## SOME THEOREMS ABOUT $p_{r}(n)$

MORRIS NEWMAN

Introduction. If $n$ is a non-negative integer, define $p_{r}(n)$ as the coefficient of $x^{n}$ in

$$
\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{r}
$$

otherwise define $p_{r}(n)$ as 0 . In a recent paper (1) the author has proved that if $r$ has any of the values $2,4,6,8,10,14,26$ and $p$ is a prime $>3$ such that $r(p+1) \equiv 0(\bmod 24)$, then

$$
\begin{equation*}
p_{r}(n p+\Delta)=(-p)^{\frac{1}{2} r-1} p_{r}\left(\frac{n}{p}\right), \quad \Delta=r\left(p^{2}-1\right) / 24 \tag{1}
\end{equation*}
$$

where $n$ is an arbitrary integer.
In this note we wish to point out one or two additional facts implied by identity (1). The first remark is that (1) furnishes a simple, uniform proof of the Ramanujan congruences for partitions modulo $5,7,11$, and a general congruence will be proved. The second is that for the values of $r$ indicated, $p_{r}(n)$ is zero for arbitrarily long strings of consecutive values of $n$. Finally, some additional theorems not covered by (1) will be given without proof.

In what follows all products will be extended from 1 to $\infty$ and all sums from 0 to $\infty$, unless otherwise indicated.

Theorem 1. Let $r=4,6,8,10,14,26$. Let $p$ be a prime greater than 3 such that $r(p+1) \equiv 0(\bmod 24)$, and set $\Delta=r\left(p^{2}-1\right) / 24$. Then if $R \equiv r(\bmod p)$ and $n \equiv \Delta(\bmod p)$,

$$
\begin{equation*}
p_{R}(n) \equiv 0(\bmod p) . \tag{2}
\end{equation*}
$$

Proof. Set $R=Q p+r$. Then

$$
\begin{aligned}
\sum p_{r}(n) x^{n} & =\prod\left(1-x^{n}\right)^{R}=\Pi\left(1-x^{n}\right)^{Q_{p+r}} \quad(\bmod p) . \\
& \equiv \prod\left(1-x^{n p}\right)^{Q}\left(1-x^{n}\right)^{r}
\end{aligned}
$$

Thus

$$
\sum p_{R}(n) x^{n} \equiv \sum p_{Q}\left(\frac{n}{p}\right) x^{n} \sum p_{r}(n) x^{n} \quad(\bmod p)
$$

and so

$$
p_{R}(n) \equiv \sum_{j=0}^{n} p_{Q}\left(\frac{j}{p}\right) p_{r}(n-j) \quad(\bmod p)
$$

[^0]or
$$
p_{R}(n) \equiv \sum_{0 \leqslant j \leqslant \frac{n}{p}} p_{Q}(j) p_{r}(n-p j) \quad(\bmod p)
$$

Now (1) implies that for $r>2$ and $n \equiv \Delta(\bmod p), p_{r}(n-p j) \equiv 0(\bmod p)$. Thus $p_{R}(n) \equiv 0(\bmod p)$, and so (2) is proved.

If we now note that for $R=-1$ the choices $r=4, p=5 ; r=6, p=7$; and $r=10, p=11$ (all with $Q=-1$ ) are permissible, and that for these values $\Delta=4,12,50$ respectively, then the Ramanujan congruences $p(5 n+4)$ $\equiv 0(\bmod 5), p(7 n+5) \equiv 0(\bmod 7), p(11 n+6) \equiv 0(\bmod 11)$ follow as a corollary, since $12 \equiv 5(\bmod 7)$ and $50 \equiv 6(\bmod 11)$.

We go on now to the second remark. We first prove the following lemma.
Lemma 1. Let $a_{1}, a_{2}, \ldots, a_{n+1}$ be non-zero pairwise relatively prime integers, and let $c_{1}, c_{2}, \ldots, c_{n}$ be arbitrary integers. Then the simultaneous diophantine equations

$$
\begin{align*}
& a_{1} x_{1}-a_{2} x_{2}=c_{1}, \\
& a_{2} x_{2}-a_{3} x_{3}=c_{2},  \tag{3}\\
& \cdots \\
& a_{n} x_{n}-a_{n+1} x_{n+1}=c_{n},
\end{align*}
$$

always have infinitely many solutions.
Proof. Put $T=a_{n+1} x_{n+1}, C_{i}=c_{i}+c_{i+1}+\ldots+c_{n}, 1 \leqslant i \leqslant n$. Then by summing the rows of (3) $1,2, \ldots$ at a time beginning with the last, we find that the system (3) is equivalent to the system

$$
\begin{array}{ll}
a_{i} x_{i}=c_{i}+T \\
a_{n+1} x_{n+1}=T & 1 \leqslant i \leqslant n \\
\hline
\end{array}
$$

Since the $a$ 's are pairwise relatively prime, the Chinese remainder theorem assures us of the existence of an integer $C$ such that

$$
C \equiv-C_{i}\left(\bmod a_{i}\right), \quad 1 \leqslant i \leqslant n
$$

and

$$
C \equiv 0 \quad\left(\bmod a_{n+1}\right)
$$

Put $T=C+A x$, where $A=a_{1} a_{2} \ldots a_{n+1}$. Then (3) has the solution

$$
\begin{aligned}
& x_{i}=\frac{C+C_{i}}{a_{i}}+\frac{A x}{a_{i}}, \\
& x_{n+1}=\frac{C}{a_{n+1}}+\frac{A}{a_{n+1}} x,
\end{aligned}
$$

where $x$ is arbitrary. Thus Lemma 1 is proved.
If we now notice, for example, that $p_{r}\left(n p^{2}+p+\Delta\right)=0$ (obtained by replacing $n$ by $n p+1$ in (1)) and that any two distinct primes $p$ are relatively prime, we see that Lemma 1 implies

Theorem 2. For $r=2,4,6,8,10,14,26 p_{r}(n)$ vanishes for arbitrarily long strings of consecutive values of $n$, arbitrarily many in number.

We remark that the same is true for $p_{1}(n), p_{3}(n)$, because of the classical identities

$$
\begin{aligned}
& \Pi\left(1-x^{n}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} x^{\frac{1}{2}\left(3 n^{3}+n\right)} \\
& \Pi\left(1-x^{n}\right)^{3}=\sum^{2}(-1)^{n}(2 n+1) x^{\frac{1}{2}\left(n^{2}+n\right)}
\end{aligned}
$$

due respectively to Euler and Jacobi.
Finally, we state without proof some additional identities derivable in the same way that (1) was derived in (1); $p$ is a prime in what follows.
(4) $p_{2}\left(n p+\frac{1}{12}\left(p^{2}-1\right)\right)=(-1)^{\frac{1}{2}(p+1)} p_{2}\left(\frac{n}{p}\right), \quad p \not \equiv 1(\bmod 12), \quad p>3$.
(5) $\quad p_{6}(3 \mathrm{n}+2)=9 p_{6}\left(\frac{1}{3} n\right)$.
(6) $p_{8}(2 n+1)=-8 p_{8}\left(\frac{1}{2} n\right) \quad$ (due to van der Pol (2))

$$
\begin{array}{ll}
p_{10}\left(n p+\frac{5}{12}\left(p^{2}-1\right)\right)=p^{4} p_{10}\left(\frac{n}{p}\right), & p \equiv 7(\bmod 12)  \tag{7}\\
p_{14}\left(n p+\frac{7}{12}\left(p^{2}-1\right)\right)=-p^{6} p_{14}\left(\frac{n}{p}\right), & p \equiv 5(\bmod 12)
\end{array}
$$

## References

1. M. Newman, $A n$ identity for the coefficients of certain modular forms. J. Lond. Math. Soc., 30 (1955), 488-493.
2. B. van der Pol, The representation of numbers as sums of eight, sixteen, and twenty-four squares, Proc. Kon. Nederl. Akad. Wetensch. Ser. A $5 \gamma=$ Indagationes Math. 16 (1954), 349-361.

National Bureau of Standards, Washington, D.C.


[^0]:    Received April 3, 1956. The preparation of this paper was supported (in part) by the Office of Naval Research.

