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HILBERT SPACES HAVE
THE BANACH-STONE PROPERTY

FOR BOCHNER SPACES

PETER GREIM

Let (ft., £., u.] be two positive finite measure spaces, V a
Is Is If'

non-zero Hilbert space, and 1 5 p < °° , p ̂  2 . In this

article it is shown that each surjective linear isometry between

the Bochner spaces L (u •> V) induces a Boolean isomorphism

between the measure algebras E./y. , thus generalizing a result

of Cambern's for separable Hilbert spaces.

This Banach-Stone type theorem is achieved via a description of

the ^-structure of iP (u ., V) .

1. Introduction

In analogy to the Banach-Stone property [I, p. lU2] a Banach space V

is said to have the p-Banach-Stone property, if for any pair of positive

finite measure spaces (ft., £., y.) the existence of a surjective linear
Is Is Is'

isometry between the Bochner spaces iF (u., V) implies that the measure
Is

algebras Z./\i. are isomorphic. (See [5] for the definition and
is tr

properties of 2/'(u., v) .) By Lamperti's extension of Banach's classical
Is

result [S] the scalar field IK has the p-Banach-Stone property for
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p t 2 . The f i rs t vector-valued generalization is due to Cambern who

showed that separable Hilbert spaces have this property for 1 2 p < °° ,

p ^ 2 [3] and for p = °° [4]. Cambern's theorem has been extended to

larger classes of separable spaces [9], [6], and [7]; however, for a l l

these Banach-Stone type theorems the separability of V was essential. In

this paper we give a generalization of Cambern's theorem for non-separable

Hilbert spaces.

THEOREM 1. All non-zero Hilbert spaces have the p-Banaah-Stone

property (1 5 p < °°, p * 2) .

We shall achieve this result via a description of the L"-structure of

lP(u, V) (see Theorem 2).

As to our method, the proofs in [6] , [7], and [9] use some kind of

l i f t ing of L (y, V) in order to deal with functions instead of

equivalence classes. In this paper we employ a representation of

Ip{\i, V) as a space of L -like functions with values in Banach spaces V,

that may vary from point to point, a so-called "integral module",

introduced by R. Evans. The virtue of this representation is the fact that

a l l norm-functions k *—*• \\x(k)\\ are continuous, which might turn out to be

useful also in the investigations of other geometric relations between V

and lP{\i, V) .

2. An integral module representation

We need some definitions and notations. From now on let 1 < p < « ,

p # 2 . By XM
 w e denote the characteristic function of a set as well as

the corresponding multiplication operator; the constant function with

value v is denoted by v . In both cases the domains of the functions

will be clear from the context. A projection P in a Banach space X is

called an If-projection, if

for a l l x € X . The set of a l l //-projections of X is a complete

Boolean algebra [2, p. l l ] denoted by P (X) .
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REPRESENTATION THEOREM. Let (ft, £, \i) be a finite measure space and
V a real Banach space, K the Stonean space of the measure algebra T./\i ,
and $ the Boolean isomorphism of E/p onto the clopen subsets of K .
Then there is a regular Borel measure m on K satisfying

(2)

for all M (. I and

(3) m{D) = 0

for all measurable nowhere dense D c K . Furthermore, there is a system
(y,), . of Banach spaces containing V and an embedding

x >—>• < x >

of Z/(y, V) into the cartesian product ~] f [y. u {°°}) such that
klK K

(i) for each x £ lP{\i, V) the norm function

fcn+ \x\{k) := \\<x>(k)\\

(||a>|| := oo) ^s a continuous numerical lP{m)-function with

Ip-norm equal to \\x\\ ,

(ii) addition and scalar multiplication on lF(\i, V) , when
embedded into the cartesian product3 coincide with the
m-almost everywhere pointwise operations, precisely:
for each k € K the evaluation mapping

is linear on the preimage of V, {observe that

< xHk) £ V, m-almost everywhere since \x\ 6 I?(m) \

(Hi) for each v € V the constant function v on Q, is

mapped onto the constant function v on K ,

(iv) for each x € lP(m, V) and M i l ,

> (0— := 0) .

The p r o o f i s a s i m p l e c o m b i n a t i o n o f Theorems 3 - 7 a n d 7 . 3 i n [ 2 ] . We
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only have to verify the assumption that the set A of characteristic

projections Xw (M € E) in L™(\i, V) is a complete Boolean algebra of

projections in the sense that each increasing net converges strongly to i t s

supremum. This, however, is an immediate consequence of the fact that the

set of characteristic projections xM (M i Z) in the scalar-valued

lP(\i) has this property as i t is the whole of P [lf(\i)) [2, U.9 and

1.6]. •

The image of L (y, V) under < •> is called an integral module;

clearly i t is a Banach space isometrically isomorphic to L (y, V) .

PROPOSITION. For each x € L (y, V) there is an open dense subset V

of K such that

(v) (x)\.. takes its values in V ,

(vi) <x) | . is continuous.

Proof. By (iii) and (iv) the simple functions are represented as

continuous K-valued simple functions, and the la t t e r ones are dense in the

integral module. An application of Egorov's theorem shows that <a?) is an

m-almost uniform limit of continuous functions. Thus for each e > 0

there is a set U such that <x> restricted to U is continuous and

m(K\U ) < £ . By the regularity of m we may choose U clopen.

(Observe that an open set and i t s closure have the same measure.) The

union U of a l l U 's has the desired properties: i t s complement has

measure zero, so that i t cannot contain a non-void clopen subset. As K

is O-dimensional, this means that K\U has void interior . D

3. The Lp-structure of Lp(u, v)

We prove the following theorem.

THEOREM 2. Let V be a non-zero Hilbert space, (ft, E, y) a finite

positive measure space, 1 5 p < < » J p f 2 . Then

Pp(iP(y, V)) as E/y .

https://doi.org/10.1017/S0004972700011540 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011540


The Banach-Stone property 125

Since each surject ive isometry T between two Banach spaces X and

X induces a Boolean isomorphism Y of P [X ) onto P \XS) via

4*p * = 21 o P ° T

we have an improvement of Theorem 1 as an immediate consequence of Theorem

2.

COROLLARY. For each isometry T of £P(y1, v) onto IP(y2, v)

there is a Boolean isomorphism Y of E. /y., onto Eo/yo such that
c J \ 1 2 2

Y O T7 = 71 O Y

HW A/

for all M i E . Tfazi is, tfoe restriction of T to XM ' L [v-, > v) ^
s

an isometry onto Xm,Jj iWp' ̂  •

Proof of Theorem 2. Since the characteristic projections x M
 a r e

p
trivially L-projections, it remains to show that for each

P i P (LP(y, V)) there is an Mil such that Pa; = \jc for all

x i L(y, y) . Of course we may assume without loss of generality that the

scalars are real. We represent L(y, V) as an integral module as in

Section 2 and we show first that P splits into L-projections P, of

V, , that is,

(U) <Px)(k) = Pk{(x){k)) almost everywhere

for a l l x i L(y, F) . Since the L -project ions P and XM commute

{Mil) , we have

= I|PX ÎIP + lix^-X/xf = I (|Px|P+|x-Pa:|P)^ .

Observe that $M runs through a l l clopen subsets of K . Consequently the

continuous (numerical) integrands coincide,

(5) |a;|P = |Px|P + |x-Px|P .
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In p a r t i c u l a r <Pa:>(fc) * °° fo r (x){k) * ~ and

<Px)(k) - <Py)(k) = <P(x-y))(fe) = 0

fo r <x>(fe) = <z/>(fc) * oo . Thug

Pk(x)(k) := <Px)(k)

i s w e l l - d e f i n e d o n Vfe = {< x > ( f c ) | a; £ L P ( y , l O } \ { ° ° } [ 2 , 3 - 1 0 ] , a n d ( 5 )

says that the projection P, is an //"-projection on V, . Since

< x){k) = °° only on a set of measure zero, we have (h).

Now we claim P, € {0, Id} for all k (. K (Id the identity

operator). Then S := {k | P, = Id} is clopen, for if we choose V i. V

with ||y|| = 1 , then

B = {k \ PkV = v} = {k \ \Pv\(k) = 1} ,

and |Pv| is a continuous function into the discre te se t {0, l ) . Now

take M € E with *W = 5 . From fii^ and the def ini t ion of S we have

m-almost everywhere, namely for a l l k with <x){k) / °° ,

| P x - x ^ | ( f e ) = | |<Pz>(k)-xs<*>(k) | | = \\Pk{(x)(k))-xB(k) • <xHk)\\ = 0 ;

t h a t i s , ||Px-X^c|l = 0 .

Now l e t us prove our claim. Hilbert spaces have only the t r i v i a l

L -projec t ions 0 and Id [2 , 1.3]. So i t suffices to verify the

parallelogram equal i ty for a l l components V, . Let <x)(k), (y)(k) be

two a r b i t r a r y elements of V, . By (v), for a l l I in a dense subset U

of K , <x){l) and (y)(l) are elements of the Hilbert space V . Thus

I x + y l U ) 2 + \x-y\(l)2 = 2{\x\(l)2+\y\(l)2)

for all I € U , hence, by continuity, everywhere. This shows that (x){k)

and (yHk) satisfy the parallelogram equality, thus completing the proof

of Theorem 2. D

REMARK I . The method of this proof applies to all Banach spaces V

where a norm (in-)equality involving only finitely many vectors can be
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shown to imply t r i v i a l ^ - s t r u c t u r e , for example a l l L -spaces (q t p) .

REMARK 2. The f ini teness of the measures in Theorems 1 and 2 i s not

e s sen t i a l . They hold for 0 - f in i t e measures as well and, i f we replace

E/y by P [L(y)) , even for a rb i t ra ry posi t ive measures. To see t h i s ,

p
observe that each L (y) i s an I-direct sum £ If{\i.) with f i n i t e

measures y. . Evidently we have also LP(u, V) = £ L [\i-, v) . The

fact tha t a projection in an I - d i r ec t sum i s an L-projection i f and

only i f i t s r e s t r i c t i ons to the summands are L-projections of the

summands [2 , 2 .6] and an applicat ion of Theorem 2 show that

P {lP(\i, V)) S P (lP(v)) . For a - f i n i t e y the l a t t e r i s E/y [2 , 1+.9].p p1-
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