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Abstract. We establish analogues for trees of results relating the density of a set E ⊂ N,
the density of its set of popular differences and the structure of E. To obtain our
results, we formalize a correspondence principle of Furstenberg and Weiss which relates
combinatorial data on a tree to the dynamics of a Markov process. Our main tools are
Kneser-type inverse theorems for sets of return times in measure-preserving systems. In
the ergodic setting, we use a recent result of the first author with Björklund and Shkredov
and a stability-type extension (proved jointly with Shkredov); we also prove a new result
for non-ergodic systems.
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1. Introduction
In [FW03] Furstenberg and Weiss initiated the use of dynamical methods in the study
of Ramsey theoretic questions for trees. They proved a Szemerédi-type theorem using a
multiple recurrence result for a class of Markov processes (a purely combinatorial proof
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was later given by Pach, Solymosi and Tardos [PST12]). More precisely, they showed
that finite replicas of the full binary tree could always be found in (infinite) trees of
positive growth rate. It is then a natural question to quantify the abundance of finite
configurations in a tree in relation to its size as measured by its upper Minkowski and
Hausdorff dimensions.

To begin, we review the analogous question in the integer setting. Specifically, we
consider the abundance of configurations in a subset E ⊂ N. Recall that the upper density
and upper Banach density of E are

d(E) = lim sup
N→∞

|E ∩ {0, . . . , N}|
N + 1

, d∗(E) = lim sup
N−M→∞

|E ∩ {M , . . . , N}|
N − M + 1

.

The abundance of 2-term arithmetic progressions (2-APs) in E can be related to the density
of E in the following way. Consider the sets of popular differences of E with respect to d

and d∗ defined by

�0(E) = {n ∈ N : d(E ∩ (E − n)) > 0}, �∗
0(E) = {n ∈ N : d∗(E ∩ (E − n)) > 0}.

Furstenberg’s correspondence principle [Fur77] states that there exists a measure- preserv-
ing system (X, B, ν, S) and A ∈ B with ν(A) = d(E) such that for all integers k � 1 and
0 = n1, . . . , nk ∈ N,

d((E − n1) ∩ · · · ∩ (E − nk)) � ν(S−n1A ∩ · · · ∩ S−nkA).

Taking k = 2, it follows that �0(E) contains

R = R(A) = {n ∈ N : ν(A ∩ S−nA) > 0},
the set of return times of A. Applying the mean ergodic theorem then gives

d(�0(E)) � d(R) � lim
N→∞

1
N + 1

N∑
n=0

ν(A ∩ S−nA)

ν(A)
� ν(A) = d(E), (1)

where the lower density d is defined for E ⊂ N by

d(E) = lim inf
N→∞

|E ∩ {0, . . . , N}|
N + 1

.

If in the above the upper density is replaced by the upper Banach density, then ν can
further be chosen to be ergodic [Fur81, Proposition 3.9] (see [BHK05, Proposition 3.1]
for an explicit proof).

Following Furstenberg and Weiss [FW03], we formulate a correspondence principle
for arbitrary finite configurations in a tree and use it to obtain analogues of the inequality
(1). We then analyze the case of equality in (1) and its analogues for trees using inverse
theorems for the set of return times. In the ergodic situation we use a result of Björklund,
the first author and Shkredov [BFS21] and a stability-type extension proved jointly with
Shkredov in Appendix A, whereas in the general case we prove a slightly weaker statement
(Theorem 5.1). Using these, we obtain inverse theorems for inequality (1): a tree for which
equality holds must contain arbitrarily long ‘arithmetic progressions’ with a fixed common
difference.

https://doi.org/10.1017/etds.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.18


Popular differences in trees of positive dimension 483

1.1. Main results. To describe our results, we first summarize the necessary definitions
(see §2 for precise formulations). For clarity of exposition, in this introduction we restrict
our attention to the case r = 2 of our results and make corresponding simplifications to
the notation.

Fix an integer q � 2. In this paper, a tree can be visualized as a directed graph T
with a distinguished vertex (the root) having no incoming edges, such that each vertex
has between 1 and q outgoing edges and each non-root vertex has exactly one incoming
edge. (Technically, we work with the vertices of the graph with the partial order induced
by directed paths.) The ‘size’ of T can be quantified by its upper Minkowski and Hausdorff
dimensions dimMT and dim T , which are defined by an identification of such trees with
closed subsets of [0, 1].

1.1.1. Tree analogues of popular difference sets. A k-term arithmetic progression
(k-AP) in E ⊂ N can be viewed as an affine map {0, . . . , k − 1} → E. We consider
‘affine’ maps satisfying certain branching conditions from configurations C (‘finite trees’)
to trees T. If there exists such a map with ‘common difference’ n taking the root of
the configuration to v ∈ T , we say that v ∈ Cn = Cn(T ). The set Cn corresponds to the
set E ∩ (E − n) ∩ · · · ∩ (E − (k − 1)n) for k-APs in E ⊂ N. Using extensions of upper
density and upper Banach density to subsets of trees, we define sets of ‘generic parameters’

G(C) = {n ∈ N : d(Cn) > 0}, G∗(C) = {n ∈ N : d∗(Cn) > 0}.
We also introduce certain configurations F and D which are analogues of 2-APs, and their
generic parameters can be interpreted as popular differences for trees. In particular, our
first result is a version of (1).

THEOREM A. (= Theorems 4.1 and 4.2 for r = 2) For any tree T we have

d(G(F)) � d(G(D)) � dimMT and d(G∗(F )) � d(G∗(D)) � dim T .

1.1.2. Inverse theorems for sets of return times. Given the direct result Theorem A, we
are interested in characterizing trees such that equality holds (or almost holds). To illustrate
the ideas, we consider here the situation when equality is (almost) achieved in (1), which
is the analogous question for subsets of N. Observe that the density of the set of return
times of A is then close to the measure of A. It is natural to expect in this situation that the
dynamics of A under S is rigid in some way, and this is indeed the case.

Let (X, B, ν, S) be a measure-preserving system, and let A be a measurable set with
ν(A) > 0 and set of return times R. Using a theorem of Kneser we prove the following
result.

THEOREM B. (= Theorem 5.1) If d(R) = ν(A) > 0, then there exists an integer m � 1
such that up to ν-null sets

X =
m−1⊔
i=0

S−iA.
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Question 1.1. Does the assumption d(R) = ν(A) suffice to prove the conclusion of
Theorem B?

If ν is ergodic, then Question 1.1 has an affirmative answer, and further there is an
inverse result for cases of almost equality. The following theorem is an easy corollary of
results by Björklund, the first author and Shkredov in [BFS21].

THEOREM 1.2. (= Theorem 5.4) If (X, B, ν, S) is ergodic and

0 < d(R) < 3
2ν(A),

then there exists an integer m � 1 such that R = mN and X = ⊔m−1
i=0 S−i (

⋃∞
j=0 S−jmA)

up to ν-null sets.

Remark 1.3. Example 1.2 in [BFS21] shows that for every β > 1, there exists a
non-ergodic measure-preserving system (X, B, ν, S) and A ∈ B of arbitrarily small
measure such that d(R) � βν(A) and there is no m � 1 such that R = mN.

1.1.3. Inverse results for popular difference sets. As a corollary of Theorem B and
Furstenberg’s correspondence principle, we immediately obtain the following inverse-type
result for (1).

PROPOSITION 1.4. Assume that E ⊂ N satisfies d(�0(E)) = d(E) > 0. Then there exists
m � 1 such that mN ⊂ �0(E) and d(�0(E)) = d(E) = m−1. Moreover, for every k � 2

d(E ∩ (E − m) ∩ · · · ∩ (E − (k − 1)m)) = d(E).

If we consider �∗
0(E) and d∗(E) in place of �0(E) and d(E), we can apply

Theorem 1.2 to obtain the following inverse result.

PROPOSITION 1.5. Let 1 � β < 3/2. Assume that E ⊂ N satisfies

0 < d(�∗
0(E)) = β · d∗(E).

Then there exists m � 1 such that mN ⊂ �∗
0(E). Moreover, for every k � 2 that satisfies

(1 − β−1)k < 1, we have

d∗(E ∩ (E − m) ∩ · · · ∩ (E − (k − 1)m)) > 0.

1.1.4. Inverse results for G(F) and G∗(F ). Propositions 1.4 and 1.5 can be interpreted
as saying that (almost) equality holds in (1) for a subset E ⊂ N only if E is ‘similar’ to the
periodic set mN. In the tree setting, we prove analogous results.

For every m � 1, define TmN to be the tree such that v ∈ TmN has q outgoing edges
if the directed path from the root to v has length a multiple of m and one outgoing edge
otherwise. The inequalities in Theorem A are equalities for TmN (see §2.1.1).

For every k � 1, define the configuration V m,k to be the first k levels of TmN. The
following two theorems are analogues of Propositions 1.4 and 1.5, respectively.

THEOREM C. (= Theorem 6.1 for r = 2) Let T be a tree. Assume that

d(G(F)) = dimMT > 0.
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Then there exists an integer m � 1 such that dimMT = m−1, and d(V m,k) > 0 for every
k � 1.

THEOREM D. (= Theorem 6.2 for r = 2) Let T be a tree. Assume that

d(G∗(F )) = dim T > 0 or d(G∗(D)) = dim T > 0.

Then there exists an integer m � 1 such that dim T = m−1, and d∗(V m,k) > 0 for every
k � 1.

Remark 1.6. We show in §2.1.2 that Theorem D cannot be improved. Indeed, for every
ε > 0 there exists a tree Tε such that

0 < dim Tε � d(G∗(F )) < (1 + ε) dim Tε

and the configuration V m,k does not appear at all in Tε for some large k.

Our final result is another partial analogue of Proposition 1.5.

THEOREM 1.7. (= Theorem 6.4 for r = 2) Let T be a tree. Assume that there exists
β < 3/2 such that

0 < d(G∗(F )) = β · dim T .

Then there exists m � 1 with mN ⊂ G∗(F ).

1.2. Organization of the paper. After describing the combinatorial and dynamical
background (§2) and establishing Furstenberg–Weiss correspondence principles (§3), in
§4 we prove lower bounds for the densities of popular differences for trees. We then
use inverse theorems for sets of return times in measure-preserving systems (§5 and
Appendix A) to prove inverse theorems for these lower bounds (§6).

2. Trees and Markov processes
Fix an integer q � 2, and for 2 � r � q define �r = {0, . . . , r − 1} and � = �q . We set
N = {0, 1, . . .}.

2.1. Combinatorial setup. Let �∗ = ⋃∞
n=0 �n be the set of finite words over �, where

�0 is the singleton comprising the empty word ∅. Consider the partial order � on �∗
defined by v � w if w is the concatenation vu of v and some u ∈ �∗. A tree is then a
non-empty subset T ⊂ �∗ closed under predecessors and having no maximal elements
with respect to �. We refer to elements of T as vertices (using the natural graph-theoretic
terminology), and write l(v) = n if v ∈ T (n) = T ∩ �n. Every tree contains ∅ (the root),
and for every v ∈ T there is a tree T v = {w ∈ �∗ : vw ∈ T }.
Remark 2.1. Trees are combinatorial realizations of closed sets in �N, a symbolic
analogue of [0, 1]. Given a tree T, the set

{(ai)i�0 ∈ �N : (a0, . . . , an) ∈ T for all n ∈ N}
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is closed in �N (with the product of discrete topologies on �), and there is an inverse map
sending a closed subset A ⊂ �N to the tree

{v ∈ �∗ : vw ∈ A for some w ∈ �N}.
This motivates several definitions we give in the following.

The (upper) Minkowski dimension of T is

dimMT = lim sup
N→∞

logq |T (N)|
N

.

To define the Hausdorff dimension of a tree, we first define the analogue of an irredundant
open cover for trees. A section of a tree T is a finite subset � ⊂ T such that |� ∩ {w ∈
T : w � v}| = 1 for all but finitely many v ∈ T . Define also l(�) = min{l(v) : v ∈ �}.
Then the Hausdorff dimension of T is

dim T = inf
{
λ > 0: lim inf

N→∞ inf
l(�)=N

� section of T

∑
v∈�

q−λl(v) < 1
}

.

Example 2.2. Given E ⊂ N and 2 � r � q, define the tree

T r
E = {∅} ∪

∞⋃
i=0

∏
0�j�i

	j where 	j =
{

� if j ∈ E,

�r−1 otherwise.

A straightforward calculation shows that

dimMT r
E = lim sup

N→∞
logq q |E∩{0,...,N−1}|(r − 1)|Ec∩{0,...,N−1}|

N

= d(E) + logq(r − 1)(1 − d(E)).

If E is a ‘periodic’ set (such as mN), then T r
E is ‘self-similar’ and dimMT r

E = dim T r
E .

Elements of �∗ correspond to cylinder sets of �N. By the Carathéodory extension
theorem, Borel probability measures on �N are in bijection with functions τ : �∗ → [0, 1]
such that τ(∅) = 1 and τ(v) = ∑

a∈� τ(va) for all v ∈ �∗. We call such functions Markov
trees, because the support |τ | = {v ∈ �∗ : τ(v) > 0} of such a function is a tree. The
set of Markov trees is a closed subspace of the compact space [0, 1]�

∗
with metric

d(τ1, τ2) = ∑
v∈�∗ q−l(v)|τ1(v) − τ2(v)|. By abuse of notation we denote it by P(�N),

because it is homeomorphic to the space of Borel probability measures on �N with the
weak-∗ topology.

The dimension of a Markov tree [Fur70, Definition 7] is

dim τ = lim inf
l(�)→∞

� section of |τ |

− ∑
v∈� τ(v) logq τ (v)∑

v∈� l(v)τ (v)
.
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Given a subset V ⊂ T , we define its upper density

d(V ) = lim sup
N→∞

1
|T (N)|

∑
v∈T (N)

|V ∩ {w ∈ T : w � v}|
N + 1

and its upper Banach density

d∗(V ) = lim sup
N→∞

sup
|τ |⊂T
v∈|τ |

1
N + 1

∑
l(w)�N

τ(vw)

τ(v)
1V (vw).

Remark 2.3. These definitions specialize to their integer counterparts in the degenerate
case q = 1, justifying the notation. The inequality d∗(V ) � d(V ) also holds for our more
general definition. To see this, observe that it is enough to construct Markov trees πN

supported on T such that∑
l(w)�N

πN(w)1V (w) =
∑

v∈T (N)

|V ∩ {w ∈ T : w � v}|
|T (N)|

=
∑

l(w)�N

|{v ∈ T (N) : w � v}|
|T (N)| 1V (w)

(the last equality follows from reindexing the sum). However, this formula defines such
a Markov tree on vertices w with l(w) � N , and we can choose πN to be any consistent
extension to the remaining vertices (cf. the proof of Theorem 3.4).

Example 2.4. If V = V (E) = {v ∈ T : l(v) ∈ E} for E ⊂ N and T a tree, then
d(V ) = d(E) and d∗(V ) = d∗(E). Both equalities follow directly from the definitions.
For example, for the second equality we observe that for any τ with |τ | ⊂ T and any
v ∈ |τ | we have

1
N + 1

∑
l(w)�N

τ(vw)

τ(v)
1V (vw) = |E ∩ {l(v), . . . , l(v) + N}|

N + 1
.

We use the term configuration to refer to a non-empty finite subset C ⊂ �∗ closed under
predecessors (a finite tree). Terminology and notation defined previously for trees are used
for configurations as appropriate without comment. A configuration C is non-branching if
|C(n)| � 1 for all n ∈ N and branching otherwise.

By analogy with arithmetic progressions in N, we consider ‘affine embeddings’ of C
in a tree T. More precisely, for a vertex v ∈ T and n ∈ N we say v ∈ Cn = Cn(T ) if there
exists a map ι : C → T such that:
• ι(∅) = v;
• ι(w1) � ι(w2) if w1 � w2 (ι is a map of posets);
• if w is the longest initial subword common to w1 and w2, then ι(w) is the longest initial

subword common to ι(w1) and ι(w2) (ι is infimum-preserving);
• l(ι(w)) = l(v) + nl(w) for all w ∈ C (ι is ‘affine’).
Equivalently, we say the configuration C appears at v (with parameter n). Observe that
trivially every configuration appears at every vertex with parameter 0.
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root
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m = 3

v

FIGURE 1. The configuration F 2 appears at the root of T 2
3N with parameter n = 3, whereas v /∈ F 2

n for any n � 1.

We are concerned with the following configurations (see Figure 1):

F r = {∅} ∪ �r ∪ 0�r , Dr ,k =
k⋃

n=0

�n
r , V r ,m,k = {v ∈ T r

mN
: l(v) � k + 1}.

For every configuration C and tree T we define the sets of generic parameters

G(C) = G(C, T ) = {n ∈ N : d(Cn) > 0},

G∗(C) = G∗(C, T ) = {n ∈ N : d∗(Cn) > 0}.
Remark 2.5. Note that F r appears at v ∈ T r

E with parameter n if and only if
Dr ,2 appears at v with parameter n if and only if l(v), l(v) + n ∈ E. Therefore,
G(F r , T r

E) = G(Dr ,2, T r
E) = �0(E) and G∗(F r , T r

E) = G∗(Dr ,2, T r
E) = �∗

0(E) by
Example 2.4. This is why the generic parameters of F r and Dr ,2 are analogues of popular
differences for trees.

2.1.1. Equality in Theorems 4.1 and 4.2. The tree T r
mN

achieves equality in Theorems 4.1
and 4.2. Indeed, by Example 2.2,

dimMT r
mN

= 1
m

+ logq(r − 1)

(
1 − 1

m

)
.
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The self-similarity of T r
mN

implies that dim T r
mN

= dimMT r
mN

. In addition, by Remark 2.5
it follows that

G(F r , T r
mN

) = G∗(F r , T r
mN

) = mN and d(G(F r , T r
mN

)) = d(G∗(F r , T r
mN

)) = m−1.

Hence,

d(G(F r , T r
mN

)) = dimMT r
mN

− logq(r − 1)

1 − logq(r − 1)
,

and

d(G∗(F r , T r
mN

)) = dim T r
mN

− logq(r − 1)

1 − logq(r − 1)
.

2.1.2. Sharpness of Theorem 6.2. Next, we modify the construction of T r
mN

to obtain for
every ε > 0 a tree Tε with

0 < d(G∗(F r , Tε)) = d(G∗(Dr ,2, Tε)) < (1 + ε)
dim Tε − logq(r − 1)

1 − logq(r − 1)

such that there exists k � 1 with V
r ,m,k
1 not appearing in Tε.

Let Tε = T r
E , where E = mN \ mMN for some positive integer M > 1 + ε−1. Then

d(E) = 1
m

(
1 − 1

M

)
and V

r ,m,mM+1
1 does not appear in Tε. By the self-similarity of Tε and Example 2.2, we

have

dim Tε = dimMTε = 1
m

(
1 − 1

M

)
+ logq(r − 1)

(
1 − 1

m

(
1 − 1

M

))
and, hence,

dim Tε − logq(r − 1)

1 − logq(r − 1)
= 1

m

(
1 − 1

M

)
.

As �∗
0(E) = mN, observe that by Remark 2.5 we have d(G∗(F r , Tε)) =

d(G∗(Dr ,2, Tε)) = m−1. Therefore,

d(G∗(F r , Tε)) = d(G∗(Dr ,2, Tε)) = 1
1 − M−1 · dim Tε − logq(r − 1)

1 − logq(r − 1)

< (1 + ε)
dim Tε − logq(r − 1)

1 − logq(r − 1)
.

2.2. Dynamical setup. Given a Markov tree τ and v ∈ |τ |, define the Markov tree
τv by τv(w) = τ(vw)/τ(v) for every w ∈ �∗. Using this we define a Markov process
p : M → P(M) on the space M = � × P(�N) by p(a, τ) = ∑

i∈� τ(i)δ(i,τ i ) ∈ P(M).
Here a ∈ � can be interpreted as labelling the root of τ ∈ P(�N) with information
about the past under the dynamics τ �→ τa . As p is continuous, it induces a Markov
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operator P on C(M) (a positive contraction satisfying P 1 = 1) defined by the formula
Pf (a, τ) = ∑

i∈� τ(i)f (i, τ i). The pair (M , p) is a CP-process.

Remark 2.6. For simplicity of notation, frequently we denote a labelled Markov tree by its
underlying Markov tree. Similarly, we write pτ = p(a, τ) because the latter is independent
of a. Further, a labelled Markov tree denoted by τa is always assumed to have label a.

By a distribution we mean a Borel probability measure. A distribution ν on M is
stationary for (M , p) if

∫
M

Pf dν = ∫
M

f dν for all continuous f. Note that if ν is
stationary, then the above formula for P extends to a well-defined operator on Lp(M , ν)

for 1 � p � ∞, and by Jensen’s inequality this extension is a Markov operator. The set of
stationary distributions for (M , p) is a non-empty compact convex subset of P(M), and
its extremal points are called ergodic distributions.

For i ∈ �, define the set Bi = {(a, τ) ∈ M : a = i} of Markov trees labelled by i.
The sets Bi are clopen and partition M. Define also for 2 � r � q the set Ar = {τ ∈
M : |{i : pτ (Bi) > 0}| � r} of Markov trees τ such that there are at least r vertices in
|τ |(1). Observe that Ar is open and dense in M and, hence, is not closed for r > 1.

Define on M the information function

H(τ) = −
∑
i∈�

pτ (Bi) logq pτ (Bi) = −
∑
i∈�

τ(i) logq τ (i),

where 0 logq 0 = 0 by convention. The entropy of a stationary distribution ν is then
H(ν) = ∫

M
H dν. Note that 0 � H(τ) � logq ||τ |(1)|.

PROPOSITION 2.7. If ν is a stationary distribution for (M , p), then

ν(Ar) �
H(ν) − logq(r − 1)

1 − logq(r − 1)
.

Proof. Using the above bounds on H(τ) and the definition of Ar ,

H(ν) =
∫

Ar

H dν +
∫

M\Ar

H dν � ν(Ar) + (1 − ν(Ar)) logq(r − 1).

Rearranging gives the proposition.

2.3. Endomorphic extension. It will be necessary to work with an extension of the
CP-process (M , p), following [FW03].

Let M̃ = {̃τ = (τi)i�0 ∈ MZ
�0

: pτi
({τi+1}) > 0 for all i < 0}. By abuse of notation,

we denote by p the natural lift of p : M → P(M) to a continuous function M̃ → P(M̃).
Explicitly, pτ̃ = ∑

a∈� τ0(a)δτ̃ a , where (τ̃ a)i = τi+1 for i < 0 and (τ̃ a)0 = τa
0 . We also

denote by P the corresponding Markov operator on C(M̃). The pair (M̃ , p) is said to be
an endomorphic extension of (M , p).

A stationary distribution ν on M induces a stationary distribution ν̃ on M̃ , and
ν̃ is invariant under the right shift S : (τi)i�0 �→ (τi−1)i�0 by construction [Ho14,
Definition 6.3, Remark 6.4, and Lemma 6.8]. The Koopman operator of S therefore acts
on H = L2(M̃ , B, ν̃), where B is the Borel σ -algebra on M̃ . As pτ̃ ({ω̃}) > 0 implies
S(ω̃) = τ̃ , a straightforward calculation gives the following result.
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LEMMA 2.8. For any f , g ∈ H we have P(f Sg) = gPf .

Integrating with respect to ν̃ shows that P and S are adjoint operators on H , and taking
f = 1 gives the formula PS = I . It follows that SnP n is the orthogonal projection from
H onto the closed subspace SnH = L2(M̃ , S−nB, ν).

If f = Sf ′ ∈ SH , then SPf = SPSf ′ = Sf ′ = f , so SP = I on SH . Define
H∞ = ⋂

n�1 SnH = L2(M̃ , B∞, ν), where B∞ = ⋂
n�1 S−nB. For f ∈ H∞ we

have Sf ∈ H∞ and Pf ∈ H∞ (using PS = I ), giving the following result.

LEMMA 2.9. The operators P and S restrict to mutually inverse operators H∞ → H∞.

Denote the orthogonal projection of f ∈ H onto H∞ by f .

PROPOSITION 2.10. For f ∈ H , ‖P nf − P nf ‖2 → 0.

Proof. As ν̃ is S-invariant, it follows from Lemma 2.9 that

‖P nf − P nf ‖2 = ‖SnP nf − SnP nf ‖2 = ‖SnP nf − f ‖2 → 0

because ‖E(f | S−nB) − E(f | ⋂
i�1 S−iB)‖2 → 0 [EW11, Theorem 5.8].

By composing H with the projection M̃ → M onto the zeroth coordinate, the informa-
tion function H is defined on M̃ and, hence, the entropy of a stationary distribution for
(M̃ , p) is defined as for (M , p).

3. The Furstenberg–Weiss correspondence principle
In [FW03] Furstenberg and Weiss associated to a tree of positive upper Minkowski
dimension a stationary distribution for the CP-process (M , p), and showed that the
appearance of D

2,k
n could be deduced from the positivity of quantities defined on the

dynamical system. In this section, we extend their construction to arbitrary configurations,
and prove an analogous correspondence principle based on [Fur70] for trees of positive
Hausdorff dimension.

3.1. Construction of configuration-detecting functions. Given a configuration C and an
integer n � 1, we say that a function f : M → [0, 1] is Cn-detecting if f (τ) > 0 if and
only if C appears at the root of |τ | with parameter n. In preparation for proving corre-
spondence principles, we construct recursively several families of configuration-detecting
functions.

We first construct a set of configuration-detecting functions ϕCn . For the simplest
configuration {∅}, we can take ϕ{∅}n = 1 for all n � 1. Given I ⊂ � such that |I | = |C(1)|
and a bijection β : I → C(1), the positivity of

∏
i∈I P (1Bi

P n−1ϕ
C

β(i)
n

) at τ ∈ M is
equivalent to the appearance of C at the root of |τ | with parameter n such that β(i) ∈ C(1)
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is mapped to iv ∈ |τ | for some v ∈ �n−1. Summing over all choices of I and β, we define
ϕCn by the recursive formula

ϕCn =
∑
I⊂�|I |=|C(1)|

∑
β : I

∼−→C(1)

∏
i∈I

P (1Bi
P n−1ϕ

C
β(i)
n

).

Remark 3.1. Alternatively we could sum over all injections γ : C(1) → � and define
ϕCn by

ϕCn =
∑
γ

∏
i∈C(1)

P (1Bγ (i)
P n−1ϕCi

n
).

We also have 0 � ϕCn � 1. Indeed, because ϕ{∅}n = 1 and P is positive

0 � ϕCn �
∑
I⊂�|I |=|C(1)|

∑
β : I

∼−→C(1)

∏
i∈I

P 1Bi
�

( ∑
i∈�

P 1Bi

)|C(1)|
= 1.

Starting instead with φ
D

r ,1
n

= 1Ar and φCn = 1 for non-branching configurations C, we
can adapt the above recursion to construct an alternative family of configuration-detecting
functions φCn � ϕCn more suitable for computations. Let C(1)′ = {v ∈ C(1) : Cv is
branching}. We define φCn recursively by the formula

φCn = 1A|C(1)|
∑
I⊂�

|I |=|C(1)′|

∑
β : I

∼−→C(1)′

∏
i∈I

P (1Bi
P n−1φ

C
β(i)
n

).

Note that ϕ
D

r ,1
n

� 1Ar = φ
D

r ,1
n

. Similarly, we have 0 � φCn � 1.
As the Bi are clopen and P takes continuous functions to continuous functions, the ϕCn

are continuous. However, in general the φCn are not continuous because Ar is not clopen
for r > 1.

If C is a configuration such that the configurations Cv are all ‘isomorphic’ for v ∈ C(1),
the above recursion can be simplified by omitting the sum over bijections β. For integers
2 � r � q and n � 1, define (nonlinear) operators Rr ,n on L∞(M) by

Rr ,nf =
∑
I⊂�|I |=r

∏
i∈I

P (1Bi
P n−1f ).

If f detects Cv
n for (all) v ∈ C(1) and |C(1)| = r , then Rr ,nf detects Cn. Denote by φ′

Cn

the Cn-detecting function obtained by applying a sequence of the above operators to the
appropriate 1Ar , and observe that φCn = cφ′

Cn
for some integer c � 1.

Example 3.2. For the configuration F r , we have |C(1)| = r and |C(1)′| = 1. There is
always a unique bijection I → C(1)′, so linearity of P gives

φFr
n

= 1Ar

∑
i∈�

P (1Bi
P n−11Ar ) = 1Ar P

n1Ar

because 1 = ∑
i∈� 1Bi

.
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If C(1) = C(1)′, the factor 1A|C(1)| is redundant in the definition of φCn as the function
in the sum is already supported on a subset of A|C(1)|. For example,

φ
D

r ,2
n

=
∑
I⊂�|I |=r

∑
β : I

∼−→�r

∏
i∈I

P (1Bi
P n−11Ar ) = r!

∑
I⊂�|I |=r

∏
i∈I

P (1Bi
P n−11Ar ) = r! φ′

D
r ,2
n

.

The following lemma is used in the proofs of the correspondence principles to account
for the lack of continuity of φCn .

LEMMA 3.3. If (νk)k�1 is a sequence of distributions on M converging to ν in the weak-∗
topology, then for every configuration C and integer n � 1

lim sup
k→∞

∫
M

φCn dνk �
∫

M

φCn dν.

Proof. Define for δ ∈ [0, 1] open sets Aδ
r = {τ ∈ M : |{i : pτ (Bi) > δ}| � r} ⊂ Ar , and

let φδ
Cn

be the function obtained by replacing 1Ar with 1Aδ
r

in the recursive construction of

φCn . Observe that δ � δ′ implies φδ
Cn

� φδ′
Cn

by the positivity of P. Then the monotone
function α : δ �→ ∫

M
φδ

Cn
dν has countably many discontinuities, so we can choose a

sequence δj → 0 such that α is continuous at δj for all j.
We claim

∫
M

φδ
Cn

dνk → ∫
M

φδ
Cn

dν = α(δ) if α is continuous at δ. If δ < δ′, the

closed sets (Aδ
r )

c and Aδ′
r = {τ ∈ M : |{i : pτ (Bi) � δ′}| � r} are disjoint since Aδ′

r ⊂ Aδ
r .

By Urysohn’s lemma, there are continuous functions hr such that 1
Aδ′

r
� hr � 1Aδ

r
.

Defining hCn to be the function obtained by repeating the construction of φCn with hr

in place of 1Ar , it follows that φδ′
Cn

� hCn � φδ
Cn

. As hCn is continuous,

lim inf
k→∞

∫
M

φδ
Cn

dνk � lim inf
k→∞

∫
M

hCn dνk =
∫

M

hCn dν �
∫

M

φδ′
Cn

dν = α(δ′).

Continuity of α at δ implies lim infk→∞
∫
M

φδ
Cn

dνk � α(δ), and a similar argument with
δ′ < δ proves the claim. Hence,

lim sup
k→∞

∫
M

φCn dνk � lim
k→∞

∫
M

φ
δj

Cn
dνk =

∫
M

φ
δj

Cn
dν

j→∞−−−→
∫

M

φCn dν

by the monotone convergence theorem.

3.2. Correspondence principle for upper density

THEOREM 3.4. For every tree T with dimMT > 0, the CP-process (M , p) has a stationary
distribution μ such that H(μ) = dimMT ,

μ(Ar) �
dimMT − logq(r − 1)

1 − logq(r − 1)
, (2)

and for every configuration C and every integer n � 1,

d(Cn) �
∫

M

φCn dμ. (3)
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Proof. Let (Lk)k�1 be an increasing sequence such that

dimMT = lim
k→∞

logq |T (Lk + 1)|
Lk + 1

.

Fix an arbitrary label a ∈ �, and for each k � 1 let πk be any Markov tree labelled by a
such that πk(v) = |T (Lk)|−1 for all v ∈ T (Lk) (note that this condition determines πk on
vertices of level at most Lk). Then any weak-∗ limit of the distributions

μk = 1
Lk + 1

Lk∑
i=0

P iδπk
= 1

Lk + 1

∑
l(v)�Lk

πk(v)δπv
k

is stationary, and we choose μ to be such a limit.
As H(x) is continuous and πk(v) = ∑

a∈� πk(va),

H(μ) = lim
k→∞

∫
M

H dμk

= − lim
k→∞

1
Lk + 1

∑
l(v)�Lk

πk(v)
∑
a∈�

πk(va)

πk(v)
logq

πk(va)

πk(v)

= − lim
k→∞

1
Lk + 1

∑
l(v)�Lk

∑
a∈�

πk(va) logq πk(va) − πk(va) logq πk(v)

= − lim
k→∞

1
Lk + 1

∑
l(v)=Lk

∑
a∈�

πk(va) logq πk(va). (4)

Recall that for every v ∈ |πk| we have the bounds

−πk(v) logq πk(v) � −
∑
a∈�

πk(va) logq πk(va) � −πk(v) logq

πk(v)

q
. (5)

As − ∑
l(v)=Lk

πk(v) logq πk(v) = logq |T (Lk)| by the definition of πk , summing the
inequalities (5) over v ∈ Lk and noting

∑
l(v)=Lk

πk(v) = 1 gives

H(μ) =
∫

X

H dμ = lim
k→∞

logq |T (Lk)|
Lk + 1

= lim
k→∞

logq |T (Lk + 1)|
Lk + 1

= dimMT ,

where the third equality follows from the bounds

q−1|T (Lk + 1)| � |T (Lk)| � |T (Lk + 1)|.
Proposition 2.7 immediately gives the inequality (2).

To prove the inequality (3), applying a change of summation variable and using the
definitions of πk and φCn gives

d(Cn) � lim sup
k→∞

1
|T (Lk)|

∑
v∈T (Lk)

|Cn ∩ {w ∈ T : w � v}|
Lk + 1

= lim sup
k→∞

1
Lk + 1

∑
l(w)�Lk

πk(w)1Cn(w)
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� lim sup
k→∞

1
Lk + 1

∑
l(w)�Lk

πk(w)φCn(π
w
k )

= lim sup
k→∞

∫
M

φCn dμk .

The conclusion follows from Lemma 3.3.

3.3. Correspondence principle for upper Banach density

THEOREM 3.5. If dim T > 0, for every ε > 0 there exists an ergodic stationary distribu-
tion η = ηε for the CP-process (M , p) such that H(η) � dim T − ε,

η(Ar) �
dim T − ε − logq(r − 1)

1 − logq(r − 1)
, (6)

and for every configuration C and integer n � 1,

d∗(Cn) �
∫

M

φCn dη. (7)

Proof. For any ε > 0, by Frostman’s lemma (see [Ma95, Theorem 8.8] and [Ho14,
Theorem 3.12]) there exists θ ∈ M such that |θ | ⊂ T and dim θ � dim T − ε. Let
(Mk)k�1 be an increasing sequence such that the distributions

η′
k = 1

Mk + 1

Mk∑
i=0

P iδθ = 1
Mk + 1

∑
l(v)�Mk

θ(v)δθv

converge to a distribution η′ in the weak-∗ topology.

LEMMA 3.6. [Fur70, Lemma 4] We have H(η′) � dim θ .

Proof. As in the calculation (4) we have

H(η′) = − lim
k→∞

1
Mk + 1

∑
l(v)=Mk+1

θ(v) logq θ(v)

= lim
k→∞

−∑
v∈�k

θ(v) logq θ(v)∑
v∈�k

l(v)θ(v)
� dim θ ,

where �k is the section |θ |(Mk + 1) = {v ∈ |θ | : l(v) = Mk + 1}.
The support of η′ is contained in the compact set D(θ) = {θv : v ∈ |θ |}, and by

Choquet’s theorem [Ph01, Ch. 3] there exists an ergodic distribution η supported on D(θ)

such that H(η) � H(η′) � dim θ � dim T − ε. The inequality (6) immediately follows
from Proposition 2.7.

As η is ergodic, the mean ergodic theorem for contractions [EFHN15, Theorem 8.6]
implies

1
N + 1

N∑
i=0

P if →
∫

M

f dη
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in L2(M , η) for f ∈ L2(M , η). By diagonalization there exists an increasing sequence
(Nk)k�1 and τ ∈ D(θ) such that

1
Nk + 1

Nk∑
i=0

P if (τ) →
∫

M

f dη (8)

for all f in a countable set of continuous functions. Taking this set to be dense in C(M)

under the uniform norm, the limit (8) holds for all continuous functions. Letting vk ∈ |θ |
be a sequence of vertices such that θvk → τ , and passing to a subsequence of (vk) if
necessary, it follows that the sequence of measures ηk defined by

ηk = 1
Nk + 1

Nk∑
i=0

P iδθvk = 1
Nk + 1

∑
l(w)�Nk

θvk (w)δθvkw

converges weakly to η. For ε < dim T it follows that

d∗(Cn) � lim sup
k→∞

1
Nk + 1

∑
l(w)�Nk

θvk (w)1Cn(vkw)

� lim sup
k→∞

1
Nk + 1

∑
l(w)�Nk

θvk (w)φCn(θ
vkw)

= lim sup
k→∞

∫
M

φCn dηk

and the inequality (7) follows from Lemma 3.3.

Remark 3.7. Composing the projection (τi)i�0 �→ τ0 with a Cn-detecting function gives a
map M̃ → [0, 1] which is positive at (τi)i�0 if and only if C appears at the root of |τ0| with
parameter n. The recursive constructions of configuration-detecting functions in §3.1 can
be used to construct their lifts using the abuses of notation Bi = {̃τ ∈ M : τ0 ∈ Bi} and
Ar = {̃τ ∈ M̃ : |{i : pτ̃ (Bi) > 0}| � r}. Observe that the inequalities (2), (3), (6) and (7)
are still valid when the distributions μ and ηε and the configuration detecting functions
φCn are replaced with their lifts on M̃ . In the remainder of the paper, we work only with
(M̃ , p) and use Theorems 3.4 and 3.5 for the endomorphic extension without comment.

4. Proof of direct theorems
Using the correspondence principles of §3, we bound from below the densities of the sets
of popular differences for trees. We first prove such a result for the generic parameters of
the configuration F r , because the proof is relatively simple but contains the main ideas.

THEOREM 4.1. Let T be a tree. For 2 � r � q we have

d(G(F r)) �
dimMT − logq(r − 1)

1 − logq(r − 1)
and d(G∗(F r)) �

dim T − logq(r − 1)

1 − logq(r − 1)
.

Proof. As P and S are adjoint, Theorem 3.4 gives

d(F r
n ) �

∫
M̃

φF r
n

dμ̃ =
∫

M̃

1Ar P
n1Ar dμ̃ =

∫
M̃

1Ar S
n1Ar dμ̃ = μ̃(Ar ∩ S−nAr).
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Hence, G(F r) ⊃ R = {n ∈ N : μ̃(Ar ∩ S−nAr) > 0}, so d(G(F r)) � d(R). By the
mean ergodic theorem

d(R) = lim inf
N→∞

1
N + 1

N∑
n=0

1R(n) � lim inf
N→∞

1
N + 1

N∑
n=0

μ̃(Ar ∩ S−nAr)

μ̃(Ar)
� μ̃(Ar),

and the theorem follows from inequality (2) of Theorem 3.4.
Using Theorem 3.5 in place of Theorem 3.4 in the above argument, we obtain the second

inequality after taking ε → 0.

Theorem 4.1 is also immediate from the corresponding result for Dr ,2, which we now
prove.

THEOREM 4.2. Let T be a tree. For 2 � r � q we have

d(G(Dr ,2)) �
dimMT − logq(r − 1)

1 − logq(r − 1)
and d(G∗(Dr ,2)) �

dim T − logq(r − 1)

1 − logq(r − 1)
.

Proof. We start with the proof of the first inequality. The idea is to show that G(Dr ,2)

essentially contains the set of return times of Ar , the density of which we can bound from
below by the mean ergodic theorem. First observe that, by Proposition 2.10,∣∣∣∣ ∫

M̃

φ
D

r ,2
n

dμ̃ − r!
∫

M̃

∑
I⊂�|I |=r

∏
i∈I

P (1Bi
P n−11Ar ) dμ̃

∣∣∣∣
=

∣∣∣∣r!
∫

M̃

∑
I⊂�|I |=r

∏
i∈I

P (1Bi
P n−11Ar ) dμ̃ − r!

∫
M̃

∑
I⊂�|I |=r

∏
i∈I

P (1Bi
P n−11Ar ) dμ̃

∣∣∣∣ n→∞−−−→ 0.

As 1Ar ∈ H ∞, by Lemma 2.9 P n−11Ar = SP n1Ar . Then, by Lemma 2.8 and orthogo-
nality,

r!
∫

M̃

∑
I⊂�|I |=r

∏
i∈I

P (1Bi
P n−11Ar ) dμ̃ =

∫
M̃

ϕ
D

r ,1
n

(P n1Ar )
r dμ̃,

recalling ϕ
D

r ,1
n

= r!
∑

I⊂�|I |=r

∏
i∈I P 1Bi

. Define Zρ = {̃τ ∈ M̃ : ϕ
D

r ,1
n

(̃τ ) � ρ}, and

observe it is well-defined up to a μ̃-null set. As 0 � ϕ
D

r ,1
n

� 1Ar � 1 and 0 � ρ1Zρ �
ϕ

D
r ,1
n

� 1, the positivity of both P and conditional expectation imply∫
M̃

ϕ
D

r ,1
n

(P n1Ar )
r dμ̃ �

∫
M̃

ϕ
D

r ,1
n

(P nϕ
D

r ,1
n

)r dμ̃ � ρr+1
∫

M̃

1Zρ (P
n1Zρ )

r dμ̃.

By Jensen’s inequality and the adjointness of P and S∫
M̃

1Zρ (P
n1Zρ )

r dμ̃ �
( ∫

M̃

1Zρ P
n1Zρ dμ̃

)r

= μ̃(Zρ ∩ S−nZρ)r .
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Combining the above with the correspondence principle Theorem 3.4, it follows that
G(Dr ,2) contains a cofinite subset of

Rδ(Zρ) = {n ∈ N : μ̃(Zρ ∩ S−nZρ) > δμ̃(Zρ)2}
for all δ, ρ > 0 (because S is μ̃-preserving). Therefore,

d(G(Dr ,2)) � d(Rδ(Zρ)) � lim inf
N→∞

1
N + 1

∑
n�N

n∈Rδ(Zρ)

μ̃(Zρ ∩ S−nZρ)

μ̃(Zρ)

�
(

lim inf
N→∞

1
N + 1

N∑
n=0

μ̃(Zρ ∩ S−nZρ)

μ̃(Zρ)

)
− δμ̃(Zρ)

� (1 − δ)μ̃(Zρ)
δ→0−−→ μ̃(Zρ)

ρ→0−−−→ μ̃(Z),

where the last inequality follows from the mean ergodic theorem and

Z = {̃τ ∈ M̃ : ϕ
D

r ,1
n

(̃τ ) > 0}.
As 1Zc ∈ L∞(M̃ , B∞), properties of the conditional expectation give

0 =
∫

M̃

1Zcϕ
D

r ,1
n

dμ̃ =
∫

M̃

1Zcϕ
D

r ,1
n

dμ̃.

Hence, Z ⊃ {̃τ ∈ M̃ : ϕ
D

r ,1
n

(̃τ ) > 0} = Ar up to a μ̃-null set, so d(G(Dr ,2)) � μ̃(Ar). The
theorem then follows from inequality (2) of Theorem 3.4.

Using Theorem 3.5 in place of Theorem 3.4 in the above proofs, we obtain the second
inequality after taking ε → 0.

5. Inverse theorems for return times
Let (X, B, ν, S) be a measure-preserving system and let A be a measurable set with
ν(A) > 0. If R = {n ∈ N : ν(A ∩ S−nA) > 0} is the set of return times of A, then by the
mean ergodic theorem d(R) � ν(A).

THEOREM 5.1. If d(R) = ν(A) > 0, then there exists an integer m � 1 such that up to
ν-null sets

X =
m−1⊔
i=0

S−iA.

Proof. Define Rγ = {n ∈ N : ν(A ∩ S−nA) � (1 − γ )ν(A)}.
LEMMA 5.2. If n ∈ Rγ and n′ ∈ Rγ ′ , then n + n′ ∈ Rγ+γ ′ .

Proof. If B ⊂ A, then ν(A ∩ S−nB) � ν(B) − γ ν(A). For B = A ∩ S−n′
A we have

ν(A ∩ S−(n+n′)A) � ν(A ∩ S−n(A ∩ S−n′
A)) � ν(A ∩ S−n′

A) − γ ν(A)

� (1 − γ − γ ′)ν(A),

so n + n′ ∈ Rγ+γ ′ .
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LEMMA 5.3. If 0 < γ < 1
2 , then d(Rγ + Rγ ) = d(Rγ ) = d(R).

Proof. Let (Nk)k�1 be an increasing sequence such that

d(Nk)(Rγ ) = lim
k→∞

|Rγ ∩ {0, . . . , Nk}|
Nk + 1

exists. By the mean ergodic theorem

ν(A) � lim
k→∞

1
Nk + 1

Nk∑
n=0

ν(A ∩ S−nA)

ν(A)
= lim

k→∞
1

Nk + 1

Nk∑
n=0

1R(n)
ν(A ∩ S−nA)

ν(A)

� lim
k→∞

1
Nk + 1

( ∑
n∈Rγ ,n�Nk

1R(n) +
∑

n/∈Rγ ,n�Nk

1R(n)(1 − γ )

)
= d(Nk)(Rγ ) + (1 − γ )(d(R) − d(Nk)(Rγ )).

Rearranging and using the assumption d(R) = ν(A), it follows that

ν(A) � d(Nk)(Rγ ) � d(R) = ν(A).

Hence, d(Nk)(Rγ ) = d(R). By Lemma 5.2 Rγ + Rγ ⊂ R2γ ⊂ R, so

d(R) = d(Nk)(Rγ ) = d(Nk)
(Rγ ) � d(Nk)

(Rγ + Rγ ) � d(Nk)(Rγ + Rγ ) � d(R).

Hence, d(Nk)(Rγ + Rγ ) exists and equals d(R). As (Nk)k�1 was arbitrary, the conclusion
follows.

For 0 < γ < 1
2 , Lemma 5.3 and Kneser’s theorem [Kne53] (see also [Bil97, Theorem

1.1]) therefore imply the existence of m � 1 and K ⊂ {0, . . . , m − 1} such that:
• Rγ ⊂ K + mN;
• |K + K| = 2|K| − 1, where the operation on the left hand side is in Z/mZ; and
• Rγ + Rγ ⊂ K + K + mN with |(K + K + mN) \ (Rγ + Rγ )| < ∞.
It follows that K = {0}, so Rγ ⊂ mN and d(R) = d(Rγ ) = d(Rγ + Rγ ) = m−1. Fur-
ther, for all n ∈ R there exists γ > 0 small enough such that n + Rγ ⊂ R by Lemma 5.2.
As, in addition, Rγ ⊂ R and d(R) = d(Rγ ), it follows that n ∈ mN. Then the m sets
S−iA, 0 � i � m − 1 are disjoint (up to ν-null sets) and each of measure m−1.

THEOREM 5.4. If (X, B, ν, S) is ergodic and

0 < d(R) < 3
2ν(A),

then there exists an integer m � 1 such that R = mN and X = ⊔m−1
i=0 S−i (

⋃∞
j=0 S−jmA)

up to ν-null sets.

Proof. By [BFS21, §1.5] all the theorems in [BFS21] hold for ergodic N-actions, so
[BFS21, Theorem 1.3] gives the existence of m � 1 such that R = mN. Therefore, the
sets

∞⋃
j=0

S−jmA, S−1
( ∞⋃

j=0

S−jmA

)
, . . . , S−(m−1)

( ∞⋃
j=0

S−jmA

)
are mutually disjoint up to ν-null sets, and ergodicity implies that they partition X.
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6. Inverse theorems for trees
In this section, we prove inverse results for Theorems 4.1 and 4.2 (Theorems 6.1, 6.2 and
6.4) using the results of the previous section.

THEOREM 6.1. If T is a tree and 2 � r � q with

d(G(F r)) = dimMT − logq(r − 1)

1 − logq(r − 1)
> 0,

then dimMT = m−1(1 − logq(r − 1)) + logq(r − 1) for some positive integer m. More-

over, d(V
r ,m,mk
1 ) > 0 for every k � 1.

Proof. Let R = {n ∈ N : μ̃(Ar ∩ S−nAr) > 0}. Combining the proof of Theorem 4.1 and
the hypothesis, we obtain

d(G(F r)) � d(R) � d(R) � μ̃(Ar) �
dimMT − logq(r − 1)

1 − logq(r − 1)
= d(G(F r)).

Therefore, μ̃(Ar) = d(G(F r)) = d(R) = d(R) is positive; by Theorem 5.1 it equals m−1

for some positive integer m, and M̃ = ⊔m−1
i=0 S−iAr up to μ̃-null sets.

The above also shows that equality holds in Proposition 2.7 for μ̃, whence
∫
Ar

H dμ̃ =
μ̃(Ar) and

∫
Ac

r
H dμ̃ = (1 − μ̃(Ar)) logq(r − 1). The bounds on H then imply μ̃-almost

everywhere equalities ∏
i∈�

P 1Bi
= c11Ar = c11Aq , (9)

1Ar−1

∑
I⊂�|I |=r−1

∏
i∈I

P 1Bi
= 1Ac

r

∑
I⊂�|I |=r−1

∏
i∈I

P 1Bi
= c21Ac

r
, (10)

where c1 = q−q and c2 = (r − 1)1−r .
Recall from §3.1 the operators Rr−1,1 and Rq,1 on L∞(M̃ , μ̃), which, for simplicity, we

denote by R1 and R2:

R1f =
∑
I⊂�|I |=r−1

∏
i∈I

P (1Bi
f ); R2f =

∏
i∈�

P (1Bi
f ).

Using the facts determined previously, we compute φ′
V

r ,m,mk
1

= (R2R
m−1
1 )k1Aq . In the

following, equalities are only up to μ̃-null sets. We compute first the case k = 1. Note that
Aq = S−mAq and 1S−iAq

= S1S−i+1Aq
for i � 1. By Lemma 2.8

R11Aq =
∑
I⊂�|I |=r−1

∏
i∈I

P (1Bi
1Aq ) =

∑
I⊂�|I |=r−1

∏
i∈I

P (1Bi
S1S−m+1Aq

)

= 1S−m+1Aq

∑
I⊂�|I |=r−1

∏
i∈I

P 1Bi

= c21S−m+1Aq
,
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where the last equality follows from (10) and the fact S−m+1Aq = S−m+1Ar ⊂ Ac
r . As R1

is homogeneous of degree r − 1, repeating this calculation gives

Rm−1
1 1Aq = c

∑m−2
j=0 (r−1)j

2 1S−1Aq

and, hence,

φ′
V

r ,m,m
1

= R2

(
c

∑m−2
j=0 (r−1)j

2 1S−1Aq

)
= c

q
∑m−2

j=0 (r−1)j

2

∏
i∈�

P (1Bi
S1Aq )

= c
q

∑m−2
j=0 (r−1)j

2 1Aq

∏
i∈�

P 1Bi

= c1c
q

∑m−2
j=0 (r−1)j

2 1Aq .

Letting d1 = c1c
q

∑m−2
j=0 (r−1)j

2 and defining inductively dk = d
q(r−1)m−1

k−1 d1, it follows that
φ′

V
r ,m,mk
1

= dk1Aq μ̃-almost everywhere. Then

d(V
r ,m,mk
1 ) �

∫
M̃

φ
V

r ,m,mk
1

dμ̃ �
∫

M̃

φ′
V

r ,m,mk
1

dμ̃ = dkμ̃(Aq) = dk

m
> 0

for all k � 1 by the correspondence principle Theorem 3.4.

THEOREM 6.2. If T is a tree and 2 � r � q with

d(G∗(F r)) = dim T − logq(r − 1)

1 − logq(r − 1)
> 0 (11)

or

d(G∗(Dr ,2)) = dim T − logq(r − 1)

1 − logq(r − 1)
> 0, (12)

then dim T = m−1(1 − logq(r − 1)) + logq(r − 1) for some positive integer m. More-

over, d∗(V r ,m,mk
1 ) > 0 for every k � 1.

Proof. Fix ε > 0 small enough, and let R = {n ∈ N : η̃ε(Ar ∩ S−nAr) > 0}. In the case
of (11), from the proof of Theorem 4.1 we have

dim T − logq(r − 1)

1 − logq(r − 1)
= d(G∗(F r)) � d(R) � η̃ε(Ar) �

dim T − ε − logq(r − 1)

1 − logq(r − 1)
,

so d(R) � 3
2 η̃ε(Ar) for small enough ε. By Theorem 5.4 there is a positive integer m such

that R = mN and M̃ = ⊔m−1
i=0 S−i (

⋃∞
j=0 S−mjAr) up to η̃ε-null sets.

In the case of (12), we invoke the proof of Theorem 4.2. Recall that there exist a
measurable set Z such that Ar ⊂ Z modulo η̃ε-null sets and an increasing chain of
measurable sets (Zρ)ρ>0 with

⋃
ρ>0 Zρ = Z such that for every δ > 0 we have
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dim T − logq(r − 1)

1 − logq(r − 1)
= d(G∗(Dr ,2)) � d(Rδ(Zρ))

�
(

lim inf
N→∞

1
N + 1

N∑
n=0

η̃ε(Zρ ∩ S−nZρ)

η̃ε(Zρ)

)
− δη̃ε(Zρ)

� (1 − δ)η̃ε(Zρ)
δ→0−−→ η̃ε(Zρ)

ρ→0−−−→ η̃ε(Z)

� η̃ε(Ar) �
dim T − ε − logq(r − 1)

1 − logq(r − 1)
,

where Rδ(Zρ) = {n ∈ N : η̃ε(Zρ ∩ S−nZρ) > δη̃ε(Zρ)2}. Hence, for small enough ε

and ρ the assumptions of Theorem A.3 are satisfied, so there exists m � 1 such
that R(Zρ) = Rδ(Zρ) = mN, where R(Zρ) = {n ∈ N : η̃ε(Zρ ∩ S−nZρ) > 0}. As this
is true for all ρ > 0 small enough and R ⊂ ⋃

ρ>0 R(Zρ), we conclude that for ε

small enough there exists m � 1 such that R ⊂ mN. This immediately implies that
M̃ = ⊔m−1

i=0 S−i (
⋃∞

j=0 S−mjAr) up to η̃ε-null sets.
In both cases, for small ε the above inequalities force

dim T − logq(r − 1)

1 − logq(r − 1)
= m−1,

and, hence,

η̃ε(Ar) � (1 − ε′)m−1 = (1 − ε′)η̃ε

( ∞⋃
j=0

S−mjAr

)
, (13)

where ε′ → 0 as ε → 0. We also have

dim T � η̃ε(Ar) + (1 − η̃ε(Ar)) logq(r − 1) � H(η̃ε) � dim T − ε

and, hence, the pair of inequalities∫
Ar

H dη̃ε � η̃ε(Ar) − ε, (14)∫
Ac

r

H dη̃ε � (1 − η̃ε(Ar)) logq(r − 1) − ε. (15)

We denote by Ar = ⋃∞
j=0 S−mjAr . Then we have M̃ = ⊔m−1

i=0 S−iAr. Given τ̃ ∈ M̃

and E ⊂ M̃ , observe that S−i (̃τ ) ⊂ E if and only if P i1E(̃τ ) = 1. For i � 0, define
Ei to be Ar if m divides i and Ac

r otherwise. Then the m-periodicity of Ar and Ac
r =⊔m−1

i=1 S−iAr under S−1 gives η̃ε-almost everywhere equalities

P i1Ei
= P iSi1S−iEi

= 1S−iEi
,

so the set Ar′ = ⋂
i�0{̃τ ∈ M̃ : P i1Ei

(̃τ ) = 1} is a η̃ε-conull subset of Ar.
Define for δ > 0 the set

Aδ =
mk⋂
i=0

{̃τ ∈ Ar′ : P iH (̃τ ) � ci − δ}, ci =
{

1, m | i,

logq(r − 1) otherwise.
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It follows from (13) and inequalities (14) and (15) that by choosing ε small enough we
can guarantee that η̃ε(Aδ) > 0. We show the existence of δ such that the configuration
V

r ,m,mk
1 appears at the root of |τ0| for every τ̃ = (τi)i�0 ∈ Aδ . First note that, by the

construction of Ar′ , if τ̃ ∈ Aδ and v ∈ |τ0| with 0 � l(v) � mk, then H(̃τv) � cl(v).
Hence, for 0 � i � mk

ci − δ � P iH (̃τ ) =
∑

l(v)=i

τ0(v)H (̃τ v) � ci . (16)

If H(̃τ) > logq(q − 1), then τ̃ ∈ Aq , and if H(̃τ) > logq(r − 2), then τ̃ ∈ Ar−1. To prove
the appearance of V

r ,m,mk
1 at the root of |τ0| it therefore suffices to give sufficiently large

lower bounds for H(̃τv) for l(v) � mk.

LEMMA 6.3. For every δ1, δ2 > 0 there exists δ > 0 such that for 1 � j � mk + 1: (a)
the set {τ0(v) : τ̃ ∈ Aδ , v ∈ |τ0|(j)} ⊂ [0, 1] is contained in an interval of length less than
δ1; and (b) for all τ̃ ∈ Aδ and v ∈ |τ0| with l(v) � j − 1 we have H(̃τv) � cl(v) − δ2.

Proof. We prove both statements simultaneously by induction on j. For j = 1 we have
H(̃τ) � 1 − δ for all τ̃ ∈ Aδ by (16), so any δ < δ2 suffices. Further, observe that H is
a continuous function attaining its maximum at τ̃ such that pτ̃ (Bi) = q−1 for all i ∈ �.
Hence, given δ1 > 0, the set {τ0(v) : τ̃ ∈ Aδ , v ∈ |τ0|(1)} is contained in an interval of
length < δ1 (containing q−1) for δ small enough.

Assuming the lemma is true for j � i < mk + 1, we prove it for j = i + 1. We first
consider statement (b). For w ∈ |τ0|(i) with τ̃ ∈ Aδ the inequality (16) gives

ci − δ � P iH (̃τ ) =
∑

l(v)=i

τ0(v)H (̃τ v) � τ0(w)H (̃τw) + (1 − τ0(w))ci ,

and rearranging gives

ci − δ

τ0(w)
� H(̃τw).

By statement (a) of the induction hypothesis,

sup
τ̃∈Aδ ,w∈|τ0|(i)

δ

τ0(w)
→ 0

as δ → 0, so by taking δ small enough, statement (b) is satisfied for j = i + 1. Combining
statement (a) for j = i and statement (b) for j = i + 1 with the same argument as in the
base case proves statement (a), noting that if m does not divide j, then we consider maxima
of H on Ac

r .

It follows that any V
r ,m,mk
1 -detecting function is positive on Aδ . By the correspondence

principle Theorem 3.5 we have for all ε > 0

d∗(V r ,m,mk
1 ) �

∫
M̃

φ
V

r ,m,mk
1

dη̃ε �
∫

Aδ

φ
V

r ,m,mk
1

dη̃ε > 0,

because η̃ε(Aδ) > 0.
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THEOREM 6.4. Let β <3/2 and assume that

0 < d(G∗(F r)) < β · (dim T − logq(r − 1))

(1 − logq(r − 1))
.

Then there exists an integer m � 1 such that mN ⊂ G∗(F r).

Proof. For small enough ε > 0, by the correspondence principle Theorem 3.5 and the
proof of Theorem 4.1

βη̃ε(Ar) � β
dim T − ε − logq(r − 1)

1 − logq(r − 1)
> d(G∗(F r)) � d(R),

where R = {n ∈ N : η̃ε(Ar ∩ S−nAr) > 0}. Theorem 5.4 then implies that there exists
m � 1 such that mN = R ⊂ G∗(F r).

Question 6.5. It follows from the work of Furstenberg and Weiss in [FW03] that for every
k there exists n such that d∗(D2,k

n ) > 0 provided that dim T > 0. On the other hand, under
the assumptions of Theorem 6.4, there exists m � 1 such that mN ⊂ G∗(F ). In analogy
to Proposition 1.5, is it true that the stronger claim d∗(D2,k

m ) > 0 holds true for every k
satisfying (1 − β−1)k < 1?
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A. Appendix. Stability in an inverse theorem for return times of ergodic systems
In the proof of Theorem 6.2 for the configuration Dr ,2, we are unable to apply Theorem 5.4
because we have no upper bound for d(R). However, we have bounds on the densities of
the sets of δ-return times. Here we prove a stability result (Theorem A.3) giving the same
conclusion as Theorem 5.4 under assumptions involving δ-return times instead of return
times.

Given an ergodic measure-preserving system (X, B, ν, S) and A ∈ B with ν(A) > 0,
define for δ > 0 the set of δ-return times of A

Rδ = {n ∈ N : ν(A ∩ S−nA) > δν(A)2}.

Define also for 0 < γ < 1 the set

Rγ = {n ∈ N : ν(A ∩ S−nA) � (1 − γ )ν(A)}.
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LEMMA A.1. If d(Rδ) � (1 + η)ν(A) for all δ > 0, then for any γ > 0

d(Rγ ) �
(

γ − η + γ η

γ

)
ν(A).

Proof. Given γ , choose δ such that 0 < δ < (1 − γ )/ν(A) (so Rγ ⊂ Rδ). First, observe
that by the mean ergodic theorem,

d(Rδ) = lim inf
N→∞

1
N + 1

N∑
n=0

1Rδ (n)

� lim inf
N→∞

1
N + 1

N∑
n=0

ν(A ∩ S−nA)

ν(A)
− δν(A) = (1 − δ)ν(A). (A.1)

Let (Nk)k�1 be an increasing sequence such that

d(Rγ ) = lim
k→∞(Nk + 1)−1

Nk∑
n=0

1Rγ
(n).

By the mean ergodic theorem

ν(A) = lim
k→∞

1
Nk + 1

Nk∑
n=0

ν(A ∩ S−nA)

ν(A)

� lim sup
k→∞

1
Nk + 1

∑
n�Nk

n∈Rγ

ν(A ∩ S−nA)

ν(A)
+ lim sup

k→∞
1

Nk + 1

∑
n�Nk

n∈Rδ\Rγ

(1 − γ )

+ lim sup
k→∞

1
Nk + 1

∑
n�Nk

n∈(Rδ)c

δν(A)

� d(Rγ ) + (1 − γ )(d(Rδ) − d(Rγ )) + δν(A)(1 − d(Rδ))

� γ d(Rγ ) + (1 − γ )(1 + η)ν(A) + δν(A)(1 − (1 − δ)ν(A)),

where we used the assumption d(Rδ) � (1 + η)ν(A) and (A.1) in the last inequality.
Rearranging, we obtain

d(Rγ ) �
(

γ − η + γ η − δ + δν(A) − δ2ν(A)

γ

)
ν(A).

Taking δ → 0 gives the required inequality.

For l ∈ N and δ > 0, define the set

Rδ
l = {n ∈ N : ν(A ∩ S−nA ∩ S−(l+n)A) > δν(A)3}.

LEMMA A.2. If l ∈ Rδ , then d(Rδε
l ) � (1 − ε)ν(A) for all ε > 0.
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Proof. Given ε > 0 and A, B ∈ B of positive measure, the set of ε-transfer times from A
to B is Rε

A,B = {n ∈ N : ν(A ∩ S−nB) > εν(A)ν(B)}. Observe that

Rε
A,A∩S−lA

= {n ∈ N : ν(A ∩ S−n(A ∩ S−lA)) > εν(A)ν(A ∩ S−lA)} ⊂ Rδε
l .

By the mean ergodic theorem,

d(Rε
A,B) = lim inf

N→∞
1

N + 1

N∑
n=0

1Rε
A,B

(n)

� lim inf
N→∞

1
N + 1

N∑
n=0

ν(A ∩ S−nB)

min (ν(A), ν(B))
− ε max (ν(A), ν(B))

� (1 − ε) max (ν(A), ν(B)),

so we have

d(Rδε
l ) � d(Rε

A,A∩S−lA
) � (1 − ε)ν(A)

as required.

THEOREM A.3. If there exists η < 1/5 such that d(Rδ) ≤ (1 + η)ν(A) for every δ > 0,
then there exists m � 1 such that Rδ = mN for all sufficiently small δ.

Proof. Fix 0 < η < 1
5 such that d(Rδ) � (1 + η)ν(A), and choose γ satisfying

3η

1 + η
< γ <

1
2

. (A.2)

Observe that Rγ + Rγ ⊂ R2γ ⊂ Rδ for 0 < δ < (1 − 2γ )/ν(A) by Lemma 5.2. Noting
that (A.2) implies γ − η + γ η > 0 and (1 + η)γ /(γ − η + γ η) < 2, Lemma A.1 gives

d(Rγ + Rγ ) � d(Rδ) � d(Rδ) � (1 + η)ν(A) �
(

(1 + η)γ

γ − η + γ η

)
d(Rγ ) < 2d(Rγ ).

(A.3)

Kneser’s theorem then gives the existence of an integer m � 1 and K ⊂ {0, 1, . . . , m − 1}
such that:
• Rγ ⊂ K + mN;
• |K + K| = 2|K| − 1, where the operation on the left-hand side is in Z/mZ; and
• Rγ + Rγ ⊂ K + K + mN with |(K + K + mN) \ (Rγ + Rγ )| < ∞.
Combining this with Lemma A.1 gives

2|K| − 1
m

= |K + K|
m

� d(Rγ + Rγ ) � d(Rδ) � (1 + η)ν(A)

�
(

(1 + η)γ

γ − η + γ η

)
d(Rγ ) �

(
(1 + η)γ

γ − η + γ η

) |K|
m

,

and rearranging gives

|K| � 1 + η

γ + γ η − 2η
< 2,
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where the last inequality follows from (A.2). Hence, |K| = 1. Furthermore, K = {0},
because otherwise Rγ and Rγ + Rγ would be disjoint subsets of Rδ giving the
contradiction

d(Rδ) � d(Rγ + Rγ ) + d(Rγ ) � 2d(Rγ ) > d(Rδ).

We first prove that Rδ ⊂ mN for small enough δ > 0. For l ∈ N and δ > 0, recall

Rδ2

l = {n ∈ N : ν(A ∩ S−nA ∩ S−(l+n)A) > δ2ν(A)3}.
As ν(A ∩ S−(l+n)A) � ν(A ∩ S−nA ∩ S−(l+n)A), if n ∈ Rδ2

l , then l + n ∈ Rδ2ν(A).
Assuming l ∈ Rδ \ mN, we derive a contradiction. Observe that Rγ + Rγ ⊂ Rδ ⊂
Rδ2ν(A), so

d(Rδ2ν(A)) � d(Rγ + Rγ ) + d((l + Rδ2

l ) \ mN)

� m−1 + d(l + (Rδ2

l ∩ mN))

= m−1 + d(Rδ2

l ∩ mN),

where the second inequality uses the assumption on l. As Rδ2

l , mN ⊂ Rδ2ν(A) (up to a
finite set), by Lemma A.2

d(Rδ2

l ∩ mN) � d(Rδ2

l ) + d(mN) − d(Rδ2

l ∪ mN)

� (1 − δ)ν(A) + m−1 − d(Rδ2ν(A)).

Using the hypothesis d(Rδ2ν(A)) � (1 + η)ν(A), we obtain

2(1 + η)ν(A) � 2d(Rδ2ν(A)) � (1 − δ)ν(A) + 2m−1. (A.4)

As |K| = 1, Kneser’s theorem and Lemma A.1 imply

m−1 � d(Rγ ) �
(

γ − η + γ η

γ

)
ν(A),

and combining with (A.4) gives γ � 2η/(1 − δ) after rearranging. This is compatible with
(A.2) only if η > (1 − 3δ)/2. As η < 1

5 , it follows that the above requires δ > 1
5 . Hence,

l ∈ Rδ \ mN gives a contradiction and Rδ ⊂ mN for small enough δ > 0.
Finally, we show Rδ = mN for small δ. Indeed, because d(Rγ ) > (2m)−1 by combin-

ing equation (A.3) with the third implication of Kneser’s theorem Rγ + Rγ ⊂ K + K +
mN and the fact that |K| = 1, for every l ∈ N there exists n ∈ N such that mn, m(n + l) ∈
Rγ . Therefore,

ν(A ∩ S−mlA) = ν(S−mnA ∩ S−m(n+l)A)

� ν((A ∩ S−mnA) ∩ (A ∩ S−m(n+l)A))

� ν(A ∩ S−mnA) + ν(A ∩ S−m(n+l)A) − ν(A)

� (1 − 2γ )ν(A) > δν(A)2

for δ < (1 − 2γ )/ν(A), so for sufficiently small δ > 0 we have ml ∈ Rδ for all l ∈ N.
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A.1. Discussion. The set of transfer times RA,B has strong parallels with the difference
set A − B = {a − b : a ∈ A, b ∈ B}, A, B ⊂ Z/rZ, which is one of the main objects
of additive combinatorics. For example, the lower bound for d(Rε

A,B) in Lemma A.2
corresponds to the simple fact that |A − B| � max{|A|, |B|}. It is easy to see that the
bound is tight and is attained when B − B belongs to the centralizer of A (or vice versa).
It implies that A and B have some periodic structure and it is analogous to our conclusions
in Theorems 5.4 and A.3 on the structure of our dynamical system. On the other hand, if
A = {0, 1} ⊆ Z/rZ for large r, then A − A = {0, 1, −1} and, hence, η in Theorem A.3
must be less than 1/2. Moreover, the sets Rδ

m from Lemma A.2 which are used in the proof
of Theorem A.3 can be thought as a dynamical version of the well-known combinatorial
e-transform; see, e.g., [TV06, §5.1]. Although it is not obvious how to define the higher
sumsets in the dynamical context, an analogue of the Plünnecke–Rusza triangle inequality
for dynamical systems would be a first step towards such a theory.

Question A.4. Assume that (X, B, ν, S) is an invertible ergodic system and d(RA,B),
d(RA,C), d(RB,C) exist for A, B, C ∈ B. Is it true that

μ(C)d(RA,B) � d(RA,C)d(RB,C)?
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