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Abstract

The relationships between host phylogenetics, functional traits and parasites in wildlife remain
poorly understood in the Neotropics, especially in habitats with marked seasonal variation.
Here, we examined the effect of seasonality and host functional traits on the prevalence of
avian haemosporidians (Plasmodium and Haemoproteus) in the Brazilian Caatinga, a season-
ally dry tropical forest. 933 birds were evaluated for haemosporidian infections. We found a
high parasitism prevalence (51.2%), which was correlated with phylogenetic relatedness
among avian species. Prevalence varied drastically among the 20 well-sampled species,
ranging from 0 to 70%. Seasonality was the main factor associated with infections, but how
this abiotic condition influenced parasite prevalence varied according to the host-parasite sys-
tem. Plasmodium prevalence increased during the rainy season and, after excluding the large
sample size of Columbiformes (n = 462/933), Plasmodium infection rate was maintained high
in the wet season and showed a negative association with host body mass. No association was
found between non-Columbiform bird prevalence and seasonality or body mass when evalu-
ating both Plasmodium and Haemoproteus or only Haemoproteus infections. Parasite commu-
nity was composed of 32 lineages including 7 new lineages. We evidenced that even dry
domains can harbour a high prevalence and diversity of vector-borne parasites and pointed
out seasonality as a ruling factor.

Introduction

Seasonality is an important determinant of vector-borne diseases (Fecchio et al., 2019).
Vectors, pathogens and hosts are dependent on abiotic conditions for reproduction and sur-
vival, and changes in these conditions may affect the transmission of many distinct diseases
(Kelly-Hope et al., 2009; Gonzalez-Quevedo et al., 2014; Ferraguti et al., 2018). For instance,
higher temperatures increase vector abundance and often accelerate parasite development in
their vectors (Valkiūnas, 2005; Lapointe et al., 2010), thus likely increasing parasite prevalence
in vertebrate hosts (Zamora-Vilchis et al., 2012). Similarly, heavy rain periods and severe
droughts can increase or decrease the prevalence of diseases transmitted by vectors dependent
on water collections for breeding sites (Hoshen and Morse, 2004; Landesman et al., 2007).
Changes in the pattern of seasonality may become a challenge to future ecological studies
due to global climate change (IPCC, 2021), thus it is important to understand the impact
of seasonality on vector-borne pathogens distribution.

Avian haemosporidians are a diverse group of protozoan parasites, including the genera
Plasmodium and Haemoproteus that use a variety of Diptera species as vectors. Plasmodium
parasites are transmitted by mosquitoes (Culicidae) whereas Haemoproteus (Parahaemoproteus)
and Haemoproteus (Haemoproteus) are transmitted by either biting midges (Ceratopogonidae)
or louse flies (Hippoboscidae), respectively, hence, environmental conditions could affect
their transmission differently (Ferreira et al., 2020). There are more than 200 species already
described for these parasites, which can develop in a variety of bird and vector species (Marzal,
2012; Clark et al., 2014). Furthermore, avian haemosporidians are associated with mortality
episodes in wild birds (Ricklefs, 2017) and can reduce longevity and reproductive fitness of
chronically infected hosts (Marzal et al., 2005; Asghar et al., 2015).

Host biological and ecological traits also influence haemosporidian prevalence, diversity
and distribution (Pulgarín-R et al., 2018; Fecchio et al., 2021; de Angeli Dutra et al.,
2021a). Individual traits such as plumage colour and body mass are associated with differences
in parasite prevalence (De La Torre et al., 2020; Filion et al., 2020). For example, a negative
effect of haemosporidian parasites on body condition was detected among passerine species
(Palinauskas et al., 2016; Schoenle et al., 2017). Species functional traits, such as habitat
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selection, plumage colouration, nest type, migratory behaviour
and flocking, have all been implied as predictors in the variation
of haemosporidian prevalence (Gonzalez-Quevedo et al., 2014;
Ganser et al., 2020; de La Torre and Campião, 2021; de Angeli
Dutra et al., 2021b; Aguiar de Souza Penha et al., 2022). For
instance, Haemoproteus prevalence reaches higher rates among
avian species inhabiting mid-high and canopy strata and haemos-
poridian infections are more common among strictly migratory
species (de La Torre and Campião, 2021; de Angeli Dutra et al.,
2021b). Moreover, species that are phylogenetically closely related
tend to exhibit greater similarity in functional traits as compared
to distantly related species, which may be correlated with parasite
exposure and likelihood of infection (Barrow et al., 2019).

How seasonality affects avian haemosporidian parasites in
tropical seasonally dry environments is still uncertain. Ferreira
et al. (2017) found seasonal changes in parasite prevalence,
while no variation was detected by Fecchio et al. (2015) These
contrasting results indicate the need for further investigations of
avian haemosporidian distributions across different periods in
tropical areas with marked seasonality. The Caatinga is a season-
ally dry tropical forest (SDTF) in Brazil. This domain is located
exclusively in northeastern Brazil, covering an area of approxi-
mately 845 000 km2 which represents about 11% of the national
territory (Bucher, 1982). The region’s climate is classified as hot
semi-arid (type ‘BSh’) according to Koöppen’s classification
(Alvares et al., 2013), characterized by a long dry season between
July and January with irregular distribution of rainfall in the rest
of the year. This domain, which had been considered inappropri-
ately associated with low diversity regions in terms of endemism
and species richness (Vanzolini et al., 1980; Leal et al., 2005),
actually harbours high biodiversity. Caatinga is home to more
than 200 bird species with 22 considered endemic (Tabarelli
and Silva, 2003)

Due to the high biodiversity in the Caatinga and the lack of
knowledge of the distribution and diversity of avian haemospor-
idians in this region and in seasonally dry environments, we
aimed to investigate the effect of seasonality and host functional
traits on avian haemosporidian prevalence and diversity in the
Caatinga ecosystem.

Methods

Study area

We conducted this study in Seridó Ecological Station – ESEC
Seridó – (06° 34′36.2′′ S and 37°15′20.7′′ W), encompassing an
area of 1163 ha and located in the municipality of Serra Negra
do Norte, state of Rio Grande do Norte (Brazil) (Fig. 1). The
region has a semiarid climate, with dry season reaching up to
10 dry months with irregular rainfall distribution. Mean annual
precipitation varies between 500 and 800 mm year−1 and mean
annual temperature varies between 28°C and 30°C, with lowest
and highest temperatures ranging between 17°C and 40°C
(Bucher, 1982). Local vegetation is composed of grass-covered
soil and arboreal-shrub Caatinga with sparse small trees (<7 m)
(Duque, 1953). The region has a high bird richness, with approxi-
mately 200 species, including some threatened and near-threatened
species (Pichorim et al., 2016a, 2016b).

Sample collection and DNA extraction

We captured wild birds in 4 field campaigns, each consisting of
7 days in 4 different sampling seasons (June 2013: ‘first rainy’,
which had 45.8 mm of accumulated precipitation, January 2014:
‘second rainy’, with 95.4 mm of accumulated precipitation, July
2014: ‘first dry’ 7.0 mm of accumulated precipitation, and

December 2014 ‘second dry’, no precipitation). Birds were cap-
tured using mist nets (Ecotone®; 18 m × 3m, mesh 19 mm) set
in a 12-ha quadrant (400 × 300 m). This large quadrant was
divided into 48 cells measuring 50 × 50 m, with the capture site
(i.e. where the mist net was placed) located at the centre of each
cell. We sampled 24 cells per day between 5h00 and 10h00
in each field campaign, resulting in an effort of 181 440 m2 h
(54 m2 of per net × 5 h per day × 24 nets per day × 7 days per cam-
paign × 4 campaigns; Straube and Bianconi, 2002). Captured
birds were identified, banded (with metal rings provided by
CEMAVE/ICMBio (Centro Nacional de Pesquisa e Conservação
de Aves Silvestres), weighed, and examined for the presence of
ectoparasites (ticks, mites and lice) and brood patches. We col-
lected blood samples from the brachial vein using insulin needles
and stored the samples on filter paper. Captured birds were sub-
sequently released near the capture sites. We extracted the gen-
omic DNA from the blood samples using phenol-and
Russellchloroform protocol followed by precipitation with isopro-
panol, as described by Sambrook and Russell (2001). We quanti-
fied the extracted DNA using NanoDrop™ Lite
Spectrophotometer (Thermo Scientific®), according to the manu-
facturer’s instructions.

Molecular detection and characterization of haemosporidian
parasites

We performed a screening PCR using primers designed by Fallon
et al. (2003). To amplify both Plasmodium and Haemoproteus
genera. All positive samples at the screening PCR were subjected
to a Nested-PCR, described by Hellgren et al. (2004), which amp-
lifies a 478 bp fragment of the mitochondrial cytochrome b gene
(cyt-b) of Plasmodium and Haemoproteus. We did not perform
the nested assay that amplifies Leucocytozoon parasites because
of their low prevalence in Brazil (Fecchio et al., 2020). We used
Plasmodium gallinaceum derived from experimentally infected
chicks as a positive control. Sterile ultrapure water was used as
a negative control. We performed all PCR and electrophoresis
methods according to (Roos et al., 2015).

We purified the positive Nested-PCR products following
(Green and Sambrook, 2012). The purified DNA was bi-
directionally sequenced by the dideoxynucleotide method in
ABI 3100® capillary automated sequencer (Applied Biosystems,
USA) using the Big Dye Terminator Mix kit (Applied
Biosystems, USA) following reaction and reading conditions indi-
cated by the manufacturer.

We edited obtained sequences using Chromas Pro
(Technelysium Pty Ltd, Helensvale, Australia) checking for the
presence of mixed infections (presence of double peaks in the
eletrochromatograms). We compared our assembled sequences
to those deposited in public databases, such as GenBank (http://
www4.ncbi.nlm.nih.gov) and MalAvi (Bensch et al., 2009).
Sequences with a minimum of one base difference were consid-
ered unique cytochrome b lineages, and those with no database
record were considered novel lineages. We deposited novel
lineages in GenBank (acc. num.MK981615–MK981622). New
records of previously described sequences were also deposited
in GenBank (acc. num. MK981623–MK981646).

Host functional traits data

We obtained avian functional trait data for each host from
AVONET (Tobias et al., 2022). We included the variables and cat-
egories as follows: (1) migratory behaviour: resident, partially
migratory and strictly migratory; (2) primary lifestyle: insessorial,
terrestrial and generalist; (3) body mass; (4) host distribution
range (i.e. geographical distribution of a bird species).
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Statistical analysis

Phylogenetic signal
All analyses were conducted in R version 4.0 (R Core Team,
2017). Firstly, we filtered all bird species that were sampled 4
or fewer times, this filtered dataset (N = 880) was used in all fol-
lowing analyses. To evaluate if the phylogenetic relationship
among bird species is correlated with parasite prevalence in our
dataset, we downloaded a full avian phylogeny file from the
AllBirdsHackett1.tre website (https://birdtree.org/) which contain
10 thousand trees (Hackett et al., 2008; Jetz et al., 2012). Later, we
applied the ‘treeman’ package (Bennett et al., 2017) to create a
treeman file containing all trees from the original file. Then, we
randomly selected a phylogenetic tree to avoid selection bias.
We excluded all bird species from the tree which were not present
in our dataset. Then, we calculated K (i.e. a measure that allows
comparisons of the amount of phylogenetic signal across a
specific trait (Blomberg et al., 2003)) to evaluate the phylogenetic
signal for haemosporidian prevalence among bird species in our
dataset. Values of K can range between 0 and 1, equalling 1
when the trait has evolved consistently with a Brownian motion
and trait values are similar among related species, or 0 when
trait values are phylogenetically unrelated among species. To esti-
mate K, we applied the ‘phylosig’ function from the ‘phytools’
package (Revell, 2012).

Bayesian analyses
We constructed 4 Bayesian models using the ‘brms’ package
(Bürkner, 2017) to evaluate whether bird functional traits and
seasonality influence haemosporidian prevalence. In all models,
we created a matrix with phylogenetic distances among all avian
species to account for influence of host phylogenetic relationships
on haemosporidian prevalence, which was included as a random
variable. Since we observed strong phylogenetic signals in our
dataset (see Results), adding phylogenetic relatedness among spe-
cies in our models was important to take into consideration when
evaluating the effect of the other variables included in the models.
The explanatory variable effects included in each model are repre-
sented in Table 1. The 4 models were weighted using the function
‘loo_model_weights’ and the one with the highest weight value

was selected. In all models, we used the infection status of individ-
ual birds as our dependent variable (binary response: 0 for
uninfected, 1 for infected). We ran all models using the
Bernoulli distribution family and 4 chains with 4000 total itera-
tions per chain (2000 for warmup, 2000 for sampling). Priors
were chosen using ‘get_prior’ function and the models’ results
were plotted using the ‘conditional_effects’ function to visualize
the predictions of the population-level effects. The selected
model was repeated 6 times using haemosporidians of both gen-
era, Plasmodium only and Haemoproteus (both subgenera) only
parasites (whenever the parasite ID was achieved through sequen-
cing) and using the entire dataset (N = 880) or the dataset exclud-
ing Columbiformes (N = 483), which represented most of the
birds sampled. It is imperative to rerun analyses excluding
Columbiformes due to the minor influence of environmental con-
ditions on H. (Haemoproteus) vectors, as those mostly reside on
their hosts’ skin and Columbiformes are the main hosts of H.
(Haemoproteus).

Results

Plasmodium and haemoproteus diversity

We detected 481 positive samples (prevalence equal to 51.2%) in
the screening PCR. Haemosporidian prevalence varied drastically
among the 20 best sampled host species, ranging from 0 to 70%

Figure 1. Map of Seridó Ecological Station (ESEC Seridó), Rio Grande do Norte, Brazil.

Table 1. Model averaging weights for the 4 models tested using pseudo-BMA
(where higher values indicate better model fit) with Bayesian bootstrap method

Models Pseudo-BMA

Infection status∼ Primary.Lifestyle + Incubation +
Ectoparasites + Season + Mass + Migration + Range.Size

0.0083

Infection status∼ Primary.Lifestyle + Incubation +
Ectoparasites + Season + Mass + Migration

0.103

Infection status∼ Incubation + Ectoparasites + Season +
Mass + Migration

0.246

Infection status∼ Incubation + Ectoparasites + Season +
Mass

0.563
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(Supplementary Table 2). All of those were subjected to cyt-b
PCR and gene sequencing. However, we were able to obtain
high-quality sequences for 191 individuals, which revealed 68
Plasmodium infections in 22 bird species (38.41%), 90 subgenus
Haemoproteus (Haemoproteus) infections in 4 bird species
(50.84%), and 19 subgenus Haemoproteus (Parahaemoproteus)
infections in 10 bird species (10.83%). We were able to separate
out haplotypes in 14 mixed infections in 10 bird species (3.92%),
revealing Plasmodium/Plasmodium (n = 5), H. (Haemoproteus)/
H. (Haemoproteus) (n = 7) and H. (Parahaemoproteus)/H.
(Parahaemoproteus) (n = 2) infections. The parasite community
was composed of 32 distinct lineages (Plasmodium = 17; H.
(Haemoproteus) = 05 and H. (Parahaemoproteus) = 10); 7 hae-
mosporidian lineages were obtained for the first time.

We observed a difference in host range among distinct
parasite taxa. Haemoproteus (Haemoproteus) mainly infected
Columbiformes (88/90; 04 species), with 2 lineages detected
in passerines; SocH3 infected Pachyramphus polychopterus
(Tityridae) and SocH2 Myiarchus tyrannulus (Tyrannidae). This

parasite subgenus was represented by 5 genetic lineages: SocH3
(n = 69), COPIC01 (n = 16), SocH2 (n = 3) and by 2 new lineages
ZENAUR01 (n = 1) and ZENAUR02 (n = 2). We obtained 68
sequences of genus Plasmodium representing 17 lineages, includ-
ing three novel one (POLPLU01, PHAMUR01 and NYSMAC05),
that mainly infected Passeriformes. The most common lineages
were PADOM11 (detected 15 times in 6 bird species),
PHPAT01 (13 times in 9 species) and PADOM09 (10 times in
8 species). Haemoproteus (Parahaemoproteus) parasites were
found 19 times, and the most common lineage, PAPOL03, was
observed 8 times in 4 bird species. All haemosporidian-host
links are available in Supplementary Table 3.

Factors influencing haemosporidian prevalence

We observed that the haemosporidian prevalence was influenced
by seasonality and body mass (Tables 2–4). However, the way that
the seasonality influenced parasite prevalence varied according to
the haemosporidian genus. When examining the entire dataset,
we observed higher haemosporidian prevalence during the dry
season (Fig. 2), whereas for Plasmodium we found higher preva-
lence in the rainy season (Fig. 3) and found no difference among
seasons when looking at Haemoproteus parasites separately
(Table 3). Likewise, when evaluating only non-Columbiform
birds, we still observed higher Plasmodium prevalence in the
rainy season. Nonetheless, seasonality did not influence overall
haemosporidians prevalence and when Haemoproteus was ana-
lysed separately (Table 4). We also observed that Columbiform
species were more common in the dry season, when they repre-
sented 66% of the sampled birds, compared to only 31% of the
sampled birds during the rainy season. Further, haemosporidian
prevalence varied between Columbiform and non-Columbiform

Table 2. Summary information of the sampling seasons, including infection
data

Sampling/
Season Positive Negative Total Prevalence

First rainy 109 129 238 45.79%

Second rainy 99 114 213 46.47%

First dry 197 127 324 60.80%

Second dry 76 82 158 45.79

Total 481 528 933 51.5%

Table 3. Estimate, standard error and credible intervals for A-
haemosporidians, B- Plasmodium and C – Haemoproteus prevalence and host
functional traits and seasonality

A – All infections Estimate Error Credible intervals

Intercept 0.26 0.53 −0.81 1.32

Incubation stage 1 0.26 0.47 −0.67 1.18

Incubation stage 2 1.23 0.45 −0.19 2.78

Ectoparasites −0.12 0.20 −0.50 0.28

Season (Rainy) −0.46 0.22 −0.89 −0.04

Mass −0.10 0.16 −0.41 0.21

B – Plasmodium Estimate Error Credible intervals

Intercept −3.66 1.08 −5.79 −1.45

Incubation stage 1 −0.39 0.80 −2.07 1.05

Incubation stage 2 0.79 0.86 −1.01 2.41

Ectoparasites −0.14 0.36 −0.84 0.56

Season (Rainy) 1.09 0.46 0.21 2.04

Mass 0.18 0.26 −0.72 0.30

C – Haemoproteus Estimate Error Credible intervals

Intercept −3.44 1.08 −5.79 −1.45

Incubation stage 1 0.89 0.84 −0.81 2.50

Incubation stage 2 1.48 1.13 −0.81 3.59

Ectoparasites −0.15 0.31 −0.77 0.46

Season (Rainy) 0.23 0.33 −0.41 0.88

Mass 0.09 0.32 −0.58 0.71

Table 4. Estimate, standard error and credible intervals for A-
haemosporidians, B- Plasmodium and C – Haemoproteus prevalence and host
functional traits and seasonality excluding Columbiformes hosts.

A – All infections Estimate Error Credible intervals

Intercept 0.00 0.74 −1.47 1.47

Incubation stage 1 0.23 0.49 −0.72 1.19

Incubation stage 2 1.23 0.78 −0.28 2.84

Ectoparasites −0.03 0.25 −0.51 0.47

Season (Rainy) −0.37 0.32 −1.00 0.24

Mass −0.18 0.23 −0.65 0.28

B – Plasmodium Estimate Error Credible intervals

Intercept −3.61 0.82 −5.34 −2.14

Incubation stage 1 −0.38 0.77 −2.00 1.04

Incubation stage 2 0.68 0.85 −1.07 2.27

Ectoparasites −0.09 0.38 −0.82 0.65

Season (Rainy) 0.95 0.48 0.04 1.91

Mass −1.38 0.54 −2.52 −0.41

C – Haemoproteus Estimate Error Credible intervals

Intercept −4.89 1.49 −8.07 −2.15

Incubation stage 1 0.43 1.00 −1.67 2.27

Incubation stage 2 1.21 1.15 −1.14 3.36

Ectoparasites 0.42 0.55 −0.64 1.55

Season (Rainy) 0.93 0.92 −0.69 2.92

Mass −0.14 0.57 −1.40 0.83
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species, being 61% for Columbiformes and 42% for other birds.
Among non-Columbiformes birds, body mass was negatively
associated with infection when evaluating Plasmodium prevalence
among different species (Table 4B). We did not observe correl-
ation between most bird functional traits and haemosporidian
prevalence in our dataset, but overall prevalence varied according
to phylogenetic relatedness among avian species (K = 0.67, Fig. 4).

Discussion

Investigating patterns and functional traits associated with infection
is primordial to understand parasite infection dynamics and to
determine main target species for conservation programs. Here,
we reported that haemosporidian prevalence follows a seasonal pat-
tern and varies distinctively among parasite taxa. Interestingly, we
observed that body mass was negatively associated with
Plasmodium prevalence among non-Columbiform birds, which
contradicts a global analysis showing that infection probability for
Plasmodium is higher in hosts with larger body (Gutiérrez-López
et al., 2019; Filion et al., 2020). Moreover, we also evidenced a

very high-level of phylogenetic association between haemosporidian
prevalence and birds from the Brazilian Caatinga.

Phylogenetic relationships among hosts often reflect their asso-
ciation with parasites (Clark et al., 2018; Pacheco et al., 2018; Park
et al., 2020; de Angeli Dutra et al., 2022). For this reason, parasite
prevalence might vary following phylogenetic relationships among
hosts (i.e. closely related hosts present more similar infection rates
than distantly related ones), was also observed in this study.
Parasites often perform well (i.e. are more successful in completing
their life cycle to then be detected in the blood stream) among
closely related hosts (Pinheiro et al., 2016), hence, similarity in
prevalence among related species should reflect a tendency of
those species to support the development of similar parasites
lineages. Consequently, our results reinforce the fact that closely
related hosts harbour similar prevalence patterns within a commu-
nity. Most importantly, our results also evidence that the high
abundance of Columbiformes species observed in the Caatinga
could explain the uncommonly high prevalence of Haemoproteus
parasites observed in this study in comparison to previous studies
showing that Plasmodium is the most prevalent haemosporidian

Figure 2. Mean (±credible intervals) haemosporidian
prevalence according to season birds were collected.

Figure 3. Mean (±credible intervals) Plasmodium preva-
lence according to season birds was collected.
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genus in Brazil (Lacorte et al., 2013; Ferreira et al., 2017; Rodrigues
et al., 2021) and in the Neotropics (Fecchio et al., 2021).

Climatic conditions often affect the transmission of vector-borne
pathogens due to direct effects on their vectors’ abundance and
diversity (Consoli and Oliveira, 1994). For this reason, regions pre-
senting high seasonality might be subject to seasonal changes in
parasite prevalence and incidence (Lalubin et al., 2013; Ferreira
et al., 2017). It occurs due to seasonal changes in vector composition
and abundance related to precipitation and temperature that are
positively associated with vector abundance (Lalubin et al., 2013;
Ferreira et al., 2016). Indeed, the rainy season harbours higher abun-
dance of haemosporidian vectors in the Caatinga (Vasconcellos
et al., 2010) and greater prevalence of Plasmodium. Nonetheless,
when analysing haemosporidians in general we observed higher
prevalence during the dry season in Caatinga, which could be due
to the higher proportion of Columbiform birds in the dry season
and H. (Haemoproteus) infections in those hosts.

We found a high haemosporidian prevalence in Caatinga
(51%) compared to other Brazilian domains, such as 27–42% in
the Brazilian savannah (Lacorte et al., 2013; Ferreira et al.,
2017), 25–33% in the Atlantic rainforest (Lacorte et al., 2013;
Rodrigues et al., 2021), and 20% in the Amazon rainforest
(Fecchio et al., 2017). H. (Haemoproteus) represented most of

the infections (50.9%), followed by Plasmodium (38.4%) and H.
(Parahaemoproteus) (10.8%). In most studies conducted in
Brazil, however, Plasmodium parasites were the most common.
This different scenario in parasite prevalence may be explained
by the abundance of Columbina picui, which harbours a high
prevalence of H. (Haemoproteus) parasites. High levels of infection
among Columbiformes birds by H. (Haemoproteus)might be asso-
ciated with its vector biology since those flies (Hippoboscidae)
spend nearly their entire adult life on their hosts (Valkiūnas,
2005). Changes in bird composition in Caatinga have been asso-
ciated with low precipitation levels, which can trigger migratory
movements among several species, increasing the relative propor-
tion of resident species (Pereira, 2013).

Moreover, a high parasite richness in the Caatinga was
observed in this study (Plasmodium = 17; H. (Haemoproteus) = 5
and H. (Parahaemoproteus) = 10) and 7 new parasite lineages
were described. Both Plasmodium and H. (Parahaemoproteus)
lineages infected a high number of bird species (22 and 10 species,
respectively) while H. (Haemoproteus) only infected 4 bird spe-
cies. This high parasite diversity and endemism (21% of all para-
site lineages) in the Caatinga reveals the importance of studies in
areas with a high degree of host endemism. Moreover, we detected
H. (Haemoproteus) infecting Passeriform birds (SocH2 from M.

Figure 4. Mean prevalence according to the phylogenetic relationships across all bird species with more than 10 individuals sampled (n = 32).
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tyrannulus and SocH3 from P. polychopterus). This parasite group
is known to only infect a few seabird species and birds from the
order Columbiformes (Levin et al., 2012). Parasite lineages from
this subgenus have also been found infecting passerine birds in
2 other studies conducted in Brazil (Lacorte et al., 2013;
Ferreira et al., 2017). These findings highlight that
non-Columbiformes are exposed to parasites belonging to the
subgenus H. (Haemoproteus) this SDTF. However, this likely
represents abortive infections, i.e. infections in which the parasite
cannot complete its lifecycle (Valkiūnas et al., 2009). Overall, we
found high diversity of haemosporidian parasites in the Caatinga,
which infections are mostly represented byH. (Haemoproeus) para-
sites, unlike most other regions from Brazil and South America.

To conclude, haemosporidian prevalence in the Caatinga
seems to be higher than in other Brazilian biomes. Prevalence var-
ied between dry and rainy seasons depicting higher prevalence
during the dry season. Plasmodium relative frequency was higher
in the rainy season while H. (Haemoproteus) was more frequent
during the dry season. Our models showed that seasonality was
the main factor associated with haemosporidian infections, how-
ever, it affected distinct parasite genera differently. This is one of
the first studies conducted in a SDTF in South America, the
Caatinga, which harbours a high diversity and a considerable
prevalence of haemosporidians parasites. However, it is important
to note that this study comprises only 1 locality in the Caatinga
and that several haemosporidian infections lacked parasite identi-
fication. For this reason, further studies with diverse host species
comprising multiple locations may reveal the uncovered diversity
and possible endemicity of haemosporidian lineages in Caatinga.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182023000549
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