A NOTE ON PERMANENTS

BY
MORTON ABRAMSON
Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix and let $K=\left\{s_{1}, \ldots, s_{k}\right\}$ be a k-subset from $\{1,2, \ldots, n\}$. For $0 \leq t \leq k \leq n$ define the (t, K)-permanent of A to be

$$
\begin{equation*}
\operatorname{per}_{(t, K)}(A)=\sum a_{1 i_{1}} a_{2 i_{2}} \ldots a_{m i_{m}} \tag{1}
\end{equation*}
$$

the summation taken over all m-tuples ($i_{1}, i_{2}, \ldots, i_{m}$) (repetitions allowed) of $1,2, \ldots, n$ each containing exactly t distinct entries from K and any number of distinct entries from the remaining $n-k$ integers. For example, (4, 4, 7, 1, 1, 2), $(4,4,6,6,6,5)$ are 6 -tuples, each containing exactly two distinct entries from $K=\{2,4,5\}$ for $n \geq 7$. We define the t-permanent of A to be the case $K=\{1,2, \ldots, n\}$ and write

$$
\begin{equation*}
\operatorname{per}_{t}(A)=\operatorname{per}_{(t, K)}(A), \quad K=\{1,2, \ldots, n\} \tag{2}
\end{equation*}
$$

each m-tuple $\left(i_{1}, \ldots, i_{m}\right)$ in the summation in (1) containing exactly t distinct entries of $\{1,2, \ldots, n\}$. When $t=m=n,(2)$ is the "ordinary" permanent of a square matrix (see [1] for a survey article), while $t=m \leq n$ is the generalization to rectangular matrices described by Ryser [3].

Let A_{r} denote a matrix obtained from A by replacing r of the k columns $s_{1}, s_{2}, \ldots, s_{k}$ of A by zeros, $S\left(A_{r}\right)$ the product of the row sums of A_{r} and $\sum S\left(A_{r}\right)$ the sum of all the $\binom{k}{r}$ numbers $S\left(A_{r}\right)$. Then $\operatorname{per}_{(t, k)}(A)$ can be evaluated by

$$
\begin{equation*}
\operatorname{per}_{(t, k)}(A)=\sum_{i=0}^{t}(-1)^{k}\binom{k-t+i}{i} \sum S\left(A_{k-t+i}\right) \tag{3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\operatorname{per}_{t}(A)=\sum_{i=0}^{t}(-1)^{i}\binom{n-t+i}{i} \sum S\left(A_{n-t+i}\right) \tag{4}
\end{equation*}
$$

Formula (4) in the case $m=t \leq n$ was first observed by Ryser [3, p. 26] and his elegant proof (based on the Principle of Inclusion and Exclusion) suffices, with minor modification, to establish (3), so we omit the proof.

When $t=k$, (3) becomes

$$
\begin{equation*}
\operatorname{per}_{(k, K)}(A)=\sum_{i=0}^{k}(-1)^{i} \sum S\left(A_{i}\right) \tag{5}
\end{equation*}
$$

Let ${ }_{t} A$ be a submatrix of A obtained by deleting $n-t$ columns of A. It follows that

$$
\begin{equation*}
\operatorname{per}_{t}(A)=\sum \operatorname{per}_{t}(t) \tag{6}
\end{equation*}
$$

Received by the editors March 18, 1970.
the summation taken over all the $\binom{n}{t}$ choices of ${ }_{t} A$. In the case $t=m \leq n, \operatorname{per}_{m}(A)$ is therefore equal to the sum of permanents of square submatrices of order m. It is clear that

$$
\begin{equation*}
\sum_{t=1}^{n} \operatorname{per}_{t}(A)=A_{0} \tag{7}
\end{equation*}
$$

A_{0} being the product of the row sums of A. In the case $m<t \leq n, \operatorname{per}_{t}(A)=0$.
We describe several of many possible applications.
Suppose that m distinct objects d_{1}, \ldots, d_{m} are to be distributed into n distinct cells c_{1}, \ldots, c_{n}. An $m \times n(0,1)$ matrix $A=\left(a_{i j}\right)$ can be interpreted as describing restrictions on the distribution, namely object d_{i} can be placed in cell c_{j} if and only if $a_{i j}=1$. Suppose furthermore that t is given, and we insist that exactly t cells are nonempty. Then the number of such distributions (each satisfying conditions described by A and exactly t cells nonempty) is $\operatorname{per}_{t}(A)$. For a fixed subset $K=\left\{s_{1}, \ldots, s_{k}\right\}$ of $\{1,2, \ldots, n\}, \operatorname{per}_{(t, k)}(A)$ is the number of distributions each satisfying conditions described by A and exactly t of the cells $c_{s_{1}}, c_{s_{2}}, \ldots, c_{s_{k}}$ nonempty.

It is easy to see that $\operatorname{per}_{n}(A)>0$ if and only if n is equal to the term rank of A, i.e., there is a way of distributing the objects with no cell empty if and only if the maximal number of 1 's in A, no two in a row or column, is n. Equivalently, $\operatorname{per}_{n}(A)>0$ if and only if the n subsets of $\{1,2, \ldots, n\}$ whose incidence matrix is the transpose of A have a system of distinct representatives.

If any object is permitted into any cell, the matrix A becomes $J_{m, n}$ all of whose entries are 1 . Then the number of distributions each with exactly t of the first k cells nonempty (the remaining $n-k$ cells may or may not be empty) is, by (3) with $K=\{1,2, \ldots, k\}, k \leq n$,

$$
\begin{align*}
\operatorname{per}_{(t, K)}\left(J_{m, n}\right) & =\sum_{i=0}^{t}(-1)^{i}\binom{k-t+i}{i}\binom{k}{k-t+i}(t+n-i-k)^{m} \tag{8}\\
& =\binom{k}{t} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}(t+n-i-k)^{m} .
\end{align*}
$$

In the case $t=k$, (8) becomes,

$$
\operatorname{per}_{(k, K)}\left(J_{m, n}\right)=\sum_{i=0}^{t}(-1)^{i}\binom{k}{i}(n-i)^{m}= \begin{cases}0 & \text { if } 1 \leq m<k \tag{9}\\ k! & \text { if } m=k\end{cases}
$$

Formula (9) may also be obtained directly using the principle of inclusion and exclusion or by noting that $\operatorname{per}_{(k, K)}\left(J_{m, n}\right)$ is the coefficient of $x^{m} / m!$ in the expression $\left(e^{x}-1\right)^{k}\left(e^{x}\right)^{n-k}, k \leq n$. The number of distributions with none of the n cells empty is formula (9) with $k=n$, namely the well-known formula

$$
\operatorname{per}_{n}\left(J_{m, n}\right)=\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i}(n-i)^{m}= \begin{cases}0 & \text { if } 1 \leq m<\mathrm{n}, \tag{10}\\ n! & \text { if } m=n .\end{cases}
$$

This is also the number of ordered partitions of a finite set of m objects into n disjoint nonempty subsets, while the number of unordered partitions is

$$
\begin{equation*}
S(m, n)=(1 / n!) \operatorname{per}_{n}\left(J_{m, n}\right) \tag{11}
\end{equation*}
$$

the numbers $S(m, n)$ usually being called Stirling numbers of the second kind [2]. By (6) and (7) we have

$$
\begin{equation*}
\sum_{t=1}^{n} \operatorname{per}_{t}\left(J_{m, n}\right)=\sum_{t=1}^{n}\binom{n}{t} \operatorname{per}_{t}\left(J_{m, t}\right)=n^{m} \tag{12}
\end{equation*}
$$

and therefore using (11)

$$
\begin{equation*}
\sum_{t=1}^{n} S(m, t)(n)_{t}=n^{m}, \quad(n)_{t}=n(n-1) \ldots(n-t+1), \quad \text { (see [2]). } \tag{13}
\end{equation*}
$$

If object d_{i} is placed into cell c_{j} with probability $p_{i j}$, then, letting $P=\left(p_{i j}\right)$, the probability that exactly t of the cells are nonempty is $\operatorname{per}_{t}(P)$.

A generalization of Montmort's "problème des rencontres" is obtained by taking $A=\left(a_{i j}\right)$ with $a_{i i}=0, i=1,2, \ldots, k, k \leq \min (m, n)$ and $a_{i j}=1$ otherwise. Then the number of distributions of m objects into the n cells such that for $i=1$, $2, \ldots, k$ cell c_{i} is nonempty and object d_{i} is not in cell c_{i}, is by (5) with $K=\{1,2$, $\ldots, k\}$,

$$
\begin{equation*}
\operatorname{per}_{(k, k)}(A)=D_{k}(m, n)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(n-i)^{m-k+i}(n-i-1)^{k-i} \tag{14}
\end{equation*}
$$

with $D_{0}(m, n)=n^{m}$ while,

$$
\begin{align*}
D(m, n) & =\operatorname{per}_{n}(A)=D_{n}(m, n) \tag{15}\\
& =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{m-n+i}(n-i-1)^{n-i}, \quad m \geq n
\end{align*}
$$

is the number of distributions with none of the cells empty and object d_{i} not in cell $c_{i}, i=1,2, \ldots, n$. Thus, the ordinary rencontres numbers are given by

$$
\begin{equation*}
D(n, n)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{i}(n-i-1)^{n-i} \tag{16}
\end{equation*}
$$

an expression noted by Ryser [3, p. 28]. It is easily seen that

$$
\begin{equation*}
\sum_{t=1}^{n}\binom{n}{t} D(m, t)=(n-1)^{n} n^{m-n} \tag{17}
\end{equation*}
$$

The expression for $D(m, n)$ given by (15) may be easily obtained directly using the principle of inclusion and exclusion. Denote by $g(m, n)$ the number of distributions of m objects into n cells with object d_{i} not in cell $c_{i}, i=1, \ldots, n$. Clearly

$$
g(m, n)=(n-1)^{n} n^{m-n} \quad \text { and } \quad D(m, n)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} g(m, n-i), \quad m \geq n
$$

giving (15). Similarly (14) may be obtained directly. A second expression may be obtained for $D(m, n)$ (also by the use of inclusion and exclusion), namely

$$
\begin{align*}
D(m, n) & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \operatorname{per}_{(n-k, K)}\left(J_{m-k, n}\right), \quad K=\{1,2, \ldots, n-k\}, \tag{18}\\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{j=0}^{n-k}(-1)^{j}\binom{n-k}{j}(n-j)^{m-k},
\end{align*}
$$

so

$$
\begin{align*}
D(n, n) & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{j=0}^{n-k}(-1)^{j}\binom{n-k}{j}(n-j)^{n-k} \tag{19}\\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!=n!\sum_{k=0}^{n}(-1)^{k} / k!
\end{align*}
$$

The last expression of (19) is the most common one given for the rencontres numbers [3, p. 23]. Denote by $D(m, n, r), m \geq n$, the number of m-permutations of $1,2, \ldots, n$, repetitions allowed, such that each of the n integers appears at least once in each permutation with exactly r of them being in natural position. Then $D(m, n, 0)=D(m, n)$ and

$$
\begin{equation*}
D(m, n, r)=\binom{n}{r} D_{n-r}(m-r, n), \quad r=0,1, \ldots, n \tag{20}
\end{equation*}
$$

while

$$
\begin{equation*}
\sum_{r=0}^{n} D(m, n, r)=n!S(m, n) \tag{21}
\end{equation*}
$$

the numbers $D_{k}(m, n)$ and $S(m, n)$ given by (14) and (11) respectively.
In the case A is a $(0,1)$ matrix with $m<n$ and all entries on the main diagonal zero and one elsewhere,

$$
\begin{equation*}
\operatorname{per}_{n}(A)=\sum_{k=0}^{n-1}(-1)^{k} \sum_{u=0}^{k}\binom{m}{u}\binom{n-m}{k-u}(n-k)^{u}(n-k-1)^{m-u}=0 . \tag{22}
\end{equation*}
$$

With regard to matching problems we have the following. Let A_{1}, \ldots, A_{m} be subsets of an n-set S and define a system of t-representatives of $\left(A_{1}, \ldots, A_{m}\right)$ to be an m-tuple $\left(a_{1}, \ldots, a_{m}\right)$ containing exactly t distinct elements of S with $a_{i} \in A_{i}$, $i=1, \ldots, m$. Then the number of systems of t-representatives of $\left(A_{1}, \ldots, A_{m}\right)$ is equal to the t-permanent of the corresponding $(0,1)$ incidence matrix of size m by n. Putting $t=\min (m, n)$, we have the number of systems of maximum distinct representatives and when $t=m \leq n$, the number of systems of distinct representatives [3, p. 54, Theorem 4.1].

References

1. Marvin Marcus and Henryk Minc, Permanents, Amer. Math. Monthly, 72 (1965), 577-591.
2. J. Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958.
3. Herbert John Ryser, Combinatorial mathematics, Carus Math. Monograph No. 14, 1963.
[^0]
[^0]: York University,
 Toronto, Ontario

