A NOTE ON A CONJECTURE OF BRAUER

PAUL FONG

To RICHARD BRAUER on the occasion of his 60th Birthday

§ 1. Introduction

In [1] R. Brauer asked the following question: Let \mathfrak{G} be a finite group, p a rational prime number, and B a p-block of \mathfrak{G} with defect d and defect group \mathfrak{D} . Is it true that \mathfrak{D} is abelian if and only if every irreducible character in B has height 0? The present results on this problem are quite incomplete. If d=0, 1, 2 the conjecture was proved by Brauer and Feit, [4] Theorem 2. They also showed that if \mathfrak{D} is cyclic, then no characters of positive height appear in B. If \mathfrak{D} is normal in \mathfrak{G} , the conjecture was proved by W. Reynolds and W. Suzuki, [12]. In this paper we shall show that for a solvable group \mathbb{G} , the conjecture is true for the largest prime divisor p of the order of \mathbb{G} . Actually, one half of this has already been proved in [7]. There it was shown that if \mathbb{G} is a p-solvable group, where p is any prime, and if \mathbb{D} is abelian, then the condition on the irreducible characters in B is satisfied.

The proof of the converse presented here is somewhat difficult. A series of reductions gives rise to the following situation: \mathfrak{G} is a finite solvable group of order pg', where (p, g') = 1, such that \mathfrak{G} has no proper normal subgroups of p'-index. Moreover \mathfrak{G} acts faithfully and irreducibly on a vector space \mathscr{V} over a finite field, such that each vector v in \mathscr{V} is fixed by some Sylow p-subgroup of \mathfrak{G} . Using methods similar to those used by Huppert in [10], [11], we shall see that g' = 1 if p is the largest prime divisor of the order of \mathfrak{G} .

The author was a participant in the Special Year Program in the Theory of Groups at the University of Chicago 1960-1961. Many of the ideas in this paper had their origin in the discussions I had with my colleagues there. In particular, I should like to thank G. Higman and J. G. Thompson for their helpful advice.

Received November 12, 1961. Revised June 6, 1962.

§ 2. Proofs of the Theorems

Notation will be explained when used; for the most part, it will be that of [7]. Let \mathfrak{G} be a finite group of order $|\mathfrak{G}| = p^a g'$, where p is a fixed prime number, a is an integer ≥ 0 , and (p, g') = 1. Since the only characters of \mathfrak{G} which will concern us are those of complex-valued representations, the word "character" will refer only to such characters. The basic results of modular representation theory can be found in [3]. If B is a block of \mathfrak{G} of defect d, and χ is an irreducible character in B, then the height of χ is the integer $e \geq 0$ such that p^{a-d+e} is the exact power of p dividing the degree of χ .

THEOREM 1. Let \mathfrak{G} be a finite solvable group, p the largest prime divisor of $|\mathfrak{G}|$. Let B be a p-block of \mathfrak{G} with defect d and defect group \mathfrak{P} . If every character in B has height 0, then \mathfrak{P} is abelian.

Proof. The proof is by double induction on a and $g = |\mathfrak{G}|$. We assume that the theorem is true for all solvable groups of order divisible by at most p^{a-1} and for all solvable groups of order $p^a m$, where (p, m) = 1 and $p^a m < g$.

- a) The reduction in [7] §3 permits us to assume B has defect a. The defect group \mathfrak{P} is hence a Sylow p-subgroup of \mathfrak{G} and the condition on the heights means that the characters in B all have degree prime to p.
- b) Let $\widetilde{\mathfrak{G}}$ be a maximal normal subgroup of \mathfrak{G} . By [7] (3 J), (1 F), there is a block \widetilde{B} of $\widetilde{\mathfrak{G}}$ such that $\mathfrak{P} \cap \widetilde{\mathfrak{G}}$ is a defect group of \widehat{B} , and such that every character in \widetilde{B} has height 0. The induction hypothesis implies that $\mathfrak{P} \cap \widetilde{\mathfrak{G}}$ is abelian. If $|\mathfrak{G}:\widetilde{\mathfrak{G}}| \neq p$, then $\mathfrak{P} \cap \widetilde{\mathfrak{G}} = \mathfrak{P}$ and we are done. We may therefore assume that \mathfrak{G} has no nontrivial normal subgroups of p'-index (a number n is p' if p+n).
- c) Let \mathfrak{H} be the maximal normal p'-subgroup of \mathfrak{B} ; we may assume that $\mathfrak{H}>1$; otherwise B contains all the irreducible characters of \mathfrak{B} and the theorem follows from [7] (3 A), (3 D). By [7] (2 D) there is then a group \mathfrak{M} and a block B' of \mathfrak{M} such that (i) B and B' have isomorphic defect groups, (ii) there is a 1-1 height preserving correspondence between the characters of B and B', (iii) there is cyclic normal p'-subgroup \mathfrak{E} in the center of \mathfrak{M} such that $\mathfrak{M}/\mathfrak{E}\simeq\mathfrak{G}/\mathfrak{H}$, (iv) the characters of \mathfrak{M} in B' are all the irreducible characters of \mathfrak{M} which induce a given linear character of \mathfrak{E} .

The characters in B' all have height 0, and we therefore need prove

Theorem 1 only for the group \mathfrak{M} . We note p^a is the exact power of p dividing $|\mathfrak{M}|$; moreover, p is the largest prime divisor of $|\mathfrak{M}|$ by the construction of \mathfrak{M} in [7]. Let $\widetilde{\mathfrak{M}}$ be a maximal normal subgroup of \mathfrak{M} containing \mathfrak{E} ; by b) and the isomorphism $\mathfrak{M}/\mathfrak{E} \cong \mathfrak{G}/\mathfrak{H}$, $|\mathfrak{M}| = p$. Denote by \mathfrak{P} a Sylow p-subgroup of \mathfrak{M} (since the rest of the proof concerns \mathfrak{M} , this should cause no confusion). As in b) the subgroup $\mathfrak{D} = \mathfrak{P} \cap \widetilde{\mathfrak{M}}$ is abelian. $\mathfrak{D}\mathfrak{E}/\mathfrak{E}$ is the maximal normal p-subgroup in $\mathfrak{M}/\mathfrak{E}$ by [9] Lemma 1.2.3, and since $\mathfrak{D}\mathfrak{E} = \mathfrak{D} \times \mathfrak{E}$, the characteristic subgroup \mathfrak{D} of $\widetilde{\mathfrak{M}}$ is therefore normal in \mathfrak{M} .

- d) Suppose $\phi(\mathfrak{D}) \neq 1$, where $\phi(\mathfrak{D})$ is the Frattini subgroup of \mathfrak{D} . Since the p-blocks of $\mathfrak{M}/\phi(\mathfrak{D})$ may be regarded as subsets of the p-blocks of \mathfrak{M} by means of the lifting mapping of characters [3] (9 B), it follows by induction that $\mathfrak{P}/\phi(\mathfrak{D})$ is abelian. But $\mathfrak{M}/\mathfrak{D}\mathfrak{E}$ acts faithfully on $\mathfrak{D}/\phi(\mathfrak{D})$ by [9] Lemma 1.2.5. This is impossible, and hence $\phi(\mathfrak{D}) = 1$. We may assume then \mathfrak{D} is an elementary abelian p-group.
- e) Let D be any element in \mathfrak{D} . The condition on the heights of the characters in B' implies that D is centralized by a Sylow p-subgroup of \mathfrak{M} (see [7] (1 A), (3 D)). Suppose \mathfrak{D}_1 is a normal subgroup of \mathfrak{M} (written $\mathfrak{D}_1 \leq \mathfrak{M}$) such that $1 < \mathfrak{D}_1 < \mathfrak{D}$. By d) $\mathfrak{D} = \mathfrak{D}_1 \times \mathfrak{D}_2$, where \mathfrak{D}_2 is any complement to \mathfrak{D}_1 in \mathfrak{D} . However, \mathfrak{D}_2 can be selected so that $\mathfrak{D}_2 \unlhd \mathfrak{M}$. For represent $\widetilde{\mathfrak{M}}/\mathfrak{D}$ on \mathfrak{D} by transformation. Since $\mathfrak{M}/\mathfrak{D}$ is a p'-group, this representation is completely reducible by Maschke's Theorem. Hence there exists a complement D2 such that $\mathfrak{D}_2 \leq \mathfrak{M}$. Let A be a fixed element of p-power order, A not in \mathfrak{D} . If D is any element in \mathfrak{D}_2 then $A^{-1}DA = X^{-1}DX$ for some X in \mathfrak{M}_2 , and D^A is in \mathfrak{D}_2 , that is, $\mathfrak{D}_2 \subseteq \mathfrak{M}$. Induction applies to $\mathfrak{M}/\mathfrak{D}_1$ and to $\mathfrak{M}/\mathfrak{D}_2$; therefore $\mathfrak{M}/\mathfrak{D}_1$ and $\mathfrak{M}/\mathfrak{D}_2$ have abelian Sylow p-subgroups. Since \mathfrak{M} can be embedded in $\mathfrak{M}/\mathfrak{D}_1$ $\times \mathfrak{M}/\mathfrak{D}_2$, \mathfrak{P} is abelian. We may therefore assume D is a minimal normal subgroup of M.
- f) Let $\mathfrak B$ be the representation of $\mathfrak M$ in the vector space $\mathfrak D$ over GF(p). The group $\mathfrak M/\mathfrak D \mathfrak E$ with the representation $\mathfrak B$ satisfies the hypothesis of the following theorem. Applying that theorem, we conclude that $\mathfrak M/\mathfrak D \mathfrak E$ is a p-group, and hence $\mathfrak M=\mathfrak P\times \mathfrak E$. From this it follows that $\mathfrak B$ must be abelian.
- Theorem 2. Let $\mathscr G$ be a finite solvable group of order pg', where (p, g') = 1. Let $\mathscr V$ be a vector space of dimension d over the finite field K on which $\mathscr G$ acts irreducibly and faithfully. Suppose

- (i) S has no proper normal subgroups of p'-index.
- (ii) Each vector v in \mathcal{V} is fixed by some Sylow p-subgroup of \mathfrak{G} .
- (iii) p is the largest prime divisor of |\&|.

Then g' = 1, that is, \mathfrak{G} is a group of order p.

Proof. We proceed by double induction on g' and d. We assume that the theorem is true for all groups of order pm with m < g', and for all groups of order pg' acting on vector spaces of dimension less than d. Groups of order p satisfying the conditions of Theorem 2 trivially have the required structure. On the other hand, if d = 1, \mathfrak{G} must be a group of order p, and again Theorem 2 is true.

a) Denote the representation of \mathfrak{B} on \mathscr{V} by \mathfrak{B} . Suppose \mathfrak{B} is not absolutely irreducible. If \mathfrak{B} decomposes into s > 1 absolutely irreducible constituents, then there exists an extension field L of K of degree s such that in $L \otimes_K \mathscr{V}$,

(1)
$$\mathfrak{B} \approx \begin{bmatrix} \mathfrak{B}_{1} & 0 & 0 \\ 0 & \mathfrak{B}_{2} & 0 \\ & \cdot & \\ 0 & 0 & \mathfrak{B}_{s} \end{bmatrix}$$

The \mathfrak{W}_i are distinct absolutely irreducible representations of \mathfrak{S} , and they are all algebraically conjugate to a fixed one with respect to the automorphisms $\sigma_1, \sigma_2, \ldots, \sigma_s$ of L/K. Let $L \otimes_K \mathscr{V} = \mathscr{W}_1 \oplus \mathscr{W}_2 \oplus \cdots \oplus \mathscr{W}_s$ be the decomposition of $L \otimes_K \mathscr{V}$ corresponding to (1). If $e_{i1}, e_{i2}, \ldots, e_{im}$ is a basis for \mathscr{W}_i , then the vectors of \mathscr{V} can be identified with the vectors in $L \otimes_K \mathscr{V}$ of the form

$$\sum_{i=1}^{s} \sum_{j=1}^{m} (\alpha_j)^{\sigma_i} e_{ij} \qquad \alpha_j \text{ in } L.$$

It follows that each vector in \mathcal{W}_1 is fixed by some Sylow p-subgroup of \mathfrak{G} . Hence by induction on the degree of \mathfrak{B}_1 , \mathfrak{G} has the required structure. We may assume then \mathfrak{B} is absolutely irreducible.

b) Let $\widetilde{\mathfrak{G}}$ be a maximal normal subgroup of \mathfrak{G} ; by condition (i) $\widetilde{\mathfrak{G}}$ must have index p in \mathfrak{G} , and indeed $\widetilde{\mathfrak{G}} = [\mathfrak{G}, \mathfrak{G}]$, where $[\mathfrak{G}, \mathfrak{G}]$ is the commutator subgroup of \mathfrak{G} . Suppose the restriction $\mathfrak{B} \mid \widetilde{\mathfrak{G}}$ of \mathfrak{B} to $\widetilde{\mathfrak{G}}$ is reducible. If \mathscr{W} is any $\widetilde{\mathfrak{G}}$ -invariant subspace of \mathscr{V} , and if w is any vector in \mathscr{W} , then there exists a Sylow p-subgroup \mathfrak{P} of \mathfrak{G} which fixes w. But $\mathfrak{P}\widetilde{\mathfrak{G}} = \mathfrak{G}$, and thus $w\mathfrak{G} \subseteq \mathscr{W}$. In other words, \mathscr{W} is also \mathfrak{G} -invariant. Hence we may assume $\mathfrak{B} \mid \widetilde{\mathfrak{G}}$ is ir-

reducible (We shall show later that we may even assume $\mathfrak{V}|\widetilde{\mathfrak{G}}$ is absolutely irreducible.).

c) Suppose that $\mathfrak B$ is induced by some representation $\mathfrak U$ over K from some subgroup $\mathfrak M<\mathfrak G$. By b) it follows that $\mathfrak M$ contains a Sylow p-subgroup of $\mathfrak G$, say $\mathfrak P=\{A\}$. We may assume $\mathfrak M$ is a maximal subgroup of $\mathfrak G$ by replacing $\mathfrak M$ with a maximal subgroup containing it and by replacing $\mathfrak U$ by the corresponding induced representation. Let $\mathfrak G$ be the maximal normal subgroup of $\mathfrak G$ contained in $\mathfrak M$, and let $\mathfrak T/\mathfrak G$ be a minimal normal subgroup of $\mathfrak G/\mathfrak G$. It is well-known that $\mathfrak G=\mathfrak M\mathfrak T$ and $\mathfrak M\cap\mathfrak T=\mathfrak G$. We may thus take for coset representatives of $\mathfrak M$ in $\mathfrak G$, elements $1=T_0,\ T_1,\ \ldots,\ T_r$ of $\mathfrak T$ which are coset representatives of $\mathfrak G$ in $\mathfrak T$.

Let $\mathscr U$ be the subspace of $\mathscr V$ on which $\mathbb I$ is defined. As a $\operatorname{\mathfrak G-module}\mathscr V$ is isomorphic to the $\operatorname{\mathfrak G-module}$

$$\mathcal{V}' = \mathcal{U} \otimes 1 + \mathcal{U} \otimes T_1 + \cdots + \mathcal{U} \otimes T_r$$

the action being defined as follows: If G is in \mathfrak{G} , let $T_iG = M_iT_{i'}$, where M_i is in \mathfrak{M} and $i \to i'$ is a permutation of 0, 1, ..., r. If $v = \sum v_i \otimes T_i$ is a vector in \mathscr{V}' , where the v_i are in \mathscr{U} , then

$$vG = \sum_{i} v_i M_i \otimes T_{i'}$$

Let j be a fixed index, $1 \le j \le r$, and u a fixed non-zero vector in \mathcal{U} . The vector

$$v = u \otimes T_0 + u \otimes T_j + \sum_{i \neq 0, j} 0 \otimes T_i$$

by hypothesis is fixed by some conjugate A_j of A. Now we may assume $p \ge 3$; otherwise \mathfrak{G} is a cyclic group of order 2. $p \ge 3$ implies that A_j leaves the subspaces $\mathcal{U} \otimes T_0$, $\mathcal{U} \otimes T_j$ fixed, and since \mathfrak{M} is the subgroup of \mathfrak{G} leaving $\mathcal{U} \otimes T_0$ fixed, the element A_j must be in \mathfrak{M} . On the other hand $\mathcal{U} \otimes T_j A_j = \mathcal{U} \otimes T_j$ implies that $T_j A_j T_j^{-1}$ is in \mathfrak{M} , and hence $T_j A_j T_j^{-1} A_j^{-1}$ belongs to \mathfrak{M} . Since $T_j A_j T_j^{-1} A_j^{-1}$ belongs to \mathfrak{T} as well, $T_j A_j T_j^{-1} A_j^{-1}$ is in \mathfrak{S} . In other words, we have shown that given any element of $\mathfrak{T}/\mathfrak{S}$ there exists a p-element in \mathfrak{M} centralizing it.

Let \mathfrak{X} be the representation of \mathfrak{S} induced on $\mathfrak{T}/\mathfrak{S}$ by transformation, and let \mathfrak{R} be the kernel of \mathfrak{X} . If \mathfrak{R} contains A, then the permutation representation of \mathfrak{S} on the cosets of \mathfrak{M} would contain A in its kernel, which is impossible.

We may therefore assume $\Re < \Im$. In this case, the induction hypothesis applies to the group \Im / \Re and the representation \Im . \Re must then be \Im ; by the irreducibility of \Im , A can fix only the zero vector in the space \Im / \Im . This property is shared by the conjugates of A as well. But this is impossible, since we have just seen that given any T in \Im / \Im , there is a conjugate of A which transforms T onto itself. We may therefore assume \Im is not an induced representation over K.

d) Let $\mathfrak P$ be the maximal abelian normal subgroup of $\mathfrak P$. By c) and Clifford's Theorem [5], the restriction $\mathfrak P | \mathfrak P$ must be a direct sum of equivalent representations

$$\mathfrak{B} \mid \mathfrak{H} = \mathfrak{W} \oplus \mathfrak{W} \oplus \cdots \oplus \mathfrak{W}$$

where \mathfrak{B} is an irreducible representation of \mathfrak{F} over K. Since $\mathfrak{B}(\mathfrak{F})$ is a cyclic group and \mathfrak{B} represents \mathfrak{F} faithfully by (2), it follows that \mathfrak{F} is cyclic. Let $\mathfrak{C}(\mathfrak{F})$ be the centralizer of \mathfrak{F} in \mathfrak{G} . $\mathfrak{G}/\mathfrak{C}(\mathfrak{F})$ is isomorphic to a subgroup of the automorphism group of \mathfrak{F} , and hence is abelian. By b) it follows that $\mathfrak{C}(\mathfrak{F}) \supseteq \mathfrak{G}$ (We shall show later that \mathfrak{F} is even in the center of \mathfrak{G}).

- e) We may assume \mathfrak{S} is non-abelian. For if not, then $\mathfrak{S} = \mathfrak{S}$ would be cyclic, and in particular, A would act trivially on the Frattini factor group $\mathfrak{S}/\phi(\mathfrak{S})$, since p is the largest prime divisor of $|\mathfrak{S}|$. This would contradict condition (i) of the theorem. Let \mathfrak{N} be a minimal non-abelian normal subgroup of \mathfrak{S} ; \mathfrak{N} is contained in \mathfrak{S} and in particular, \mathfrak{N} is centralized by \mathfrak{S} . The results of Huppert [10] § 2 therefore apply to this situation. Let r be the characteristic of K. \mathfrak{N} then has the following structure: i) \mathfrak{N} is a q-group for some prime $q \neq r$. ii) The center $\mathfrak{S}(\mathfrak{N})$ of \mathfrak{N} is cyclic and $\mathfrak{N}/\mathfrak{S}(\mathfrak{N})$ is a minimal normal subgroup of $\mathfrak{S}/\mathfrak{S}(\mathfrak{N})$. iii) The order of $\mathfrak{N}/\mathfrak{S}(\mathfrak{N})$ is of the form q^{2n} , and $|\mathfrak{N}| = q^{2n+1}$ or q^{2n+2} , the latter possibility occurring only in the case q=2. iv) The exponent of \mathfrak{N} is q or q^2 , the latter occurring only for q=2. v) Transformation by elements of \mathfrak{S} on $\mathfrak{N}/\mathfrak{S}(\mathfrak{N})$ induces sympletic linear transformations over GF(q). (For q odd, \mathfrak{N} is an extra-special q-group in the terminology of Hall-Higman [9].)
 - f) Suppose $\mathfrak{V} \mid \mathfrak{N}$ is reducible, say

$$\mathfrak{V} \mid \mathfrak{N} = \mathfrak{U} \oplus \mathfrak{U} \oplus \cdots \oplus \mathfrak{U};$$

the irreducible constituents \mathfrak{U} of $\mathfrak{B} \mid \mathfrak{N}$ are all equivalent by c). Let \mathcal{U} be an

irreducible subspace of $\mathscr V$ for $\mathfrak R$. If u is any non-zero vector in $\mathscr U$, there exists a conjugate B of A which fixes u. Now $\mathscr UB$ is also an irreducible subspace of $\mathscr V$ for $B^{-1}\mathfrak RB=\mathfrak R$, and since u is in $\mathscr U\cap \mathscr UB$, it follows that $\mathscr U=\mathscr UB$. In other words every vector u in $\mathscr U$ is fixed by a conjugate of A belonging to the normalizer $\mathfrak R(\mathscr U)$ of $\mathscr U$ in $\mathfrak S$. Let $\mathfrak L$ be the group $\mathfrak R(\mathscr U)/\mathfrak C(\mathscr U)$, where $\mathfrak C(\mathscr U)$ is the centralizer of $\mathscr U$ in $\mathfrak S$. Since $\mathfrak R$ is faithfully represented on $\mathscr U$, $\mathfrak R\cap \mathfrak C(\mathscr U)=1$. We may assume A is in $\mathfrak R(\mathscr U)$ be replacing $\mathscr U$ by a suitable conjugate subspace. If A is in $\mathfrak C(\mathscr U)$, then A centralizes $\mathfrak R$, since $\mathfrak R$ and $\mathfrak C(\mathscr U)$ are normal subgroups of $\mathfrak R(\mathscr U)$ with trivial intersection. This is impossible, for it would imply that $\mathfrak C(\mathfrak R)=\mathfrak S$ or that $\mathfrak R\subseteq\mathfrak S(\mathfrak S)$. We may therefore assume A is not in $\mathfrak C(\mathscr U)$. Let $\mathfrak L_1$ be the normal subgroup of $\mathfrak L$ generated by the Sylow p-subgroups of $\mathfrak L$. Let $\mathfrak L_1$ be the normal $\mathfrak L$ -complement of $\mathfrak L_1$. If $\mathfrak L_1$ may no longer be irreducible. Suppose that

$$\mathfrak{U} \mid \mathfrak{Q}_1 \approx \begin{bmatrix} \mathfrak{W}_1 & & & \\ & \mathfrak{W}_2 & & \\ & & \ddots & \\ & & & \mathfrak{W}_t \end{bmatrix}$$

where the \mathfrak{B}_i are irreducible representations of \mathfrak{L}_1 conjugate to one another in \mathfrak{L} . For $i=1,\,2,\,\ldots,\,t$ let \Re_i be the kernel of \mathfrak{B}_i . No \Re_i can contain A, for otherwise \Re_i would be \mathfrak{L}_1 , and the representations $\mathfrak{B}_1,\,\mathfrak{B}_2,\,\ldots,\,\mathfrak{B}_t$ would be trivial. Let \mathscr{W}_i be the subspace of \mathscr{U} corresponding to \mathfrak{B}_i . The group \mathfrak{L}_1/\Re_i acting on the subspace \mathscr{W}_i satisfies the conditions of Theorem 2. The induction hypothesis therefore implies that $\widetilde{\mathfrak{L}}_1=\Re_i$. In other words, $\widetilde{\mathfrak{L}}_1$ is in the kernel of each \mathfrak{B}_i , and hence in the kernel of $\mathfrak{U}|\mathfrak{L}_1$. It follows that $\{A\}\mathfrak{C}(\mathscr{U})$ is normal in $\mathfrak{N}(\mathscr{U})$. But $\{A\}\mathfrak{C}(\mathscr{U})\cap \mathfrak{N}=1$, and again we conclude that A centralizes \mathfrak{N} , which we have already seen to be impossible. We may therefore assume $\mathfrak{D}|\mathfrak{N}$ is irreducible.

g) Let K have r^b elements, where r is the characteristic of K. Let s be the order of r^b modulo q if q is odd, modulo 4 if q=2. In particular s divides q-1 if q is odd, s divides 2 if q is 2. The degree of $\mathfrak B$ must be sq^n by [9], 2.4. Since p > q, p does not divide sq^n . In particular we conclude that $\mathfrak B | \widetilde{\mathfrak B}$ is absolutely irreducible. Moreover, since $\mathfrak B \subseteq \mathfrak B(\widetilde{\mathfrak B})$, the matrices of $\mathfrak B(\mathfrak B)$ can be represented

as scalar multiples of the identity matrix in some extension field of K, and we conclude that \mathfrak{S} is even in $\mathfrak{Z}(\mathfrak{S})$.

h) Let \mathscr{W} be the sympletic space $\mathfrak{N}/\mathfrak{Z}(\mathfrak{N})$, and let \mathscr{W}_0 be the subspace of all vectors in \mathscr{W} fixed by A. Since A acts as a sympletic transformation on \mathscr{W} , there exists a complement \mathscr{W}_1 to \mathscr{W}_0 in \mathscr{W} which is invariant under A and on which A acts sympletically. A has no fixed vectors in \mathscr{W}_1 besides the zero vector. Let 2 m be the dimension of \mathscr{W}_1 over GF(q). $m \ge 1$, for otherwise A would not only centralize $\mathfrak{R}/\mathfrak{Z}(\mathfrak{N})$, but even \mathfrak{N} by [8] § 1.3. Let $\mathscr{W}_1 = \mathfrak{M}/\mathfrak{Z}(\mathfrak{N})$, and let the index of \mathscr{W}_1 in \mathscr{W} be q^{2} . Choose a basis in \mathscr{V} over K such that the restriction of \mathfrak{B} to $\{A, \mathfrak{M}\}$ has the form

$$\begin{pmatrix} \mathfrak{A}_1 & 0 & 0 \\ * \, \mathfrak{A}_2 & 0 \\ & \cdot & \\ & * & * & \mathfrak{A}_{a^t} \end{pmatrix}$$

Here each \mathfrak{A}_i is an irreducible representation of $\{A, \mathfrak{M}\}$ of degree sq^m .

i) We now calculate the number of vectors in \mathscr{V} fixed by A. Let L be an extension field of degree s over K such that over L, the representation \mathfrak{A}_i decomposes into s absolutely irreducible representations

$$\mathfrak{A}_i \approx \mathfrak{B}_1 \oplus \mathfrak{B}_2 \oplus \cdots \oplus \mathfrak{B}_s$$

If the vectors in the subspace corresponding to \mathfrak{B}_1 which are fixed by A span a subspace of dimension N over L, then the vectors in the space corresponding to \mathfrak{A}_i which are fixed by A span a subspace of dimension sN over K. Since there are q^t such representations \mathfrak{A}_i , the vectors of \mathscr{V} which are fixed by A span at most a subspace of dimension sNq^t over K.

If r = p, N can be computed by the theorems of Hall-Higman [9], 2.5.1-2.5.3. Indeed, $q^m = kp + 1$ or $q^m = kp + (p-1)$, and N = k + 1. If $r \neq p$, we must use a different method. Since r does not divide $|\mathfrak{M}|$, N is precisely the number of characteristic values of $\mathfrak{B}_1(A)$ which are 1. Now there exist an algebraic number field \mathcal{Q} , a prime ideal divisor r of r in \mathcal{Q} , and an absolutely irreducible representation \mathfrak{X} of \mathfrak{M} written in the ring of r-local integers of \mathcal{Q} , such that the representation \mathfrak{X} modulo r is equivalent to \mathfrak{B}_1 . In particular, N is also the number of characteristic values of $\mathfrak{X}(A)$ which are 1. Let \mathcal{X} be the character of \mathfrak{X} ; we then have

$$N = \frac{1}{p} \sum_{i=1}^{p} \chi(A^{i})$$

Since \mathfrak{M} is a group whose order contains p only to the first power, N can be computed by the results of Brauer [2] Theorem 4. Indeed, for $i \not\equiv 0 \pmod{p}$,

$$\chi(A^i) = \left\{ egin{array}{ll} \pm f & ext{if } \chi ext{ is non-exceptional} \\ \pm \epsilon^i f & ext{if } \chi ext{ is exceptional} \end{array}
ight.$$

where ε is a primitive p-th root of unity and f is the degree of an irreducible character of the p'-part of the centralizer of A in \mathfrak{M} . The structure of \mathfrak{M} implies that f must be 1. As for the case r = p, we find that $q^m = kp + 1$ or $q^m = kp + (p-1)$, but now we have only $N \le k + 1$. In any case, we can conclude that the total number of vectors in \mathscr{V} fixed by A is less than or equal to r^{bsNq^t} .

j) Let \mathfrak{P} be a Sylow p-subgroup of \mathfrak{G} , and let $\mathfrak{N}(\mathfrak{P})$ be the normalizer of \mathfrak{P} in \mathfrak{G} . Since the total number of vectors in \mathscr{V} is r^{bsq^n} , the conditions of Theorem 2 imply that

$$(3) \qquad |\mathfrak{G}:\mathfrak{N}(\mathfrak{P})| \geq r^{bs(q^n-Nq^t)}$$

Represent \mathfrak{G} on $\mathfrak{N}/\mathfrak{Z}(\mathfrak{N})$, and let \mathfrak{R} be the kernel of this representation. By [10] Hilfssatz II

$$\mathfrak{G}/\mathfrak{R} \subseteq Sp(2 n, q)$$

$$\mathfrak{R}/\mathfrak{H} \subseteq \mathfrak{H}(\mathfrak{R}) \times \mathfrak{H}(\mathfrak{R}) \times \cdots \times \mathfrak{H}(\mathfrak{R}) \qquad (2 n \text{ times}).$$

where Sp(2 n, q) is the sympletic group of dimension 2 n over GF(q). Now

$$\begin{aligned} |Sp(2 n, q)| &= (q^{2n} - 1) (q^{2n-2} - 1) \cdot \cdot \cdot (q^2 - 1) q^{2n-1} q^{2n-3} \cdot \cdot \cdot q \\ &\leq q^{2n^2 + n} \end{aligned}$$

$$|\Re/\Im| \le \begin{cases} q^{2n} & \text{if } q \ne 2\\ q^{4n} & \text{if } q = 2 \end{cases}$$

It then follows that

$$r^{b_{S}(q^{n}-Nq^{t})} | \mathfrak{N}(\mathfrak{P})| \leq \begin{cases} | \mathfrak{P} | q^{2 n^{2}+n} q^{2 n} & \text{if } q \neq 2 \\ | \mathfrak{P} | q^{2 n^{2}+n} q^{4 n} & \text{if } q = 2. \end{cases}$$

 $\mathfrak{H}\subseteq\mathfrak{Z}(\mathfrak{G})$ implies that $\mathfrak{H}\subseteq\mathfrak{N}(\mathfrak{P})$ and thus we have finally

(4)
$$r^{bs(q^n - Nqt)} \le \begin{cases} q^{2n^{2+3n}} & \text{if } q \neq 2\\ q^{2n^{2+5n}} & \text{if } q = 2. \end{cases}$$

The inequality (4) holds only for small values of n, r, p, and q. The proof will then be complete once we show no groups @ correspond to these exceptional values.

k) To obtain an estimate on n, we use the inequality

$$q^n - Nq^t \ge q^n - \frac{2}{b} q^n$$

Putting this in (4) we obtain the inequality

$$\frac{p-2}{p}q^n \log r \le \begin{cases} (2n^2+3n) \log q & \text{if } q \ne 2\\ (2n^2+5n) \log q & \text{if } q = 2, \end{cases}$$

and this can hold only for the following values of n and q.

n	q
7	2
6	2
5	2
4	2
3	2, 3
2	2, 3, 5, 7
1	$q \le 31$

We treat the case p=3 separately. For p=3, the 3-complement in $\mathfrak S$ must be a 2-group. Hence $|\mathfrak S:\mathfrak R|=3$, $|\mathfrak N:\mathfrak J(\mathfrak N)|=4$, and $|\mathfrak S|=48$ or 24. Since the representation $\mathfrak B$ of $\mathfrak S$ is absolutely irreducible, $\mathfrak B$ must have degree 2. Let $\mathfrak B$ be a Sylow 3-subgroup of $\mathfrak S$; $\mathfrak N(\mathfrak B)$ has index 1, 2, or 4 in $\mathfrak S$. $\mathfrak B$ can fix at most r^b vectors in $\mathscr V$, so that (3) for this case becomes $4 r^b \ge r^{2b}$. This is possible only for $r^b=3$. But then s would be 2 and the degree of $\mathfrak B$ would be 4, which is a contradiction. We may therefore assume that $p\ge 5$.

If n=1, $p \mid q \pm 1$ implies that p < q or p=3. Thus no groups \mathfrak{G} can occur for this case. The same argument allows us to assume $m \ge 2$ in the remaining cases. The following argument will be used frequently. For given n, m, q, p we know that $|\mathfrak{G}:\mathfrak{R}|$ divides the order of Sp(2n, q). The conditions (i) and (iii) of the theorem further restrict the possible divisors of $|\mathfrak{G}:\mathfrak{R}|$. Using the bounds for $|\mathfrak{G}:\mathfrak{R}|$ obtained in this way in (3), we can eliminate most of

the remaining cases.

If n=2, there are three cases,

m	q	Þ
2	2	5
2	3	5
2	5	13

The case m=2, q=2, p=5. The group Sp(4,2) has order 2^4 . 3.5, and hence $|\mathfrak{G}:\mathfrak{R}|=5$. If $|\mathfrak{F}(\mathfrak{N})|=2$, then (3) for this case becomes 2^4 . $r^{bs}\geq r^{4bs}$ or $r^{3bs}\leq 2^4$. This cannot hold for any possible value of r. If $|\mathfrak{F}(\mathfrak{N})|=4$, then $|\mathfrak{F}:\mathfrak{N}(\mathfrak{F})|\leq 2^4$. (3) for this case becomes $r^{3bs}\leq 2^4$ and again this is impossible.

The case m=2, q=3, p=5. The group Sp(4,3) has order $2^7.3^4.5$. The subgroups of Sp(4,3) have been studied by Dickson in [6]; in particular $\mathfrak{G}/\mathfrak{R}$ must have order dividing $2^7.5$, and thus $|\mathfrak{G}:\mathfrak{N}(\mathfrak{P})|$ divides $2^7.3^4$. Since $|\mathfrak{G}:\mathfrak{N}(\mathfrak{P})|\equiv 1 \pmod{5}$, we can even assert that $|\mathfrak{G}:\mathfrak{N}(\mathfrak{P})|$ divides $2^4.3^4=6^4$. (3) for this case becomes $r^{7bs} \leq 6^4$. If r=2, then $bs \geq 2$ and the inequality is false. No other values for r are possible.

The case m = 2, q = 5, p = 13. The group Sp(4, 5) has order $2^7 \cdot 3^2 \cdot 5^4 \cdot 13$, and hence $|\mathfrak{G}: \mathfrak{R}| = 13$. (3) for this case becomes $r^{23bs} \leq 5^4$, which is impossible. If n = 3, there are five cases,

q	<i>p</i>
2	5
3	5
2	7
3	13
3	7
	2 3 2 3

The case m=2, q=2, p=5. The group Sp(6,2) has order $2^9.3^4.5.7$, and hence $|\mathfrak{G}:\mathfrak{R}|$ divides $2^9.3^4.5$. The representation \mathfrak{X} of $\mathfrak{G}/\mathfrak{R}$ on $\mathfrak{N}/\mathfrak{Z}(\mathfrak{R})$ is irreducible, and has dimension 6 over GF(2). A degree consideration shows that $\mathfrak{X}|\mathfrak{S}$ is still irreducible. Now if 3^4 does not divide $|\mathfrak{S}:\mathfrak{R}|$, then $|\mathfrak{S}:\mathfrak{R}|=5$, and (3) for this case becomes $r^{6bs} \leq 2^{12}$. If r=3, then $bs \geq 2$ and the inequality is impossible. No other values for r are possible. If 3^4 divides $|\mathfrak{S}:\mathfrak{R}|$, then $\mathfrak{S}/\mathfrak{R}$ must have a normal Sylow 3-subgroup of type (3,3,3,3). But such a

group cannot have an irreducible representation of degree 6 over GF(2).

The case m=2, q=3, p=5. The group Sp(6,3) has order $2^{10} \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$, and hence $|\mathfrak{G}:\mathfrak{R}|$ divides $2^{10} \cdot 3^9 \cdot 5 \cdot (3)$ for this case becomes r^{21} $^{bs} \leq 2^{10} \cdot 3^{15}$. If r=2, then $bs\geq 2$ and the inequality is impossible. The inequality cannot hold for $r\geq 5$. The last three cases are very similar to this one. Indeed (3) for these cases becomes r^6 $^{bs} \leq 2^{12}$, r^{25} $^{bs} \leq 3^6$, r^{23} $^{bs} \leq 2^{10} \cdot 3^{15}$ respectively, and these are impossible.

If n = 4, there are four cases,

m	q	Þ
2	2	5
3	2	7
4	2	5
4	2	17

The group Sp(8, 2) has order 2^{16} . 3^5 . 5^2 . 7. 17. (3) for the cases p=7, 17 becomes $r^{12\,bs} \leq 2^{16}$, $r^{14\,bs} \leq 2^{16}$, respectively, and both are impossible. Suppose then that p=5, so that $|\mathfrak{G}:\mathfrak{R}|$ divides 2^{16} . 3^5 . If $\mathfrak{G}/\mathfrak{R}$ has no principal factor of type (3, 3, 3, 3), then $|\mathfrak{G}:\mathfrak{R}|=5$, and (3) becomes $r^{12\,bs} \leq 2^{16}$, which is impossible. Let $\mathfrak{Q}/\mathfrak{R}$ be the maximal normal 3-subgroup of $\mathfrak{G}/\mathfrak{R}$; the order of $\mathfrak{Q}/\mathfrak{R}$ is either 3^4 or 3^5 . If \mathfrak{X} is the representation of $\mathfrak{G}/\mathfrak{R}$ on $\mathfrak{R}/\mathfrak{Z}(\mathfrak{R})$, then the restriction $\mathfrak{X}|\mathfrak{Q}/\mathfrak{R}$ must decompose into four distinct irreducible representations; otherwise \mathfrak{X} would not represent $\mathfrak{Q}/\mathfrak{R}$ faithfully. But this would imply that \mathfrak{G} has a subgroup of index 4, and hence a homomorphic image in the symmetric group on 4 letters. This is a contradiction, since 5 does not divide 4!

If n = 5, there are six cases,

m	q	Þ
2	2	5
3	2	7
4	2	5
4	2	17
, 5	2	31
5	2	11

The group Sp(10, 2) has order 2^{25} . 3^6 . 5^2 . 7. 11. 17. 31. All six cases can be eliminated by the same sort of argument. For p = 5, 7, (3) becomes $r^{24bs} \le$

 2^{45} . 3^6 ; for p = 17, 31, (3) becomes $r^{30 bs} \le 2^{20}$; and for p = 11, (3) becomes $r^{29 bs} \le 2^{45}$. 3^6 . In all six cases, these inequalities cannot hold for the possible values of r and bs.

Finally, for n = 6, 7 the inequality (4) cannot hold for $p \ge 5$. Indeed, for n = 6, we find that $r^{bs(q^n - Nq^l)} \ge r^{48bs}$, and for n = 7, $r^{bs(q^n - Nq^l)} \ge r^{56bs}$. Then (4) becomes $r^{48bs} \le 2^{102}$, $r^{96bs} \le 2^{133}$ respectively, both of which cannot hold for the possible values of r and bs.

REFERENCES

- [1] R. Brauer, Number theoretical investigations on groups of finite order, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo, 1956, pp. 55-62.
- [2] R. Brauer, On groups whose order contains a prime number to the first power, I, Amer. J. Math. vol 64 (1942), pp. 401-420.
- [3] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Z. vol. 63 (1956), pp. 409-444.
- [4] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. vol. 45 (1959), pp. 361-365.
- [5] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. vol. 38 (1937), pp. 533 550.
- [6] L. E. Dickson, Determination of all the subgroups of the known simple group of order 25920, Trans. A.M.S. vol. 5 (1904), pp. 126-166.
- [7] P. Fong, On the characters of p-solvable groups, Trans. A.M.S. vol. 98 (1961), pp. 263-284
- [8] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. vol. **36** (1934), pp. 29-95.
- [9] P. Hall and G. Higman, On the p-length of p-soluble groups, Proc. London Math. Soc. vol 6 (1956), pp. 1-42.
- [10] B. Huppert, Lineare auflösbare Gruppen, Math. Z. vol. 67 (1957), pp. 479-518.
- [11] B. Huppert, Zweifach transitive, auflösbare Permutations-gruppen, Math. Z. vol. 68 (1957), pp. 126-150.
- [12] W. Reynolds, Blocks with normal defect group, Seminar on Finite Groups at Harvard University, 1960-1961 (mimeographed notes).

University of California Berkeley 4, California