D.G. Higman

Nagoya Math. J.
Vol. 41 (1971), 89-96

SOLVABILITY OF A CLASS OF RANK 3 PERMUTATION GROUPS ${ }^{1)}$

D.G. HIGMAN

1. Introduction. Let G be a rank 3 permutation group of even order on a finite set $X,|X|=n$, and let Δ and Γ be the two nontrivial orbits of G in $X \times X$ under componentwise action. As pointed out by Sims [6], results in [2] can be interpreted as implying that the graph $\mathscr{S}=(X, \Delta)$ is a strongly regular graph, the graph theoretical interpretation of the parameters k, l, λ and μ of [2] being as follows: k is the degree of \mathscr{S}, λ is the number of triangles containing a given edge, and μ is the number of paths of length 2 joining a given vertex P to each of the l vertices $\neq P$ which are not adjacent to P. The group G acts as an automorphism group on \mathscr{S} and on its complement $\overline{\mathscr{S}}=(X, \Gamma)$.

A family of solutions of the conditions in [2] for the parameters n, k, l, λ, μ is given by
(1) $n=4 t+1, k=l=2 t, \mu=\lambda+1=t$.

This family includes the only case in which the adjacency matrix A of \mathscr{S} has irrational eigenvalues [2].

Assuming that (1) holds for G, we have by [2] that
(2) G is primitive,
(3) $\overline{\mathscr{S}}$ is a strongly regular graph whose parameters satisfy (1), and
(4) $A^{2}+A-t I=t F$, where F has all entries 1 .

Here we consider the case in which t is a prime, proving
Theorem 1. If G is a rank 3 permutation group with parameters given by (1) with t a prime, then G is solvable.

Received November 20, 1969.

1) Research supported in part by the National Science Foundation.

As explained in $\S 2$, the groups G of Theorem 1 are actually determined (Theorem 2). Our result implies that for admissable prime values of t the graph \mathscr{S} is unique up to isomorphism. We do not know if strongly regular graphs satisfying (1) but not admitting rank 3 automorphism groups can exist, nor do we have an example of a nonsolvable group of rank 3 whose parameters satisfy (1).

For the most part we follow the notation and terminology of Wielandt's book [7]. But if G is a permutation group on X and $\Phi \subseteq X$ we write G_{Φ} and $G_{[\varnothing]}$ respectively for the setwise and pointwise stabilizers of Φ, and if $H \leq G_{\varnothing}$, we denote by $H \mid \Phi$ the image under restriction of H in the symmetric group on Φ. We use the notation and terminology of [2] and [3] for rank 3 permutation groups. For the connection between permutation groups and graphs see the papers [5] and [6] of Sims.
2. Examples of Singer type. Let p be a prime and ρ an integer >0 such that $p^{\rho}=4 t+1$. Let M be the additive group of the field $\boldsymbol{F}_{p p}$. Identify a primitive element ξ of $\boldsymbol{F}_{p \rho}$ with the automorphism $x \rightarrow x \xi$ of M and let τ be an automorphism of $\boldsymbol{F}_{p \rho}$ regarded as an automorphism of M. Then $G=M\left\langle\xi^{2}, \tau\right\rangle$ acts as a rank 3 group of permutations M satisfying (1). ${ }^{2)}$ A permutation group isomorphic with one of these groups G will be called a rank 3 group of Singer type. The graph \mathscr{S} (for suitable choice of Δ) is isomorphic with the graph whose vertices are the elements of $\boldsymbol{F}_{p \rho}$, two being adjacent if and only if their difference is a nonzero square. Of course if t is a prime >2 then either $\rho=1$ or $p=s$ and ρ is an odd prime.

In proving Theorem 1 we actually prove
Theorem 2. Under the hypotheses of Theorem 1, G must be of Singer type. The remainder of this paper is devoted to the proof of this result.
3. The case in which t is a prime. From now on G will be a rank 3 group satisfying (1) and the additional condition that is a prime. If G has degree 9 then it is of Singer type, so we assume that $t>2$. If $n=4 t+1$ is a prime then G is of Singer type by a theorem of Burnside [7; Th. 11.7]. Hence we assume that

[^0](5) t is an odd prime and $4 t+1$ is not a prime.

Choose $P \in X$ and put $H=G_{p}$. The H-orbits $\neq\{P\}$ are
$\Delta(P)=$ the set of all points of X adjacent to P and $\Gamma(P)=$ the set of all points $\neq\{P\}$ of X not adjacent to P in the graph \mathscr{S}.

Let $S(t) \leq H$ be a t-Sylow subgroup of G. By [7; Th. 3.4'] $S(t)$ has two orbits Δ_{1} and Δ_{2} of length t in $\Delta(P)$ and two orbits Δ_{3} and Δ_{4} of length t in $\Gamma(P)$. The corresponding martix \hat{A} (cf. [4; Appendix]) has the form

$$
\hat{A}=\left(\begin{array}{lllll}
0 & t & t & 0 & 0 \\
1 & x & y & z & w \\
1 & y & & & \\
0 & z & & * & \\
0 & w & &
\end{array}\right)
$$

where $x+y=t-1$ and $z+w=t$. The rows and columns of \hat{A} are indexed by the $S(t)$-orbits $\Delta_{0}=\{P\}, \Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$. The entry in the Δ_{i}-th row and Δ_{j}-th column is the number of edges from any given vertex in Δ_{i} to Δ_{j}. By [4] and (4),
(6) $\hat{A}^{2}+\hat{A}-t I=t \hat{F}$ where \hat{F} is the matrix of degree 5 having 1 in every entry in the first column and all other entries t.

An essential part of our argument is that the following possibilities for \hat{A} can be ruled out at once by consideration of the (2,2)-entry of (6).
(7) The cases (i) $z=t, w=0$, (ii) $x=t-1, y=0$, (iii) $x=0, y=t-1$ and (iv) $x=y=(t-1) / 2$ are impossible.

The first application is
(8) $\Delta(P)$ and $\Gamma(P)$ are faithful H-orbits.

Proof. Write $T=H_{[\Lambda(P)]}$. If $T \neq 1$ then $T \mid \Gamma(P) \neq 1$ and T is either transitive, has t orbits of length 2 or 2 orbits of length t. Take $Q \in \Delta(P)$, then $T \leq H_{Q}$ and the set of $k-\lambda-1=t$ vertices in $\Gamma(P)$ adjacent to Q is a union of T-orbits. Hence T has 2 orbits Γ_{1} and Γ_{2} of length t in $\Gamma(P), Q$ is joined to all t points of one of these, say Γ_{1}, and none of the other. But Γ_{1} and Γ_{2} are orbits for a t-Sylow subgroup $S(t) \leq H$ and the corres-
ponding matrix \hat{A} has the form

$$
\hat{A}=\left(\begin{array}{lllll}
0 & t & t & 0 & 0 \\
1 & x & y & t & 0 \\
1 & y & & & \\
0 & t & & * & \\
0 & 0 & & &
\end{array}\right)
$$

contrary to (7).
(9) If the minimal normal subgroup M of G is regular and if $H=N_{G}(S(t))$ for some t-Sylow subgroup $S(t)$ of G then G is of Singer type.

Proof. As a primitive rank 3 group G has a unique minimal normal subgroup M which is elementary abelian if it is regular [3]. Hence, assuming M is regular, we must have $4 t+1=5^{\rho}, \rho$ an odd prime, under our assumption (5).

We may identify M with the additive group of $\boldsymbol{F}_{5 \rho}$ and regard H as a group of automorphisms of M. Let ξ be a primitive element of $\boldsymbol{F}_{5_{\rho}}$, identified with the automorphism $x \rightarrow x \xi$ of M. Then $S(t)=\left\langle\xi^{4}\right\rangle$ is t-Sylow subgroup of Aut M so we may assume that $S(t) \leq H$. Since $N_{\text {Aut } M}(S(t))=$ $N_{\text {Aut } M}(\langle\xi\rangle)=\langle\xi, \tau\rangle$ where τ is the automorphism $x \rightarrow x^{5}$ of M, and since $\langle\xi\rangle$ is transitive on $M-\{0\}$, we may assume that $H=\left\langle\xi^{2}, \tau\right\rangle$ if $H \neq\left\langle\xi^{2}\right\rangle$, proving (9).
(10) $H \mid \Delta(P)$ and $H \mid \Gamma(P)$ are imprimitive.

Proof. By Wielandt's theorem [7; Th. 31.2], if $H \mid \Delta(P)$ is primitive then either it is doubly transitive or has rank 3 with subdegrees $1, s(2 s+1)$, $(s+1)(2 s+1)$. The first case is ruled out because $\lambda \neq 0,2 t-1$. In the second case the subdegrees of $H \mid \Delta(P)$ must be $1, \lambda=t-1, t$, giving $t=1$, contrary to hypothesis.

The rest of our proof of Theorem 2 breaks up into two cases according as $H \mid \Delta(P)$ has imprimitive blocks of length t or not.
4. Case A. Let $\Delta(P)=\Delta_{1}+\Delta_{2}$ be a decomposition of $\Delta(P)$ into imprimitive blocks of length t and let $H_{0}=H_{\Lambda_{1}}=H_{\Lambda_{2}}$, so that $H: H_{0}=2$.
(11) $H_{\left[A_{1}\right]}=H_{\left[d_{2}\right]}=1$.

Proof. If $H_{\left[\Lambda_{1}\right]} \neq 1$ then by (8), its restriction to Δ_{2} is $\neq 1$ and hence transitive. Hence $Q \in \Delta_{1}$ is adjacent to 0 points of Δ_{2} and all $t-1$ points of $\Delta_{1}-\{Q\} . \Delta_{1}$ and Δ_{2} are orbits for a t-Sylow subgroup $S(t) \leq H$ of G and the corresponding matrix \hat{A} has the form

$$
\hat{A}=\left(\begin{array}{ccccc}
0 & t & t & 0 & 0 \\
1 & t-1 & 0 & z & w \\
1 & 0 & & & \\
0 & z & & * & \\
0 & w & & &
\end{array}\right)
$$

contrary to (7).
(12) $H_{0} \mid \Delta_{1}$ is not doubly transitive.

Proof. Suppose that $H_{0} \mid \Delta_{1}$ is doubly transitive and take $Q \in \Delta_{1}$. If Q is adjacent to one point of Δ_{1} it is adjacent to all $t-1$ points of $\Delta_{1}-\{Q\}$ and none of Δ_{2}, which is impossible as in the proof of (11). Hence Q is adjacent to 0 points of Δ_{1} and $t-1$ points of Δ_{2} giving an \hat{A} of the form

$$
\hat{A}=\left(\begin{array}{ccccc}
0 & t & t & 0 & 0 \\
1 & 0 & t-1 & z & w \\
1 & t-1 & & & \\
0 & z & & * & \\
0 & w & & &
\end{array}\right)
$$

contrary to (7).
We complete the proof of Theorem 2 in case A by proving
(13) G is of Singer type.

Proof. By a Theorem of Burnside [7; Th. 11.7], (12) implies that $H_{0} \mid \Delta_{1}$ is either regular of Frobenius, and hence $H=N_{G}(S(t))$ where $S(t)$ is a t-Sylow subgroup of G. Let M be a minimal normal subgroup of G. If M is regular then G is of Singer type by (9). Otherwise $M_{P} \neq 1$, so that either $\left|M_{P}\right|=2$ and $2 \||M|$, or $t \||M|$. In either case M is simple. The first case is impossible since there are no such simple groups. In the second case $M: N_{M}(S(t))=1+4 t$ and we may apply the theorem of Brauer and Rey-
nolds [1]. The single possibility $t=5$ survives the conditions of this theorem, but in this case $|M|=420$ or 840 which is impossible.
5. Case B. We now assume that neither $H \mid \Delta(P)$ nor $H \mid \Gamma(P)$ has imprimitive blocks of length t. Then for each $Q \in \Delta(P)$ there is a unique point $Q^{P} \neq Q$ in $\Delta(P)$ such that $H_{Q}=H_{Q} P$, and for each point $R \in \Gamma(P)$ there is a unique point $R^{P} \neq R$ in $\Gamma(P)$ such that $H_{R}=H_{R} P$. Let Ω be the set of imprimitive blocks $\left\{Q, Q^{P}\right\}$ for $H \mid \Delta(P)$. We begin the elimination of this situation by proving.

$$
\begin{equation*}
\left|H_{[\Omega]}\right| \leq 2 . \tag{14}
\end{equation*}
$$

Proof. Put $V=H_{[\Omega]}$, let $S(t) \leq H$ be a t-Sylow subgroup of G and let Δ_{1} and Δ_{2} be the $S(t)$-orbits in $\Delta(P)$. For $S \in \Delta(P),\left|\Delta_{i} \cap\left\{S, S^{P}\right\}\right|=1(i=1,2)$. Take $Q \in \Delta_{1}$ and suppose $V_{Q}=V_{Q, S}$ for some $S \in \Delta_{1}-\{Q\}$. Then $V_{Q}=V_{S}$ and hence $V_{Q}=V_{T}$ for all $T \in \Delta_{1}$ since $S(t)$ acts transitively on the set $\left\{V_{Q} \mid Q \in \Delta_{1}\right\}$. Hence $V_{Q}=1$ and $|V| \leq 2$.

If $V_{Q} \neq V_{Q, S}$ for all $S \in \Delta_{1}-\{Q\}$ then Q adjacent to S implies Q adjacent to S^{P}, and the matrix \hat{A} determined by $S(t)$ has the form

$$
\left(\begin{array}{ccccc}
0 & t & t & 0 & 0 \\
1 & \frac{t-1}{2} & \frac{t-1}{2} & z & w \\
1 & \frac{t-1}{2} & & & \\
0 & z & & * & \\
0 & w & & &
\end{array}\right)
$$

contrary to (7).
(15) $H \mid \Omega$ is doubly transitive.

Proof. If $H \mid \Omega$ is not doubly transitive then $S(t)$ 卫 H by Burnside's Theorem [7; Th. 11.7] and (14). Hence the $S(t)$-orbits are imprimitive blocks for $H \mid \Delta(P)$, contrary to assumption.
(16) The fixed-point set of H_{Q} for $Q \in \Delta(P)$ is a 5-element set, and $H_{Q}=G_{R, S}$ for any two distinct points R and S in it. ${ }^{3)}$

[^1]Proof. Suppose that $Q^{P} \in \Delta(Q)$. Then H_{Q} has no orbits of length 1 in $\Delta(P) \cap \Gamma(Q)$, and since the nontrivial orbits of H_{Q} in $\Delta(P)$ have length divisilbe by $\frac{t-1}{2}$ by (15) and since $|\Delta(P) \cap \Gamma(Q)|=t$, we find that $t=3$, contrary to (5). Hence $Q^{P} \in \Gamma(Q)$.

Certainly $H_{Q}=G_{P, Q}$ fixes every point of the set $B=\left\{P, Q, Q^{P}, P^{Q}, P^{Q P}\right\}$, and for R, S distinct points of this set, $G_{P, Q} \leq G_{R, S}$. But for any two distinct points U, V in $X, G: G_{U, V}=(4 t+1) 2 t$. Hence $G_{P, Q}=G_{R, S}$ and we see that B is the full set of fixed points of $G_{P, Q}$ and $|B|=5$.

For $Q \in \Delta(P)$ and $R=P^{Q}, H_{\left\{Q, Q^{P}\right\}}=H_{\left\{R, R^{P}\right\}}$.

Proof. The number of 5-element subsets $B=\left\{P, Q, Q^{P}, R, R^{P}\right\}, R=P^{Q}$, is $\frac{(4 t+1) t}{5}$, since any two distinct points lie on exactly one so that each point lies on exactly t. Hence $H_{B}: H_{Q}=2$. But $H_{\left\{Q, Q^{P}\right\}} \leq H_{B}$ so $H_{\left\{Q, Q^{P}\right\}}=H_{B}$. Similarly $H_{\left\{R, R^{P}\right\}}=H_{B}$.

We now complete the proof of Theorem 2 by proving

Case B is impossible.

Proof. We assume first that $H_{\left\{Q, Q^{P}\right\}}$ is transitive on $\Delta(P)-\left\{Q, Q^{P}\right\}$. Since $H_{\left\{Q, Q^{P}\right\}}$ fixes the union of $\Delta(Q) \cap \Delta(P)$ and $\Delta\left(Q^{P}\right) \cap \Delta(P)$, these two sets must be disjoint. Put $R=P^{Q}$, then $H_{\left\{Q, Q^{P}\right\}}=H_{\left\{R, R^{P}\right\}}$ is transitive on $\Gamma(P)-$ $\left\{R, R^{P}\right\}$ and fixes the union of $\Delta(Q) \cap \Gamma(P)$ and $\Delta\left(Q^{P}\right) \cap \Gamma^{\prime}(P)$ so that these two sets must be disjoint. Hence $\Delta(Q) \cap \Delta\left(Q^{P}\right)=\{P\}$, giving $t=1$, a contradiction.

We are left with the case in which $H_{\left\{Q, Q^{P}\right\}}$ has two orbits of length $t-1$ in $\Delta(P)-\left\{Q, Q^{P}\right\}$. In this case we conclude from the fact that $H_{\left\{Q, Q^{P}\right\}}$ fixes the union of $\Delta(Q) \cap \Delta(P)$ and $\Delta\left(Q^{P}\right) \cap \Delta(P)$ that
(*) $\quad \Delta(Q) \cap \Delta(P)=\Delta\left(Q^{P}\right) \cap \Delta(P)$.

Let Δ_{1} and Δ_{2} be the $S(t)$-orbits in $\Delta(P)$, where $S(t)$ is a t-Sylow subgroup of $G, S(t) \leq H$, with $Q \in \Delta_{1}$ so that $Q^{P} \in \Delta_{2}$. From (*) we see that the number of edges from Q to Δ_{i} is equal to the number from Q^{P} to $\Delta_{i}(i=1,2)$. Hence \hat{A} determined by $S(t)$ has the form

$$
\left(\begin{array}{ccccc}
0 & t & t & 0 & 0 \\
1 & x & y & z & w \\
1 & x & y & & \\
0 & & & & \\
0 & & & &
\end{array}\right)
$$

But then $x=y=\frac{t-1}{2}$, contrary to (7).

References

[1] R. Brauer and W.F. Reynolds: On a problem of E. Artin. Ann. Math. 68 (1958), 713720.
[2] D.G. Higman: Finite permutation groups of rank 3. Math. Z. 86 (1964), 145-156.
[3] : Primitive rank 3 groups with a prime subdegree. Math. Z. 91 (1966), 70-86.
[4] : Intersection matrices for finite permutation groups. J. Alg. 6 (1967), 22-42.
[5] C.C. Sims Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86.
[6] \qquad : Graphs with rank 3 automorphism groups. J. Comb. Theory (to appear).
[7] H. Wielandt: Finite permutation groups. New York: Academic Press 1964.

Department of Mathematics
University of Michigan
Ann Arbor, Michigan

[^0]: 2) The values for λ and μ follow at once from the existence of an isomorphism of onto $\overline{\mathscr{S}}$, namely $x \rightarrow n x, x \in \boldsymbol{F}_{q}, n$ a fixed nonsquare.
[^1]: 3) The proof of (16), considerably simplifying the author's original elimination of case B, was provided by Robert Liebler.
