
that those peaks at f /fa = 1, 2, 3, 4 and 5 in Eu also remain pronounced up to
x/D = 3. This coincidence suggests that the excited coherent structures account for
the linear growth in ucl,rms/Uj (figure 20b) and the rapid decay in Ucl/Uj (figure 20a).
In contrast, the rapid growth of ucl,rms/Uj is only up to x/D = 2 for helical forcing
and even only up to 1 for axisymmetric and flapping forcings (figure 20b). As such,
Ucl/Uj keeps decaying rapidly and almost linearly until x/D= 4.5 for the combined
forcing mode and remains well below other cases further downstream (figure 20a). It
is worth pointing out that the precessing jet is also characterized by a substantially
faster decay than the non-precessing jet (Mi & Nathan 2005).

Jet spreading rate and the overall entrainment rate may be well quantified by the
downstream variation of the jet width (e.g. Zhou et al. 2012). Following Hussain
& Husain (1989), we define an equivalent jet width by Req = [RHRV]

0.5, where RH
and RV denote the mean-velocity half-widths in the x–z and x–y planes, respectively.
The half-width is defined as the distance between the jet centreline and the location
at which U = 0.5Ucl. Figure 21 shows the downstream evolution of RV , RH and
Req. While changing little for the unforced jet, RV , RH and Req grow appreciably in
the controlled jet. Evidently, Req is the largest for the combined mode, followed by
flapping, helical and axisymmetric, though the latter two do not differ much. The
results provide additional support for our choice of J as a measure for the mixing
efficacy.

To understand further the predominant flow structures under the four forcings, in
figure 22 we examine typical instantaneous V- or W-contours, measured using PIV,
in the x–y and x–z planes. In the unforced jet, the positive and negative velocity
concentrations occur in pair and are mirrored by another pair, though with swapped
signs, on the other side of the centreline (figure 22u). Apparently, the two pairs of
velocity concentrations are associated with the two vortical structures, as indicated
by symbols ‘+’ and ‘×’, of one ring vortex. Axisymmetric forcing leads to the
topologically unchanged velocity contours but a significantly increased size in the
velocity concentrations which now start to occur in the near proximity of the nozzle
exit (figure 22a). Under helical forcing, the vortical structures above and below
the centreline are stagger-arranged and their same-signed velocity contours are
connected, forming inclined strips alternately in sign (figure 22h). Under flapping
forcing (figure 22f 1), the V-contours in the x–y plane exhibit alternate upward and
downward motions which are absent in the W-contours in the x–z plane. Some
interesting observations can be made for combined forcing. Firstly, the inclined strips
of velocity contours, alternately in sign, are seen in both planes (figure 22c1,c2).
Secondly, the velocity concentrations reach in general the maximum contour level of
±0.5, greater than those associated with other forcings (±0.4), indicating a stronger
spread/entrainment or mixing. Thirdly, the pattern of velocity contours and their
maximum strength persist considerably further downstream, reaching x/D≈ 5, whilst
the upward and downward motions under flapping forcing disappear at x/D ≈ 3,
suggesting a prolonged entrainment and more thorough mixing. The observation is
again internally consistent with the rapid drop until x/D≈ 4.5 in the centreline mean
velocity decay (figure 20a).
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FIGURE 21. Mean-velocity half-widths at different x/D: (a) RV in the x–y plane, (b) RH
in the x–z plane and (c) the equivalent half-radius Req.

More insight may be gained into the predominant flow structures under control by
examining typical instantaneous velocity vectors superimposed with the corresponding
isocontours of streamwise vorticity ω?x = ωxD/Uj in the y–z plane at x/D = 0.25
(figure 23). Under axisymmetric forcing (figure 23a1,a2), the vectors show the inward
or outward motions associated with the ring-like structures, which are axisymmetric
and highly repeatable. There are six pairs of counter-rotating ω?x concentrations
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FIGURE 22. Isocontours of typical instantaneous velocities V/Uj or W/Uj in the x–y and
x–z planes: (u) unforced jet, (a) axisymmetric, (h) helical, ( f ) flapping and (c) combined
forcing. Contour interval = 0.1. The lowest contour level is 0.1 for all plots. Solid
and broken contours represent the positive (upward motion) and the negative (downward
motion), respectively. Symbols ‘+’ and ‘×’ denote anti-clockwise and clockwise vortices,
respectively. The arrows indicate the moving direction of the fluid slice.

arranged about the centre (figure 23a), apparently generated by the six axisym-
metrically placed minijets. The rotational motion under helical forcing is evident and
the fluid moves inward along the circumference (figure 23h1,h2). The core region
appears rather stagnant. The phase of injecting minijets is clockwise incremented
by 60◦ (figure 9h), producing a corkscrew type of structure (figure 10h1–h6), as
shown by Koch et al. (1989). Figure 23( f 1, f 2) shows the cross-flow motion that
switches from one direction at one moment to the opposite at another under flapping
forcing, accompanied by one pair of counter-rotating ω?x concentrations, as shown by
Yang & Zhou (2016). The velocity vectors in figure 23(c1,c2) exhibit the clockwise
rotational motion under combined forcing. The area of rotational motion, as indicated
by the arrows in figure 23(c1), is in general larger than that under helical forcing
(figure 23h1–h2). Note that ambient fluid may be entrained into the jet core area
from various circumferential locations, e.g. the upper left and lower right corners,
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FIGURE 23. The typical PIV snapshots of instantaneous velocity vectors in a
cross-sectional plane of (u) unforced jet, (a) axisymmetric, (h) helical, ( f ) flapping and (c)
combined forcings at x/D= 0.25. The open arrow represents the motion of the jet fluid.
The elliptic contour indicates where fluid is entrained into the jet core area.

as indicated by the elliptic contours in figure 23(c1), while under helical forcing
ambient fluid comes into the core area largely from only one location, as highlighted
by the elliptic contours (figure 23h1,h2). Furthermore, there are many vorticity
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concentrations of both signs in figure 23(c1–c2). The core area is dominated by
the vorticity concentrations of negative sign, while the region surrounding the core
is populated with those of both signs. This is very different from flapping forcing
where there is only one pair of opposite-signed vorticity concentrations. This is also
markedly different from helical forcing (figure 23h1,h2), where the cross-sectional
plane is characterized by the vorticity concentrations of a single sign. The observations
reconfirm that the combined forcing mode is associated with a much better mixing
and, furthermore, probably also small-scale mixing.

6.4. Insight into the three-dimensional flow structure
To gain insight into the three-dimensional flow structure, we deploy a linear stochastic
estimation method to reconstruct the predominant flow structure from the PIV data,
captured in the y–z plane at x/D= 0.25 with a total of 200 images. This technique is
introduced in detail by, for example, Adrian & Moin (1988) and is briefly described
below.

Let q(y, z, t) be a velocity component in the cross-plane of x/D= 0.25 recorded at
a constant sampling rate with time step 4t, i.e. tm = m4t, m = 1, 2, . . . , M, where
M denotes the total number of the PIV snapshots. Use qm(y, z)= q(y, z, tm) to denote
the corresponding snapshots. The mean flow is given by

q(y, z)=
1
M

M∑
m=1

qm(y, z). (6.7)

The oscillatory actuation response is the corresponding Fourier component of the
fluctuation q′ = q− q. The cosine and sine contributions read as

q1(y, z)=
2
M

M∑
m=1

cos φm
[qm(y, z)− q(y, z)], (6.8a)

q1(y, z)=
2
M

M∑
m=1

sin φm
[qm(y, z)− q(y, z)], (6.8b)

φm
= 2πfatm. (6.8c)

Thus, the periodic flow response may be given by

q̃(y, z, t)= q(y, z)+ q1(y, z) cos φ(t)+ q2(y, z) sin φ(t), φ = 2πfat. (6.9)

The residual of this phase-averaged flow q̃ consists of higher harmonics and an
uncorrelated stochastic contribution. Note that the actuation commands bi(t) are
the functions of the pointer (cos φ, sin φ). Hence, the temporal Fourier component
optimally represents the actuation response and no flow-intrinsic phase needs to be
constructed.

The isosurfaces of reconstructed Ṽ and W̃ are presented in figure 24 for four control
modes. The flow structures of axisymmetric, helical and flapping forcing modes show
excellent agreement with the control laws (figure 9). Under axisymmetric forcing
(figure 24a1–a2), Ṽ and W̃ indicate clearly that jet fluids on the two sides of the
centreline move either inward or outward simultaneously (figure 24a). Under helical
forcing (figure 9h1–h6), the helical motion is evident (figure 24h). For flapping
forcing, as indicated by the isosurfaces of W̃, one sector of fluid moves in one
direction for one instant and the adjacent sectors move in the opposite direction
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FIGURE 24. Identification of large coherent structures by isosurfaces of phase-averaged
velocity for (a) axisymmetric (h) helical ( f ) flapping (c) combined forcings at x/D= 0.25.
The blue arrow indicates the direction of the jet flow.

(figure 24f 2). On the other hand, the isosurfaces of Ṽ is anti-symmetrical about the
centreline (figure 24f 1). The observations are fully consistent with the characteristics
of the flapping motion documented in, for example, Yang & Zhou (2016). The results
provide a validation for the presently reconstructed Ṽ and W̃. For the combined
mode (figure 24c), the flow structure appears much more complicated. However, the
swirling motion is still discernible. Furthermore, the isosurfaces of Ṽ and W̃ show
unequivocally the occurrence of many more small parcels of fluids, suggesting a
much better jet mixing than all other flow modes, which is fully consistent with the
finding from figure 8 as well as figure 23(c).

7. Conclusions and outlook

An artificial intelligence (AI) control system has been developed for the control
of turbulence. The system consists of a control plant, a sensing unit, an actuation
unit and a control or ‘thinking’ unit. A round jet (control plant) is manipulated
to illustrate the potential of this system. Two hot wires are deployed for sensing
online the information on the turbulent jet. The control unit deploys a linear genetic
programing, and six independent unsteady radial minijets placed around the nozzle
prior to the issue of the main jet for executing control laws generated from the
control unit. The search space for control laws is extremely large, including the
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minijet number N, geometric configuration, frequency fa, duty cycle α and phase
shift ϕij (i, j = 1, 2, . . . , 6) between minijets. The target is to maximize the decay
rate K of the jet centreline mean velocity, which is correlated with the mixing rate.

It has been demonstrated that the AI control system can learn automatically how
to optimize the spatially distributed actuators and thus the turbulent jet for the
targeted cost. Like virtually all other control strategies of nonlinear dynamics, AI
control solutions do not come with a proof of global optimality. Yet, the results
for jet mixing optimization demonstrate several highly desirable features. Firstly, AI
control has identified a few typical and well-known control laws, i.e. axisymmetric,
helical and flapping forcings, in its learning process in the order of increased control
performances, and eventually converged to an unexpected spatio-temporal forcing,
referred to as the combined mode, which has never been reported previously. The
learning time of 1100 individuals or 2 h wind-tunnel testing is remarkably short for
such a complex solution. It is worth pointing out that the presently developed AI
control method may not be suitable for numerical simulation where faster learners,
e.g. the reduced-order-model-based models, would be required (once the winning
control mechanism is known) to reduce significantly the testing time for N–S-based
simulations. Inspirations may be gained from control studies of a turbulent boundary
layer (Sasaki et al. 2020) or turbulent separation (Nair et al. 2019). Secondly, the
AI-learned combined mode is reproducible with other initial generations. The control
laws may analytically differ but produce almost identical actuation commands. Thirdly,
the parameters of the underlying linear genetic programming are taken verbatim from
Duriez et al. (2016) and were already proven useful in many other experiments. No
sensitive dependence on the parameters has been observed so far and AI control
can be expected to yield near-optimal results in its first application to a new plant.
Finally, the unique advantage of the AI control over conventional techniques, be open
or closed-loop and linear or nonlinear, is its capability to find the apparently global
optimum solution when the search space for control laws is extremely large. This
advantage will be lost in case of a single actuator involving few control parameters
such as frequency and duty cycle (e.g. Fan et al. 2017).

The control landscape is studied by examining the feature vectors of generations
n= 1, 2, 5 and 11. Several interesting findings are made. Firstly, jet mixing benefits
from the increasing asymmetry of forcing in the learning process. Secondly, the
feature vectors appear randomly distributed at n = 1 but evolve gradually to three
distinct regions with increasing n (figure 12), characterized by axisymmetric, helical
and flapping forcings, respectively. While the region of axisymmetric forcing contracts
to one single point, the other two shrink essentially to two curves in the evolution
process. Intriguingly, the converged globally optimized control law at n = 11 takes
place in the region of helical forcing which is now populated with either the helical
or combined mode. Thirdly, the feature coordinate γ1 is found to be correlated with
the degree of asymmetric forcing, while γ2 is linked to the number of simultaneously
injecting minijets. The best control law is characterized by the largest γ2 for
axisymmetric forcing and largest γ1 for the other two forcings. However, the globally
optimized control law (combined mode) is associated with neither the largest γ1 nor
the largest γ2.

This combined forcing has produced a novel turbulent flow structure characterized
by strong oscillation and swirling motions, along with the generation of mushroom-
like structures, all acting to enhance jet mixing. As a result, the combined mode vastly
outperforms the well-known optimal benchmark forcings, increasing the entrainment
or mixing rate by 54 %, 47 % and 28 % compared with the axisymmetric, helical
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and flapping forcings, respectively. Extensive measurements are conducted in three
orthogonal planes to understand this novel flow structure, which is compared with the
flow structures under the benchmark axisymmetric, helical and flapping forcings. It has
been found that this flow structure is characterized by a number of features, including
the (1) helical motion, (2) three-dimensional oscillating jet column, (3) strong coherent
structures, (4) asymmetrical cross-flow distributions of mean and fluctuating velocities,
the latter displaying twin-peak behavior in every plane through the x-axis, (5) spiral
behavior of the swirling jet centre, (6) changing speed of swirling, (7) spectral
phase shift by π over a considerable frequency band about f /fa = 1 between two
simultaneously captured hot-wire signals placed at (x/D, y/D) = (1, ±0.3), and
(8) many vorticity concentrations of opposite signs over the entire cross-sectional jet
plane, which is distinct from the flow structures under other forcings and suggests
better and smaller scale mixing. It is further found that features (1)–(5) resemble
those of a precession jet generated by a passive device.

We expect that AI control will be commonly applied to discover the unknown
winning nonlinear actuation mechanism of multi-input multi-output flow control
experiments in the very foreseeable future. Conventional model-based or model-
free control design may then be deployed to refine and optimize the AI-based
actuation mechanism, provided the control law is sufficiently simple. Artificial
intelligence control may be improved in numerous aspects. Examples include
a human-interpretable control law, an increased learning speed in experiments,
robustness against varying operating conditions and the inclusion of prior knowledge
and expectations of control laws. One can safely assume that AI will be an essential
tool in future turbulence control applications, just as AI is indispensable in robotics
now.
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Appendix A. Control laws
Artificial intelligence control discovers four typical actuations, as given below. The

best individual of the first generation or stage 1 is characterized by an axisymmetric
control law:

b1 = b2 = b3 = b4 = b5 = b6 =−0.832+ sin(ωat+ 4/6π). (A 1)

Stage 2 starts with the second generation when the AI control discovers a helical
forcing:

b1 = sin(ωat+ 4/6π)− 0.145, (A 2a)
b2 =−0.347 sinωat, (A 2b)

b3 = [sin(ωat+ 8/6π)+ sin(ωat+ 8/6π)2 + sin(ωat+ 2/6π)2]

× sin(ωat+ 8/6π), (A 2c)
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b4 = 2 sin(ωat+ 10/6π) [(sin(ωat)2 − sin(ωat+ 2/6π)

× (sin(ωat)2 − sin(ωat+ 2/6π))], (A 2d)

b5 = 1/(−0.347+ sinωat)+ sinωat, (A 2e)
b6 =−0.354 sin(ωat+ 8/6π). (A 2f )

Flapping forcing takes place in stage 3, starting from the fifth generation:

b1 = b2 = b3 =−0.811+ sin(ωat+ 2/6π), (A 3a)
b4 = b5 = b6 =−0.782− sin(ωat+ 2/6π). (A 3b)

The learning process converges to a complex control law in the eleventh generation:

b1 = ((sin(ωat+ 6/6π)/sin(ωat+ 4/6π))2/ sinωat− sinωat)/(sinωat)4, (A 4a)

b2 = ((((sin(ωat+ 10/6π)/(sinωat)2 − 1/ sinωat− sinωat)/
(sinωat)2 + sinωat) /(sinωat)3/sin(ωat+ 10/6π)− sinωat) /(sinωat)2/
sin(ωat+ 8/6π)/− 0.811/(sin(ωat+ 10/6π)/(sinωat)2 − sinωat)/(sinωat)2/
sin(ωat+ 8/6π)/− 0.811, (A 4b)

b3 = −811/(−0.811+ sin(ωat+ 2/6π)+ (0.482− sin(ωat+ 10/6π))2)/

(0.482− sin(ωat+ 10/6π)), (A 4c)

b4 = sin(ωat+ 10/6π)− 2 sin(ωat+ 2/6π)− 0.223+ (sin(ωat+ 2/6π)

− sin(ωat+ 10/6π))2, (A 4d)

b5 = ((sin(ωat+ 10/6π)/(sinωat)2 − sinωat)/(sinωat)2 + sinωat)/
(−0.782+ sin(ωat+ 2/6π)− sin(ωat+ 10/6π)/(sinωat)2/ sin(ωat+ 8/6π)

+ (sin(ωat+ 10/6π)/(sinωat)2 − sinωat)/(sinωat)2/(−0.782+ sin(ωat+ 2/6π)

+ (−0.782+ sin(ωat+ 2/6π))2)/

((sin(ωat+ 10/6π)/(sinωat)2 − sinωat)/(sinωat)2

+ sinωat) /(−0.782+ sin(ωat+ 2/6π)− sin(ωat+ 10/6π)/(sinωat)2)/
(sin(ωat+ 8/6π)+ sin(ωat+ 10/6π)/(sinωat)2 − sinωat)/(sinωat)2/
(−0.782+ sin(ωat+ 2/6π)− sin(ωat+ 10/6π))/(sin(ωat+ 8/6π)

+ (sin(ωat+ 10/6π)/(sinωat)2 − sinωat)/(sinωat)2)+ ((( sin(ωat+ 10/6π)/

(sinωat)2 − sinωat) /(sinωat)2 + sinωat) /((−0.782+ sin(ωat+ 2/6π)

− sin(ωat+ 10/6π)/(sinωat)2)/ sin(ωat+ 8/6π)+ (sin(ωat+ 10/6π)/

(sinωat)2 − sinωat)/(sinωat)2))), (A 4e)

b6 = 2 sin(ωat+ 10/6π)− sin(ωat+ 6/6π). (A 4f )
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