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THE POINTWISE ERGODIC THEOREM FOR 
TRANSFORMATIONS WHOSE ORBITS CONTAIN 

OR ARE CONTAINED IN THE ORBITS OF 
A MEASURE-PRESERVING TRANSFORMATION 

JOHN C. KIEFFER AND MAURICE RAHE 

1. Introduction. Let (12,^, P) be a probability space with (12, &~) 
standard. Let T be a bimeasurable one-to-one map of 12 onto itself. 
Let U: 12 —» 12 be another measurable transformation whose orbits are 
contained in the T-orbits; that is, 

Ufa) G {TW. i e Z} for all co 6 12, 

where Z denotes the set of integers. (This is equivalent to saying that 
there is a measurable mapping L: 12—>Z such that Ufa) = TL(ù>)fa), 
co Ç 12.) Such pairs (JT, U) arise quite naturally in ergodic theory and 
information theory. (For example, in ergodic theory, one can see such 
pairs in the study of the full group of a transformation [1] ; in information 
theory, such a pair can be associated with the input and output of a 
variable-length source encoder [2] [3].) Neveu [4] obtained necessary 
and sufficient conditions for U to be measure-preserving if T is measure-
preserving. However, if U fails to be measure-preserving, U might still 
possess many of the features of measure-preserving transformations. 
For example, the pointwise ergodic theorem might hold for U\ that is, 
given a bounded measurable function / : 12 —» ( — oo , oo), the sequence 

( n-l )œ 

i»-1E/(^'(«))f 
I i=0 / n=l 

may converge as n —» oo for almost all co £ 12. Since in many applications 
the property that U obeys the ergodic theorem is the property of U of 
interest (rather than the measure-preserving property), a useful problem 
to consider would be that of giving sufficient conditions on the pair 
(T, U) so that the pointwise ergodic theorem will hold for U if T is 
measure-preserving. This is one of the problems we address in this 
paper. 

Before proceeding further, we need to identify the class of trans
formations for which the ergodic theorem holds. This was done by Gray 
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and Kieffer [2]. They defined a probability measure Q on a measurable 
space ( A, *M ) to be asymptotically mean stationary (a.m.s.) with respect 
to a given transformation F on A if 

w - l 

lim n-^QiV'E) 
n->oo t = 0 

exists, for every measurable E C A. It was shown in [2] that the trans
formation V on the probability space (A, *Jt , Q) obeys the pointwise 
ergodic theorem for every bounded measurable real-valued function on 
A if and only if Q is a.m.s. with respect to V. 

Thus, the problem of finding a sufficient condition on the pair (7 ,̂ U) 
so that U will obey the pointwise ergodic theorem when T is measure-
preserving reduces to the problem of determining when P will be a.m.s. 
with respect to U given that P is stationary with respect to T. This 
problem is addressed in the second section of this paper. The special 
case of this problem where each £/(co) is an element of the unilateral 
orbit {co, T(co), . . . .} was considered in [3]. That case was simpler to 
handle than the general case since in that case the £/-orbit {co, £/(co), . . .} 
and jT-orbit {co, JT(CO), . . .} are averaged in the "same direction". More 
precisely, there are non-negative integers of positive density n0 < 
ti\ < . . . (depending on co £ Œ) such that 

[/*(«) = r^(co), i^ 0; 

using this, the convergence of the averages 

( n— 1 "J oo 

»_1E/(r'«) 
was used to obtain convergence of the averages 

{ n— 1 } oo 

n-1T,f(U,
a)\ 

by considering functions / which vanish off the f/-orbit, enabling one to 
obtain averages of the second type from averages of the first type. 
However in the general case this method breaks down because the 
bilateral character of the jf-orbit {!Tl'w: Î G Z) gives us two directions 
along which we can average to obtain almost sure convergence (the 
direction co —> Tœ —» JT2CO —> . . . and the direction co —> T_1co —» 
r_2co —>...) whereas we must average along the f/-orbit in the direction 
co —» f/(w) — » . . . , which doesn't conform to either of the two Indirec
tions for all time. Roughly speaking, as we proceed in the £/-orbit we 
frequently change direction vis-a-vis the T-orbit (i.e., we "hop" back 
and forth in the !T-orbit). For these reasons, more care has to be taken 
with the proofs in this paper than was taken in [3]. 
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In the third section of this paper, we consider the converse problem 
of determining when P will be a.m.s. with respect to T when P is 
stationary with respect to U. 

2. Transformations whose orbits are contained in the orbits of 
a measure-preserving transformation. In this section, we assume 
that the invertible measurable transformation T on (12, #~, P) is mea
sure-preserving. The measurable transformation U on 12 is then a trans
formation whose orbits are contained in the orbits of a measure-preserving 
transformation. Can we say that the ergodic theorem holds for U? 

To help answer this question, we introduce another concept from [2]. 
If Qu (?2 are probability measures on a measurable space A and F is a 
measurable transformation on A, we say that Q2 asymptotically dominates 
Qi with respect to V if and only if for every measurable E C A satisfying 
QÎ(E) = 0, we have 

Hmn^<2i(F-*£) = 0 . 

The following result from [2] gives the connection of this concept with 
the a.m.s. concept: Q\ is a.m.s. with respect to V if and only if there 
exists a probability measure Qi on A, stationary with respect to V, such 
that Q2 asymptotically dominates Qi with respect to V. 

Here is the main result of this section. (In the following, > denotes 
the transitive relation on 12 such that coi > co2 if and only if Tnœ2 = coi 
for some n > 0.) 

THEOREM 1. Let T be an invertible measure-preserving transformation 
on the probability space (12, Ĵ ~, P) and let U: 12 —> 12 satisfy 

(a) U(œ) G {r*w: i G Z}, co £ 12; and 
(b) For P-almost all co £ 12, the sets 

{co' < co: Uœ' ^ co} and {co' > co: Uœ' ^ co} 

are finite. 
Then P is a.m.s. with respect to U. Furthermore, there exists A £ Ĵ ~ 

wi/ft -P(-4) > 0 ŝ cfr ^a / PA is stationary with respect to U and asymp
totically dominates P with respect to U, where PA is the probability measure 
on &~ concentrated on A satisfying 

PA(F) = P(A r\ F)/P(A)f F ^ . 

Remark. If T is measure-preserving and U satisfies (a), let L: 12 —> Z 
be a measurable function such that 

J7(w) = r*< «>(«), co 6 12. 

Then assumption (b) of Theorem 1 holds if fn\L\dP < oo, or if, as 
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shown in [3], the weaker assumption holds that 

lim supi^œi~1\L(T-lœ)\ < oo for P-almost every to £ ft. 

The proof of Theorem 1 will occupy the rest of this section. As a by
product of our proof we will obtain some interesting results on the 
structure of the orbits of [/. If F is a mapping from ft into itself, a subset 
5 of ft is called a unilateral V-orbit if 5 takes the form {co, F(co), 
F2(co), . . .} for some co 6 ft, and is called a bilateral V-orbit if it takes the 
form 5 = {to*: i £ Z}, where F(cot) = coï+i, i £ Z. The bilateral T-orbit 
containing co Ç ft, namely {P'co: i 6 Z), we will denote by 0r(co). 

We consider three types of bilateral [/-orbits. We define a bilateral 
[/-orbit S to be of type 1 if 5 is finite; it is not hard to see that the bila
teral [/-orbit S is of type 1 if and only if 5 is a [/-cyclic subset of ft; i.e., 
a subset of ft of form {co, [/(co), . . . , [/w-1(co)} for some co G ft and some 
positive integer n, where [/n(co) = co. We consider two types of infinite 
bilateral [/-orbits S: S is of type 2 if for some co £ ft and {nt: i G Z} C Z, 
we have 

S = {P^co: i <E Z}, 

where 

U(Tniœ) = rw<+i(co), i G Z and 

lim<_>_„ «, = -oo , l i m ^ nt = oo ; 

5 is of /;y£e 3 if 

where 

[/(r^co) = rw»-+i(û>) (i e z ) , 
lim <_»_„, tit = oo and lim i_>00w l= — oo . 

We call a bilateral [/-orbit nice if it is of one of these three types. 
THEOREM 2. Under the assumptions of Theorem 1, there exists a mea

surable subset ft' of ft of P-measure one such that: 
(a) {co 6 ft': there exists a bilateral U-orbit Z) {co}} is measurable; 
(b) If co Ç ft', //tere are finitely many type 2 awd 3 U-orbits C Or(co); 
(c) / / co Ç ft', aw;y /wo nice U-orbits C Or(co) are ei//^r disjoint or 

identical; 
(d) If co 6 ft', there exists i ^ 0 such that [/'(co) is an element of a nice 

bilateral U-orbit; 
(e) / / co £ ft', then every bilateral U-orbit which is a subset of 0r(co) is 

nice. 

If we can prove parts of (a)-(d) of Theorem 2, then Theorem 1 follows 
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as a simple corollary. For, letting A be the measurable set in part (a) of 
Theorem 2, we have 

(f) Given w G i , there is a unique co' G A such that £/(co') = co. 
(g) [/-M Î 12' as w -> oo . 

Statement (g) implies that P{A) > 0. Let 

120 = {co G fi: Pwco 5* co for all rc è 1} 

and let 12x, 122, . . . be finite P-cyclic subsets of 12 such that 120, 12i, . . . are 
disjoint and ]C<LoP(Û<) = 1. Setting 4* = 4 H 12,, i £ 0, and letting 
L: A0 —> Z be the unique function such that U — TL, we have from (f) 
that 

[T>([L =j)nAQ)nAo:j£ Z} 

is a partition of AQ and so if £ is a measurable subset of A 0 we have 

p(y-xE r\ A,) = £ P[{£ = J} ^ r~'£ n 40] 

= £ P[r'{L = i i ^ ^ ^ r^o] = P(£). 

If £ is a measurable subset of A t{i > 0), then U~lE C\ A t and E have 
the same cardinality and so 

P{U-lEr\At) = P(£). 

Thus, if E is a measurable subset of 12, we have 

P[U~1E r\A} = p[ir\E n 4 ) n 4] = ë P I IT^E n 4 0 n 4 ,] 

00 

= Ë P [ £ n i 4 J = P ( £ H i 4 ) f 

and so the measure PA is ^/-stationary. Also, PA{E) = 0 implies 
P(E C\ A) = 0, which implies 

P(U~nE r\ U~nA) = 0 for all n > 0, 

which implies P (£/"*£)->0 since P(U~nA) -* 1 by (g). Hence PA 

asymptotically dominates P with respect to U. 
Let Ei, £2, £3 be the measurable subsets of 12 such that 

Ei = {co € 12: {J7'(«)}?.i is finite}. 

E2 = {co <E 12: {£T(co)}?=in {P'(co)}?=i is infinite}. 

£3 = {co € 12: { [ / ' M l t i H {p-^co)}^! is infinite}. 

To prove parts (a)-(d) of Theorem 2 it suffices to find sets 12< C £* 
(i = 1, 2, 3), such that P(12t — Et) = 0 for each i and 
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(a ') {co G 127: there exists a type i [/-orbit D {co}} is measurable; 
(V) For i = 2, 3, if co Ç 12* there are only finitely many type i U-

orbits C 0T(œ) C\ Et; 
(c') For i = 1, 2, 3, if co 6 12* then any two type z [/-orbits C 0T(u) H 

£< are either equal or disjoint; 
(d') For i = 1, 2, 3, if co £ 12* then for some j ^ 0, C/;(co) is an element 

of a type i [/-orbit. 
(To see this, one can show wi thout much effort t ha t par t s ( a ) - ( d ) of 
Theorem 2 follow from ( a ' ) - ( d ' ) above with 

12 = (Î2I v j i22 KJ i23) n n r U (E , - 0,) 

We can take 121 = £ i . (Note t h a t {co £ E i : there exists a type 1 [/-orbit 
D {co}} is the measurable set {co £ E\\ tV7'(co) = co for some i ^ 1}.) 
I t suffices to find 122 and 123. We show how to find 122. (123 is found by a 
symmetr ic argument . ) Define U: E2 —> E2 so t ha t [/(co) = [/;(co), where 
j is the smallest integer j > 0 such t ha t Uj(œ) > co. From assumption 
(b) of Theorem 1 it follows tha t : 

(1) For almost all co £ 12, 

{co' < co: co' £ E2 and [/co' ^ co} 

is finite. 
If £ £ ^~ , let us call co £ 12 F-regular if for every co' £ Or(co) P\ £ the 

sets 

{co" G F: co" < a/} and {co" £ E: co" > co'} 

are nonempty . I t is easy to see t h a t almost every co G 12 is .F-regular. Let 
12(1) be the set of all E2-regular co £ E2 such t ha t if co' £ 0T(co) then the 
sets 

{co" £ E2: co" < co', [/(co") ^ co'} and 

{co" £ £ 2 : co" < co', [/(co") ^ co'} 

are finite. From (1), we have t h a t 

P[E2 - QW] = 0. 

Also, lett ing 

12 = {co £ 12(1): there exists a bilateral [/-orbit D {co}}, 

12 is a measurable set because 

12 = {co £ 12(1): there exist infinitely many co7 £ Or(co) P\ E 2 s u c h t ha t 
co' < co, co £ { [/J'(co/)}7=i hold simultaneously}. 

(To see this, if co is in this lat ter set we can choose integers 0 = no > 
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ni > ni > . . . and unilateral J/-orbits Si, 52, . . . containing co such that 
for i ^ 1, 

Sk C\ {Tju: tit g j g Ui-i) T± 0 for all k ^ i. 

Choosing a subsequence {Sik} of {Sz} and a subset 5 of 0T(u) so that 
Isik, the indicator function of Sik, converges pointwise on 0T(œ) as 
k —» oo to 7s, we have that S must be a bilateral £/-orbit D {co}.) For 
k = 0, 1, . . . , set 

GA; = {co £ £2: there are exactly & points co' in E2 such that 
a/ < co and £/(co') ^ co}. 

Let 12(2) be the set of all co £ 12(1) which are G^-regular for every k. Then 
P(JE 2 — Œ(2)) = 0 and, in addition, we have the property; 

(2) If co G Œ(2), there are only finitely many 27-orbits C 0r(co). 

(To see this, let co Ç Q(2) C\ Gk. We show there can't be more than k 
£/-orbits C Or(co). Suppose there are k + 1 such orbits: ST, . . . , Sk+i. 
Find co' < co so that the sets 

S , n {co": co" < co'} (1 ^ î ^ fc + 1), 

are pairwise disjoint. Pick co < co', cô G Gk. Then 

{co": co" < cô and Û(a") è co} 

has at least & + 1 elements, a contradiction.) Let fi(3) be the set of all 
co 6 fi(1) for which there exist two bilateral £/-orbits Si and S2 such that 

co G Si H S2 and SiP\ S2 H {co': co' < co} = 0. 

Then ft(3) is measurable because 12(3) = {co G S2(1): for any co' < co there 
exist coi, co2 < co' such that for some iu i2 > 0, 

tf'i(ui) = OUM = co 

but 

fri-ifa) * ÛU-ifa)]. 

(The proof is analogous to that given to show that 12 is measurable.) Let 
fi(4) be the set of all 12(3)-regular elements co of fi(2) such that 

co' G Or(co) C\ E2 

implies 

co' e Or(co) n fie». 
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Then 

P(E2 - 12<4>) = Oand: 

(3) If co G 12(4), any two bilateral t/-orbits C 0T(u) are equal or disjoint. 

(To see this, if co G 12(4), let Si, . . . , S* be the finite number of bilateral 
^/-orbits C 0T(u)- If there are two [/-orbits C 0T(œ) which are not 
disjoint, then there is a point co' G Or(co) H 12(3). Find S n , Sr2 G 
{Si, . . . , Sk} with rx F^ r2 and co' > cox > co2 > . . . such that S n , 
Sr2 Z) {wt} for each i. This forces S n = Sr2, a contradiction.) Let 12(5) 

be the set of all co G £ 2 such that #*(w) g 12 for all i ^ 0, and let 122 be 
the set of all 12(5)-regular elements of 12(4). Then 

P[£ 2 - 122] = 0 and: 

(4) If « G Î22, # ' («) 6 12 for some i ^ 0. 

(To see this, if (4) is false, find co G 122 P\ 12(5). Find co > coi > co2 . . . 
such that each co.,- G 12(5). Let Si, S2, . . . be the unilateral £7-orbits 
starting at coi, co2, . . . . Then no element of U?=i Si is in 12. Let S be a 
bilateral £/-orbit whose indicator function is a pointwise limit over 
OTM of the indicator functions of a subsequence of Si, S2, . . . . Since 
S C 12 and S C U?=i S t , we have a contradiction.) 

We wish to show that (a')-(d') hold for i = 2. To this end, we will 
need the following lemma. 

LEMMA 1. For all co G 122, the following is true for every k ^ 0: 

(5) For all co' G 0T(w) P\ E2, Uk(œ') and co' cant lie in different 
bilateral Û-orbits. 

Proof. (By induction on k). Statement (5) is true for k = 0 by (3). 
Fix k > 0 and suppose (5) holds for smaller k. Let co G 12?, co' G Or(co) H 
£2 , and suppose Si, S2 are bilateral ^/-orbits with co' G Si, Uk(œ') G S2. 

Case 1. tf(co') = U'(u') for some j > fe. Then £/*(«') < co' and if 5 is 
the smallest s > 0 such that Ûs(Uko)f) > co', then 

Ûs(Uka>') = #(«')• 

The left hand side of the preceding equation is in S2 and the right hand 
side is in Si, and so Sx = S2 by (3). 

Case 2. tf («') = [/'(«') for some l g j ^ i i i . Then 

t / V G Si, Uk~j(UW) G S2 and 0 ^ ^ - j < ^ 

and so by the induction hypothesis Si = S2. 

We now continue with our proof that (a ')-(d') hold for i = 2. Fix 
co G 122. Let y be the set of all type 2 £/-orbits contained in 0T(co) C\ E2 
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and l e t ^ be the set of all bilateral [/-orbits contained in 0T(o>) H £2 . 
We show there is a one-to-one map 0 of 3/ onto Sf which carries disjoint 
orbits into disjoint orbits and satisfies 0(5) Z) S(S G 3^). (This, coupled 
with (2)-(4), gives (b')-(d').) If S G 5*, define 0(5) to be the bilateral 
[/-orbit 

U {5, Uis),...,^-1^)}, 
ses 

where j s is the positive integer such that Uis(s) = U(s). Writing 

0(5) = {coz-: i G Z} where £/(«*) = w<+i(i G Z), 

we have (since 0(5) 3 5) 

lim inf ^-oo Wj = -co , lim s u p ^ œ nt = oo , 

in which j w ^ G Z} are the integers such that 

Tni(a>) = co* (i G Z ) . 

We must have 

lim *_»_«,*** = - o o . 

(Otherwise there would exist a/ G Or(co) and 0 > i\ > i2 > . . . such 
that wik < oi' for odd ft and co<A > œ for even ft, which would imply that 
there are infinitely many a>" < a/ for which U(o)") ^ a/, contradicting 
membership of co in ft(1).) Similarly, 

lim ,_»„**, = oo, 

and 0(5) is type 2. Thus, 0 maps j ^ 7 into j ^ 7 . We now show 0 is onto. 
Let 5 G y7. Pick co > o>i > co2 > . . . from 5. Let 5i, 52, . . . be the 
unilateral [/-orbits starting at coi, w2, . . . . Let 5 be a bilateral [/-orbit 
whose indicator function is a pointwise limit over 0T(oo) of the indicator 
functions of a subsequence of {5*}. Then 

1=1 

and so 0(5) C S, from which it can be deduced that 0(5) = 5 (since 
0(*§) and 5 are both bilateral [/-orbits which contain no [/-cyclic 
subsets). We now show that 0 maps disjoint orbits of S^ into disjoint 
orbits of .5^. (A fortiori, this will show that 0 is one-to-one.) Let 5i, 52 G 
y satisfy 5i H 52 = 0. If 

0(50 n 0(52) ^ 0, 

there must exist œ' G 0 r(w) H £ 2 such that a/ G 5i and Uk(oi') G 52 

for some ft ^ 1. By Lemma 1, this is impossible. 
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Thus (b')-(d') hold for i = 2. To see that (a') holds, observe that 
{co G &2'- there exists a type 2 [/-orbit D {co}} = {co Ç 122: there exists 
co' Ç Or(co) H Û and j > 0 such that [/(«') g co', . . . , ï/'-^co') S co', 
£/;'(co') — co}, which is a measurable set. Therefore, we have (a ' )-(d ') , 
from which (a)-(d) of Theorem 2 follow, and then Theorem 1 follows. 
All that remains is to prove part (e) of Theorem 2. 

Definition. If A is a measurable space, let A00 be the product mea
surable space of all bilateral sequences (co*: i G Z) from A. If E C 12, a 
sequence (co*: i € Z) in 12œ is defined to be E-regular if co, £ £ implies 
Wj € £ for infinitely many j > t and infinitely many j < i. If V: 12 —> 12 
is a measurable transformation, a bilateral F-orbit 5 is E-regular if there 
is an E-regular sequence (co,: i Ç Z) from 12°° such that 

F(co,) = co,+i (i Ç Z) and S = {co,-: i £ Z}. 

LEMMA 2. Le/ the invertible T: 12 —» 12 fre measure-preserving and let 
V: 12 —» 12 &e aw^ measurable transformation satisfying (a), (b) 0/ Theorem 
1 (mY/z- £7 replaced by V). If E 6 ^~, Jfcew /or almost every co G 12, if 
•S C Or(co) is a nice bilateral V-orbit, then S is E-regular. 

Proof. Note that if {Zî)T=-œ is a stationary process with state space 
12 then the sequence (Xt: i Ç Z) is E-regular with probability one. 

By Theorem 2, we may choose a measurable E-invariant subset 12' of 
12, of measure one, so that if co G 12' and co' 6 0T(u>) there is at most one 
nice K-orbit containing co' and 

A = {co £ 12': there exists a nice F-orbit D {co}} 

is a measurable set of positive P-measure. Then V is a one-to-one map 
of A onto yl, and consequently the inverse function for V on A is a 
measurable function from A to A. Thus there is a measurable map 
\p\ A —> Aœ such that if ^(co) = (co,: i G Z) then 

( i ) coo = co; 

(ii) F(co,) = co,+1 ( i Ç Z ) ; and 

(co,: i G Z) is the only sequence from A satisfying (i) and (ii). Since the 
probability measure PA (see proof of Theorem 1) is F-invariant, we can 
find a stationary process {Xt: i £ Z} with state space 12 such that X0 

has distribution PA and Xi+i = V(Xt) a.s. (i £ Z). Then (X,: i (E Z) 
is E-regular a.s. and (X,: i £ Z) = \K^o) a.s. Hence for P-almost all 
co G ^4, ^(co) is E-regular. Choose a measurable 12" C 12', of E-measure 
one, so that if co G 12" and co' £ 0r(co) C\ A, then ^(co) is E-regular. 
Fix co e 12". Let 5 C OTM be a nice tV-orbit. Fix co' £ 5. Then a/ £ A, 
S = {^(co'),: Î G Z), and therefore 5 is E-regular since î (co') is E-regular. 

The following lemma is proved with the same argument used earlier 
to prove that the function <f> maps if into if. 
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LEMMA 3. Under the hypotheses of Theorem 1, for almost all co Ç 12, 
if S d 0T(o>) is a bilateral U-orbit which is not nice, then S is of one of the 
following four types, where in the following, {n^ i G Z) is a set of integers 
such that 

S = {Tniœ: i G Z} and U{Tn^) = Tn^^, i G Z: 

(i) S contains a U-cyclic subset and 

lim^_00w I = -co; 

i\\) S contains a U-cyclic subset and 

l i m ^ - ^ m = oo; 

(iii) l i m t ^ - œ n t = \imi^œni = - o o ; 
(iv) l im^-^Wi = l i m ^ W i = oo. 

Proof of Theorem 2, part (e). We show that for almost all co, there is 
no bilateral £/-orbit C Or(co) of type (i) or (iii). (Types (ii) and (iv) 
are ruled out in the same manner.) Let 

E = {co G 12: Un(œ) = co for some n > 0}. 

Let 12' be the set of all E-regular points in 12. Then P(12') = 1. It is not 
hard to see that there is a measurable transformation V: 12 —» 12 satisfying 
the hypotheses of Theorem 1 (with U replaced by V) such that 

(a) If co G 12' C\ E, V(œ) = T'co, where i is the smallest i > 0 such 
that T'a G E; 

(b) If co g E, F(co) = £/(co). 
By Lemmas 2 and 3, we may choose 12" C 12 of measure one such that 
(c) If co G 12" and S C Or(co) is a nice bilateral F-orbit, then S is 

£-regular; 
(d) If co G 12", all the non-nice bilateral ^/-orbits C Or(co) are of 

types (i)-(iv). 
Fix co G 12" and 5 C Or(co) of type (i). Say 5 = {co*: i G Z}, where 

U(coi) = coî+i (i G Z). Pick i* to be the smallest integer such that 
cot* G E. Then 

{ C O , : ; < ; * } U { F ' W ) } ? = O 

is a type 2 F-orbit C 0y(co) which is not jE-regular, a contradiction. 
Hence type (i) orbits are ruled out. Now set 

E = {co: ( î / ^ l t i H {r'(«)}SLi = 0} 

and define F: 12 —» 12 and 12" exactly as before. Fix co G 12" and 5 C 
0r(co) of type (iii). Say S = {co*: i f Z j , where £/(co,) = co1+1 (i G Z). 
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Pick i* to be the smallest integer such that cot* Ç E. Then 

{« , :*< * * } U { F W ) } £ o 

is a type 2 F-orbit C 0r(co) which is not E-regular, a contradiction. 
Hence type (iii) orbits are ruled out. 

3. Transformations whose orbits contain the orbits of a measure-
preserving transformation. As we have done previously in this paper, 
we consider the pair (P, U) where P is invertible and the orbits of U 
are contained in the orbits of P, except now we require that U be 
measure-preserving (rather than P). The transformation P is thus a 
transformation whose orbits contain the orbits of a measure-preserving 
transformation. In this section of the paper, we address the problem of 
finding sufficient conditions on the pair (P, U) so that the pointwise 
ergodic theorem will hold for P. As discussed earlier in the paper, this 
reduces to the problem of determining conditions under which P is 
a.m.s. with respect to T. The following theorem, which can be considered 
as a type of converse to Theorem 1, gives such a condition. 

THEOREM 3. Given the probability space (12,^", P ) , the invertible 
measurable transformation P: 12 —> 12, and the measurable transformation 
C7: 12 —> 12 such that 

U(o>) e {T'œ: i G Z},co 6 12. 

Suppose that U is measure-preserving, aperiodic, and that ^\L\dP < co, 
where L:to—>Z is the map such that U = TL. Then there exists a T-
stationary probability measure Q on ^ such that P is absolutely con
tinuous with respect to Q. 

Remarks. Since T is invertible, we have from [2] that P is a.m.s. with 
respect to T if and only if there is a P-stationary Q on ^ with respect 
to which P is absolutely continuous. The special case of Theorem 3 
where L > 0 a.s. was proved in [2] by giving an explicit formula for a 
P-stationary Q with respect to which P is absolutely continuous. (That 
formula won't work here.) 

Before proving Theorem 3, we need a couple of lemmas. 

LEMMA 4. Let the hypotheses of Theorem 3 hold and assume in addition 
that U is ergodic. Let Û be the product measurable space 12 X Z, let L: 
12 —» { — 1, 0, 1} be the map 

L(œ,n) = l,L(<a) > 0; 

= 0,L(o>) = 0; 

= - 1 , L ( « ) < 0 , 
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let $: Û -» Q be the map (u, n) —> T'a), let P be the probability measure 

£ [P{E,r\ \L >j})+ P(E-,n{L < -j})] + P(E0) 

P(E) = i-i 

P[L = 0] + I \L\dP J. 
on Û (Ej denotes the section of E C 12 cit j Ç Z), and /e/ T: Û -^ Ù be a 
measurable transformation such that 

f ( * , 0 ) = (* ,0) fL(*) = 0; 
f (x, i) = (x,i + 1), L(x) > 0, 0 ^ i < L(x) - 1; 

= (Ux,0)f L(x) > 0, i = L(x) - 1; 

= (x, i - 1), L(x) < 0, L(x) + 1 < i ^ 0; 
= (Ux, 0), L{x) < 0, i = £(*) + 1. 

ZTtew J1 is an ergodic measure-preserving transformation on Û (regarded as 
probability space with probability measure P) and 

(a) P(12 X {0}) > 0 and P(E) = P(E X [0})/P(Q X {0}), £ G J^ ; 
(b) r£<•>($(«)) = $ ( f ( « ) ) , « G 12; 
(c) 7/ (co, 0) 6 12 X {0}, /feew /fee first element from the list f(co, 0), 

f2(co, 0), . . . wfeick lies in 12 X {0} is (£/«, 0). 

Proof. This is straightforward. 

Remark. The construction of T on 12 in Lemma 4 is a generalization of 
the "tower construction" [5] of ergodic theory, which given that L has 
range the positive integers, allows us to construct T on 12 so that T 
induces U on 12 X {0} with return time given by L. 

LEMMA 5. Let L\, L2> . . . be a stationary sequence of integer-valued 
random variables with E\Li\ < oo and the integers E " = i L<}!JLi distinct. 
Then 

^Lidi\ 
L*=i 

Prob 2^ Li diverges toco or -co = 1. 

Proof. Since the integers {]F^Li Lf}n=i are distinct, it is easy to show 
that 

= 2 (6) lim inf n lYsJLJLi\ 
n-^co I 1 = 1 I 

Then, 

(7) lim Prob For infinitely many n ^ 1, 

n w+1 ~] 

] £ L < < 0 and T,Lt> N\ = 0. 
i=i *=i J 

iV->cc 
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To see this, note that from (6) the event in (7) is contained in the event 

For infinitely many n, Ln+i > N + 

which has probability no bigger than 

n=l L 
A T + Ï 

which approaches 0 as N •—• oo since ELi+ < oo. Similarly using 
EL\~ < oo, one can showT 

(8) lim Prob For infinitely many » ^ 1 , 

n-\-l ii 

£ i i < 0 and ^Lt>N 

Suppose 

n+1 

t = l 
= 0. 

lim sup ^2 Li = co and lim inf 53 L* = — oo . 
rc-*» *=1 n->oo <—1 

Then, given N, there exists M such that: 

E L , g [0 , iV] ,nà M; 

n 

23 Li < 0, for infinitely many n ^ M; 
i= i 

w 

^2 Li < N, for infinitely many w ^ M. 
i= i 

Hence the event 

n n 

lim sup 53 Lf = oo , lim inf 53 ^* = — °° 
tt->co 1 = 1 W->oo 1 = 1 

is contained in the union of the events in (7) and (8), and therefore has 
zero probability, completing the proof. 

We are now ready to prove Theorem 3. We introduce the following 
notation: if Q is a probability measure on a measurable space A a.m.s. 
with respect to a measurable transformation F on A, we let Q denote 
the stationary mean for Q, i.e., Q is the F-stationary probability measure 
on A such that 

n - l 

Q(E) = limtTlJ2Q(V%' 

If {Xi}™=i is a process with state space S, we say that the process is 
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a.m.s. if the distribution of the process (which is a probability measure 
on Siœ, the set of all unilateral sequences (51, $2, . . .) from S) is a.m.s. 
with respect to the shift transformation on 5i°°. 

Proof of Theorem 3. By the remarks after Theorem 3, we need only 
show that P is a.m.s. with respect to T. In showing this, because of the 
ergodic decomposition theorem, we can assume that U is ergodic. Let 
12, L, $, P, T be the objects given in Lemma 4. Let {S<}?=-«, be a 
stationary ergodic process with state space Û such that the distribution 
of So is P and Si+i = T(Si)1 i Ç Z. Our first task will be to show that: 

CO CO 

(9) Either £ £ (£ - , ) = 00 a.s. or ] £ £(S-<) = -00 a.s. 

Let A = 12 X {0}. Let {Xi}^ be the process with state space 12 de
fined almost surely as a function of the process {5i}T=-oo as follows: 
Determine the times 0 > 7\ > T2 > . . . such that S r i £ A; Xt is 
then the 12-coordinate of STi, i ^ 1. (Since Prob[So € A] > 0 and {St} 
is ergodic, {J,} is almost surely defined.) Statement (9) will hold if: 

CO CO 

(10) Either J^L(Xt) = 00 a.s. or ^L(Xt) = -00 a.s. 

Let {Jf}?=i be a stationary aperiodic ergodic process with state space 
12 such that the distribution of X0 is P and U{Xt) = Xt-\yi ^ 2. From 
Lemma 4(c) it follows that U(Xt) = I M , i ^ 2; using this fact, it is 
not hard to show that the process {Xi}T=i is a.m.s. and that if R is the 
distribution of (Xly X2J . . .), then P is the distribution of (J?i, Z 2 , . . .). 

If i < j , then 

X. = TL(Xi + ^+'~+L^(Xj); 

therefore the integers {L(X1) + . . . + L(Xj))™^ must be distinct by 
aperiodicity of the process {Xt\. Applying Lemma 5: 

CD CO 

(11) Either J^LiXi) = 00 a.s. or £ l ( J P ( ) = -00 a.s. 
t = i i = i 

Since the events £ t i i ( ^ z ) = 0 0 } , £ ? = i L{Xt) = -00} are tail 
events of the process { I j ) t i , (10) follows from (11) by Theorem 3(c) 
of [2]. Suppose 

(12) Ë L ( 5 _ 0 = ooa.s. 
i = i 

Under this assumption, we will show that P is a.m.s. with respect to T. 
(A symmetric argument can be given in case 23?= 1 £(S-t) = — 00 
a.s.) Let L: 12 —> {1, 2, . . . , 00 } be the measurable map: 

Z(«) = inf{î > 0; * ( f ' « ) = r(*(co))}. 
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If we can show that 

(13) Prob[Z(S_<) > i for infinitely many i > 0] = 0, 

then it will follow from Theorem 1 that P is a.m.s. with respect to the 
transformation T defined on almost all of Û by: 

f(w) = f *<•>(«). 

Since, if («, 0) € A, {$(f '(«, 0))}?=0 is just {r'w }?_<>, we could con
clude from Lemma 4(a) that P is a.m.s. with respect to T. We conclude 
the proof of Theorem 3 by proving (13). From Lemma 4(b), we have 
for i > 0 that 

r£(5-o+-+^ y_i>(^(5_0) = 4KS,), -i+l £j Û0, 

and so L(S-i) > i would imply that $(Sj) ^ T($(S-i)) for these same 
j y which would imply that 

L(5-,) + . . . + tiSt-i) * 1 

for these j , which would imply 

£ ( 5 - 0 + . . . + £(S_i) ^ 0, 

since \L\ ^ 1. Hence (13) must hold, since we are assuming that (12) 
holds. 
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