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Ascent and descent of going-down

rings for integral extensions

David E. Dobbs

The author and Ira J. Papick have termed an integral domain R a

going-down ring i f R c T sa t i s f ies going-down for each domain

T containing R . The present paper investigates conditions

which, for an integral extension A c B of domains, imply that

A (respectively B ) i s going-down whenever B (respectively

A ) i s going-down. This explains the "descent" (respectively

"ascent") in the t i t l e . Two typical resul ts (the f i r s t about

descent, the second about ascent) are given next.

THEOREM. Let R c T be an integral extension of domains such

that T is going-down. If either T is quasi.-local or R is

integrally closed, then R is going-down.

THEOREM. Let R be an integrally closed domain with quotient

field K j and let T be the integral closure of R in an

algebraic field extension L of K . If the group of K-algebra

automorphisms of the normal closure of L/K is finite of order

2a3 and if R is going-down, then T is going-down.

1. Introducti on

Recall from [6] and [7] that a (commutative integral) domain R is

called a going-down ring in case R c T satisfies going-down for each

domain T containing R . Examples of going-down rings are Priifer

domains, arbitrary domains of Krull dimension 1 , and the rings
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constructed by iterated restrained power series in [6, Corollary U.U]. In

this paper we investigate conditions which, for an integral extension

A c B of domains, imply that A (respectively B ) is going-down whenever

B (respectively A ) is going-down; that is, conditions guaranteeing

descent (respectively ascent) of going-down rings for integral extensions.

An example of Heinzer and Ohm [70], summarized below in Section 2, shows

that, without further assumptions, both descent and ascent fail. The

extra conditions assumed in our results avoid certain features of the

Heinzer-Ohm example and, in the case of the second part of Theorem 2.k and

Theorem 3.3, are motivated by the descent [9, Corollary 3] and ascent [77,

p. 31] results for Priifer domains.

A word about the propriety of motivating questions about going-down by

results about Priifer domains seems to be in order. The characterization of

going-down rings in [7, Theorem 1] was in fact motivated by

characterizations of Priifer domains involving flatness (of. [7£, Theorem U]

and [6, Proposition 3.1])• Going-down has figured in the characterization

of several kinds of Priifer domains {of. [4, Corollary ^.3], [5, Corollaries

k and 10], [6, Propositions 2.5 and 2.7]). Moreover, the class of Priifer

domains and the class of going-down rings are each closed under

localization, and both fail to be closed under adjunction of

indeterminates.

Our descent results are given in Section 2. With the aid of a recent

result of Brase [7], Corollary 2.5 leads to new examples of going-down

rings. Ascent, which is surprisingly elusive, is studied in Section 3,

whose main result depends on Theorem 2.1* about descent and on the structure

of the ambient Galois group.

D will denote the integral closure of a domain D . Unexplained

terminology is standard, as in [£] and [/7].

2. Descent

Recall from [6] that a commutative ring A is said to be treed in

case spec(i4) , as a poset under inclusion, is a tree. By [6, Theorem

2.2], any going-down ring is treed. Another proof follows easily from [6,

Proposition 3.2, (i) <=> (iii)]. By using the ideas surrounding [73,

Theorem 2.5], Lewis has recently constructed a treed domain of Krull
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dimension 2 which is not a going-down ring. A related construction of

Heinzer and Ohm ['0, p. 6 ] , originally developed for other reasons (<?/.

[JO, Example 2.2] and [2, p. 25]), will be summarized next in order to

indicate what sorts of results about descent and ascent may be possible.

EXAMPLE 2.1 (Heinzer-Ohm). Let K = k{y, s) where y, z are

indeterminates over an algebraically closed field k of characteristic

zero. A rank 2 valuation of K over k may be given by sending y and

z to (0, 1) and (l, 0) respectively, and then taking the value of a

polynomial in k[y, z] to be the infimum of the values of its

constituent monomials; let V be the corresponding valuation ring. Let

V* be the integral closure of V in an algebraic closure of K . Set

D = k + J , where J is the Jacobson radical of V* .

It is shown in [10] that D is a quasilocal G-domain (in the sense

of ['?]) with infinitely many primes of height 1 . Thus D is not treed

and, in particular, D is not going-down. Of course, V* is a Priifer

domain by Prufer's ascent result, so that both V and V* are going-down.

As D c V* and V c D are each integral, it follows that descent and

ascent both fail in general.

In order to motivate the hypotheses selected for our results, we next

isolate certain salient features of the preceding data. First, D c V*

does not satisfy going-down: this suggests Corollary 2.3 below. Second,

V* is not a valuation ring (that is V* is not quasilocal; of. Corollary

2.5 and the first part of Theorem 2.1+). Third, D is not integrally

closed (.of. Theorem 3-3, Proposition 3.^, Corollary 3-5> and the second

part of Theorem 2.k). Moreover, applying the construction in IS, Appendix

2] to V c. D shows, by [7, Corollary], that an integral over ring of a

(quasi-local) going-down ring need not itself be going-down (of.

Proposition 3.1+) •

The next lemma will lead to our descent results. We use "unibranched"

in the sense of [4].

LEMMA 2.2. Let A c g be an integral extension of commutative

rings, with B treed. If each maximal ideal of A is unibranched in B ,

then A is unibranched in B and A <= B satisfies going-down.

Proof. Let Q. and Q^ be prime ideals of B contracting to a
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prime P of A . Select a maximal ideal M of A containing P . Since

A c B satisfies going-up, there are primes N. of B such that Q. c N.
"V 1 , 1 ,

and N. n A = M (i = 1, 2) ; the unibranchedness hypothesis gives

ti = N . Then Q^ and § 2 are comparable, since B is treed. As

A c g satisfies incomparability, it follows that Q-. = Q- , so that A c B

is unibranched. An easy application of lying over and going-up now shows

that A c B satisfies going-down.

COROLLARY 2.3. Let R be a domain such that R is going-down. If

R c i? satisfies going-down (for example, by the lemma, if each maximal

ideal of R is unibranched in R ), then R is going-down.

Proof. By [7, Theorem 1], it is enough to show that R c V satisfies

going-down for each valuation overring V of R . Note that R c V • As

R c R and R c V each satisfy doing-down, transitivity completes the

proof.

THEOREM 2.4. Let R c T be an integral extension of domains, with

T being going-down. Assume that either T is quasi-local or R is

integrally closed. Then R is going-down.

Proof. As in the preceding proof, we need to show that R c V

satisfies going-down for each valuation overring V of R . First,

observe that R c T satisfies going-down, by Lemma 2.2, if T is quasi-

local; by the going-down result of K m I I [72], if R is integrally

closed. Next, T c VT satisfies going-down, since T is going-down, so

that R c ]/T satisfies going-down. However, V c VT satisfies lying over

since VT is integral over V . An application of [74, Lemma 1 (2)]

implies that R a V satisfies going-down, as required.

COROLLARY 2.5. Let R be a domain such that R is a valuation

ring. Then each overring of R (including R itself) is going-down.

Proof. The integral closure of any overring of R is an overring of

R and, hence, is a valuation ring. It therefore suffices to show that R

is going-down. Apply either the first case of Theorem 2.k or the case

noted parenthetically in the statement of Corollary 2.3.

REMARKS 2.6. (a) The ploy of passing to VT in the above proof of

Theorem 2.k was suggested by McAdam's proof of [74, Theorem 1]. A slightly
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different proof of Theorem 2.It proceeds as follows. Let R and V be as

before, P c M be primes of R , and N be a prime of V contracting to

M . Choose a valuation ring W of the quotient field of T such that

(i) V c W and

(ii) N' , the maximal ideal of W , contracts to N .

Since T c W , Lemma 2.2 or [7 2] supplies a prime Q of T which is

contained in N' n T and contracts to P . Then, since T is going-down,

some prime N" of W lies within N' and contracts to Q . Then tf" n K

is the required prime of V .

(b) It follows from [6, Corollary k.k (i), (iii)] that the converse

of Corollary 2.5 (even replacing "valuation ring" by "Priifer domain") is

false. By extending the above techniques, Papick [16] has recently

characterized the quasi-local ^-domains (domains satisfying the hypotheses

in Corollary 2.5); also see Proposition 3-*t below. Along different lines,

Brase [/, Theorem] has characterized the quasi-local i-domains as the

domains for which the set of valuation ideals is closed under intersection.

By Corollary 2.5 and [6, Theorem 2.2], the set of prime ideals of any such

domain is linearly ordered by inclusion; Brase directly observed the

corresponding fact about the (larger) set of valuation ideals.

3. Ascent

Our main in teres t in th i s section i s the following question, which is

motivated by the ascent resul t of Prufer [77, p . 31]. (For another proof

of Prufer's r e su l t , see IB, Theorem 18.3].)

QUESTION 3.0. Let R be going-down and integrally closed, with
quotient field K . If T is the integral closure of R in a field
extension L of K , must T be going-down?

PROPOSITION 3.1. The answer to Question 3.0 is affirmative in
general if it may be so answered in case R is quasi-local and L/K is
finite Galois with simple Galois group.

Proor. (i) Assume that L/K is finite Galois with simple Galois
group. To test whether T is going-down, take a domain B containing
T , primes Q c PI of T , and a prime J of B contracting to N . Let
M = N n R . By the hypothesis, TD\M (which is the integral closure of
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the quasi-local going-down ring R in L ) is going-down. Thus IB >

contains a prime J of B ^ contracting to QTp\M > whence J n B is

contained in J and contracts to Q . Thus T c B satisfies going-down,

to complete this case.

(ii) Assume that L/K is finite Galois, with Galois group G .

Induct on |<?| , the order of G . Without loss of generality, G is

neither simple nor trivial. Let F be the fixed field (in the sense of

Galois theory) of a proper normal subgroup E of G . Now F/K is finite

Galois, with Galois group isomorphic to G/H . As \G/H\ < \G\ , the

induction hypothesis shows that 5 , the integral closure of R in F , is

going-down. However, T is the integral closure of 5 in L , and L/F

is finite Galois with Galois group H , so that the induction hypothesis

applies again, and establishes this case.

(iii) Assume that L/K is finite normal. Let F be the set of

elements of L which are purely inseparable over K , and let S be the

integral closure of R in F . Since L/F is finite Galois (with Galois

group equal to the set of ^-algebra automorphisms of L ), it suffices to

prove that S is going-down. This follows readily since R c S is uni-

branched [£, Corollary 10.3] and R is going-down.

(iv) The case of finite (algebraic) L/K follows by passing to the

normal closure of L/K (to which (iii) applies) and then using an earlier

descent result, the second part of Theorem 2.1*.

(v) General case. Deny. Then there exist primes Q c N of T and

a prime J of an overring V of T such that J contracts to N and I

contains no prime of V contracting to Q . Since R c V satisfies

going-down, there is a prime J of V such that J c J and

J n R = Q n R . As Q = J n T must be distinct from Q. , we may select

a in Q1\Q2 • Let F = K(a) , and let S = T n F , the integral closure

of R in F . By (iv), S is going-down, and hence treed. However,

Q n S and Q n S are incomparable primes of 5 which are both

contained in N n S . This contradiction completes the proof.

Theorem 3.3 will settle Question 3.0 for cases in which, so to speak,
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the simple Galois groups arising from the proof of Proposition 3.1 are

Z/2Z and Z/3Z . First, we give a result of McAdam [75], whose proof is

reproduced here with his.kind permission.

PROPOSITION 3.2 (McAdam). Let R be a quasi-local integrally

closed going-down ring. If P is a prime ideal of R and b is an

element of R 3 then P and Rb are comparable.

Proof. Deny. Select c in P\Rb , and set u = cb~ . Observe that

R contains neither u nor u~ . Thus, if M is the maximal ideal of

R , 119, Theorem 7] implies that N = MR[u] is a prime of R[u] which

contracts to M . Since R a R[u] satisfies going-down, N contains a

prime Q contracting to P . As Q contains bu but not b , it follows

that u is in Q . Then u is in N , so that u satisfies a polynomial

over R with a unit coefficient. This contradicts the isomorphism

R[X]/MR[X] •+ R[u]/N given in [79, Theorem 7], to complete the proof.

THEOREM 3.3. The answer to Question 3.0 is affirmative if L/K is

algebraic and the group of K-algebra automorphisms of the normal closure

e f
of L/K is finite of order 2 3 (e, f are non-negative integers).

Proof. The problem may be reduced by reworking parts of the proof of

Proposition 3.1. As in (iv), an application of Theorem 2.U reduces to the

case L/K normal. As in (iii), replacing K by the purely inseparable

part of L , we may take L/K finite Galois, with Galois group G of

order 2 3 • Now G is solvable by Burnside's celebrated theorem [3,

Theorem III], and so has a normal subgroup of index 2 or 3 . By working

with the corresponding fixed field via Galois theory as in (ii), an

induction on |(j| reduces to the case \G\ = 2 or 3 . If the theorem is

denied for this case, we argue as in (v) to obtain: incomparable primes

Q. and Q^ of T , both contained in a prime il of T ; primes

P = Q n R = Q n R and M = N n R of R ; and an element a in

Q, W p • As in (i), it is harmless to pass to /?„ c J1 . , so that R may

be taken quasi-local with maximal ideal M .

1: |G| = 2 . Since R is integrally closed and [L : K] = 2 ,

it follows from [20, Chapter V, Theorem It] that there exist a, b in R

such that
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o

a + aa + b = 0 .

Note that b is in fl n ft c j n O = P . Consequently, a(a+a) = -b is

in §2 , so that a + a is in Q^ . Moreover, a is not in P ;
O p

otherwise, a = -(aa+fc) would be in FT c Q a. contradiction. Thus a
2

is not in P , and an application of Proposition 3-2 shows that P c: Ra ;

_2
in particular, ba is in i? . Since

(cwT1)2 + CM"1 + ba~2 = 0 ,

aa l i e s in T . Now Q^ contains [aa~ )a but not a ; so aa i s

in Q. . Furthermore, §„ contains (ota~ +l)a but not a ; so aa + 1

i s in Q . Thus 1 = (aa" +l) - aa~ is in Q + Q2 c N , the desired

contradiction.

Case 2: \G\ = 3 . As above, [20, Chapter V, Theorem 4] provides

a, b, o in i? such tha t

or + act + 2>a + e = 0 .

2
By reasoning as above, a is in P and 3 = a + aa + b is in Q2 .

We claim that we may assume that b is in P . If not, 6 is in

QpVj, . Moreover, one may laboriously check (see the remark following the

proof) that 3 satisfies

33 - 2>32 + ae& - a2 = 0 .

As aa (and -a ) are in P , the claim is sustained merely by replacing

a by B •

How that b is in P , the argument proceeds as in Case 1. Note that

—2 —3
a is not in P . Then observe by Proposition 3.2 that ba and oa

are in R . Since

{aa-1)3 + (acT1)2 + {ba~2) (aa"1) + ca~3 = 0 ,
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aa~ is in T , and hence in Q . However a + a is in Q- (since

a(ot+a) is) . Thus aa~ + 1 is in Q- , and once again we have the

desired contradiction: 1 in N , to complete the proof.

REMARK. The key to generalizing Theorem 3.3 to certain groups whose

orders involve primes other than 2 and 3 may lie in suitably

identifying the coefficients of minimum polynomials of elements

constructed, like 3 , from the minimum polynomial of a . The

o
coefficients -b, ac, -c of g's polynomial were, of course, obtained

with the aid of a's polynomial by Cramer's rule from a system of three

linear equations, whose coefficient matrix had (nonzero) determinant equal

to e .

Besides Question 3.0, another ascent problem is to determine

conditions on a going-down ring R which guarantee that R is going-down.

(The extension D c V* in Example 2.1 shows that the corresponding descent

problem is complicated; see, however, Corollary 2.5.) In this regard, we

next offer a result which generalizes [6, Proposition 2.7] and [S,

Proposition 25.13]. As usual ht, dim , and dim will denote height,
v

Krull dimension, and valuative dimension, respectively.

PROPOSITION 3.4. Let R be going-down. Assume that all the maximal

ideals of R have the same finite height n . Let T be an integrally

closed domain which is integral over R . Then T is Prufer if and only

if dim (R) = n .
v

Proof. The "only if" half is immediate since dim (i?) = dim {T) , by
V V

IS, Proposition 25.12].

Conversely, assume that dim (i?) = n and that T is not Prufer.
V

Choose a maximal ideal N of T such that 7 is not a valuation ring;

set M = N n R . By integrality, M is maximal; so ht(M) = n .

Select u in the quotient field of T such that T_ contains

neither u nor u~ . By [79, Theorem 7], Q = UTSu] is a nonmaximal
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prime of 2\y["J contracting to M . Since i? c T [u] satisfies going-

down, we see that ht(Q) 2: ht{M) = n . Then

n = d i m (T) 2 dim[T[U]) > 1 + ht{Q) > n + 1 ,

v

the desired contradiction.

Our final result is motivated by the observation that the rings V
and D in Example 2.1 have valuative dimension 2 .

COROLLARY 3.5. Let R be going-down, with dim (R) = 2 , and let T
V

be an integrally closed domain which is integral over R . Then T is
going-down.

Proof. Let § c M be distinct primes of T , and let V be an
overring of T with a prime contracting to N . Set M = N n R . To show
that going-down obtains for the present data in T c V , we may suppose
that ht(M) = 2 . (Otherwise, Q = 0 , a t r ivial case.) As i t is enough
to prove that Tn\M

 c- ^D\M satisfies going-down, i t surely suffices to

show that TT>\M
 i s Priifer. This, however, follows from Proposition 3.U,

as applied to R c J

2 = ht(M) = dim(i? ) 5 dim (i?J < dim (i?) = 2 .
V v

We close by observing that Proposition 3-^ leads easily to an amusing

proof of Priifer 's ascent resu l t for the case that the given Priifer domain

contains no primes of i n f in i t e height.
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