COMPLETE MAPPINGS OF FINITE FIELDS

HARALD NIEDERREITER and KARL H. ROBINSON

(Received 3 April 1981; revised 5 October 1981)

Communicated by R. Lidl

Abstract

We discuss complete mapping polynomials of finite fields, which are a special class of permutation polynomials. Complete mapping polynomials of small degree are classified. Results are obtained on a class of complete mapping binomials and on permutation binomials.

1980 Mathematics subject classification (Amer. Math. Soc.): 12 C 05.

1. Introduction and general properties

We discuss a special class of mappings of a finite field into itself which arises in connection with combinatorial and algebraic problems. We start with the following general definition.

Definition l. Let G be a group and $\psi: G \rightarrow G$ a bijection of G. Then a bijection $\theta: G \rightarrow G$ is called a ψ-complete mapping of G if $\tau: G \rightarrow G$ defined by $\tau(g)=\theta(g) \psi(g)$ for $g \in G$ is also a bijection of G. If $\psi=1_{G}$, the identity mapping on G, we speak of a complete mapping of G.

Complete mappings were introduced in [8], where they were shown to be pertinent to the problem of constructing orthogonal latin squares. Considerable attention has been given to the question of determining which groups possess complete mappings (see for example [3]), and one result obtained is that every group of odd order possesses at least one complete mapping. From the following result we see that a problem involving ψ-complete mappings can be reduced to a problem involving only complete mappings.

[^0]Proposition 1. Let G be a group and $\psi: G \rightarrow G$ a bijection of G. Then a mapping $\theta: G \rightarrow G$ is a ψ-complete mapping of G if and only if the composition $\theta \circ \psi^{-1}$ is a complete mapping of G.

Proof. Let $\tau: G \rightarrow G$ be defined by $\tau(g)=\theta(g) \psi(g)$. Then θ is a ψ-complete mapping of G if and only if θ and τ are both bijections of G. Now, since ψ is a bijection of G, θ and τ are bijections of G if and only if $\theta \circ \psi^{-1}$ and $\tau \circ \psi^{-1}$ are bijections of G. But $\left(\tau \circ \psi^{-1}\right)(g)=\left(\theta \circ \psi^{-1}\right)(g) g$ for all $g \in G$. Hence, θ is a ψ-complete mapping of G if and only if $\theta \circ \psi^{-1}$ is a complete mapping of G.

If F_{q} is a finite field with q elements, then $\theta: F_{q} \rightarrow F_{q}$ is called a complete mapping of F_{q} if it is a complete mapping of the additive group of F_{q}. In [9] it was shown that nonsimple Bol loops of order $p r, p>r$ odd primes, can be characterized by pairs of complete mappings of F_{p}. This raises the problem of finding interesting classes of complete mappings of finite fields. The present paper addresses itself to this question.

By known interpolation techniques, for example Lagrange's interpolation formula, one shows that any mapping θ of an arbitrary finite field F_{q} into itself can be represented by a polynomial, in the sense that there exists $f \in F_{q}[x]$ such that $\theta(c)=f(c)$ for all $c \in F_{q}$. The polynomial f is unique if we require $\operatorname{deg}(f)<q$. In fact, for $f, h \in F_{q}[x]$ we have $f(c)=h(c)$ for all $c \in F_{q}$ if and only if $f(x) \equiv h(x) \bmod \left(x^{q}-x\right)$. The degree of the reduction of f modulo $\left(x^{q}-x\right)$ is called the reduced degree of f. Thus, the reduced degree is always less than q.

A polynomial $f \in F_{q}[x]$ is called a permutation polynomial of F_{q} if the induced mapping $c \in F_{q} \mapsto f(c)$ is a bijection (see [7]). By analogy, we call $f \in F_{q}[x]$ a complete mapping polynomial of F_{q} if $c \in F_{q} \mapsto f(c)$ is a complete mapping of F_{q}, that is if both $f(x)$ and $f(x)+x$ are permutation polynomials of F_{q}. Trivial examples of complete mapping polynomials are the linear polynomials $f(x)=a x$ with $a \neq 0,-1$. One of our aims will be to find complete mapping polynomials of reduced degree >1. The following result, stated and proved in [5], [7], provides a useful criterion for permutation polynomials.

Proposition 2. A polynomial $f \in F_{q}[x]$ is a permutation polynomial of F_{q} if and only if the following two conditions are satisfied:
(i) f has a unique root in F_{q};
(ii) for each integer n with $1 \leqslant n \leqslant q-2$ and $\operatorname{gcd}(n, q)=1$, the nth power f^{n} of f has reduced degree $\leqslant q-2$.

A consequence of this result is that if $f \in F_{q}[x]$ has reduced degree $m>1$ and m divides $q-1$, then f is not a permutation polynomial of F_{q}. We also obtain the following restriction on the reduced degree of a complete mapping polynomial.

Theorem 1. For a finite field F_{q} with odd $q>3$, any complete mapping polynomial of F_{q} has reduced degree $\leqslant q-3$.

Proof. By (ii) of Proposition 2, a complete mapping polynomial $f(x)$ of F_{q} has reduced degree $\leqslant q-2$. Similarly, $f(x)^{2}$ and $(f(x)+x)^{2}$ have reduced degrees $\leqslant q-2$. But $(f(x)+x)^{2}=f(x)^{2}+2 x f(x)+x^{2}$, and since $(f(x)+x)^{2}, f(x)^{2}$, and x^{2} have reduced degrees $\leqslant q-2$, then $2 x f(x)$ has reduced degree $\leqslant q-2$ and the result follows.

This bound is in a sense best possible since $f(x)=x^{4}+3 x$ is a complete mapping polynomial of F_{7} of reduced degree 4. It would be of interest to determine whether Theorem 1 holds also for even q. Let F_{q}^{*} denote the multiplicative group of nonzero elements of F_{q}.

Theorem 2. If $f(x)$ is a complete mapping polynomial of F_{q}, then so are the following polynomials:
(i) $f(x+a)+b$ for all $a, b \in F_{q}$;
(ii) af $\left(a^{-1} x\right)$ for all $a \in F_{q}^{*}$;
(iii) any polynomial representing the inverse mapping of $c \in F_{q} \mapsto f(c)$.

Proof. (i) is trivial. For (ii) write $f^{(a)}(x)=a f\left(a^{-1} x\right)$ and $g(x)=f(x)+x$, then $f^{(a)}(x)+x=a f\left(a^{-1} x\right)+a a^{-1} x=a g\left(a^{-1} x\right)$, so that both $f^{(a)}(x)$ and $f^{(a)}(x)+x$ are permutation polynomials being compositions of permutation polynomials. For (iii) let $h \in F_{q}[x]$ be any polynomial representing the inverse mapping of $c \in F_{q} \mapsto f(c)$. Then h is a permutation polynomial and $h(c)+c=$ $h(c)+f(h(c))=g(h(c))$ for all $c \in F_{q}$, so that $h(x)+x$ is a permutation polynomial.

2. Complete mapping polynomials of small degree

We shall determine all complete mapping polynomials of degree <6, as well as those of degree 6 for finite fields of order prime to 6 . To do this, we make use of the classification given by Dickson [4], [5] of the corresponding set of permutation polynomials.

Let $f \in F_{q}[x]$ be a polynomial of degree $n \geqslant 1$. If $\operatorname{gcd}(n, q)=1$, let $f(x)=$ $a_{0} x^{n}+n a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}$. The normalized polynomial \tilde{f} of f is defined by

$$
\tilde{f}(x)=a_{0}^{-1}\left[f\left(x-a_{1} a_{0}^{-1}\right)-f\left(-a_{1} a_{0}^{-1}\right)\right]
$$

If $\operatorname{gcd}(n, q)>1$, let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$. The normalized polynomial \tilde{f} is then defined by

$$
\tilde{f}(x)=a_{0}^{-1}\left[f(x)-a_{n}\right] .
$$

The normalized polynomial has the property of being monic of degree n and having no constant term. Furthermore, when $\operatorname{gcd}(n, q)=1$, the coefficient of x^{n-1} in $\tilde{f}(x)$ is zero.

Let $f \in F_{q}[x]$ have degree $n \geqslant 1$ and leading coefficient a_{0}, and let \tilde{f} be its normalized polynomial. If $\operatorname{gcd}(n, q)=1$, then $f(x)=a_{0} \tilde{f}(x+b)+c$ for some $b, c \in F_{q}$, and if $\operatorname{gcd}(n, q)>1$, then $f(x)=a_{0} f(x)+c$ for some $c \in F_{q}$. Note that f is a permutation polynomial of F_{q} if and only if \tilde{f} is one.

We include here Dickson's results in the form of a table listing all normalized permutation polynomials of F_{q} of degree <6 and those of degree 6 for finite fields F_{q} with $\operatorname{gcd}(q, 6)=1$.

Table 1

Normalized Permutation Polynomials	q
x	
x^{2}	all q
x^{3}	$q \equiv 0 \bmod 2$
$x^{3}-a x, \quad a$ not a square in F_{q}	$q \neq 1 \bmod 3$
$x^{4} \pm 3 x$	$q \equiv 0 \bmod 3$
$x^{4}+a x^{2}+b x \quad$ if $x=0$ is its only root in F_{q}	7
x^{5}	$q \equiv 0 \bmod 2$
$x^{5}-a x, \quad a$ not a fourth power in F_{q}	$q \neq 1 \bmod 5$
$x^{5}+a x, \quad a^{2}=2$	$q \equiv 0 \bmod 5$
$x^{5} \pm 2 x^{2}$	9
$x^{5}+a x^{3} \pm x^{2}+3 a^{2} x, \quad a$ not a square in F_{q}	7
$x^{5}+a x^{3}+5^{-1} a^{2} x, \quad a \in F_{q}$ arbitrary	7
$x^{5}+a x^{3}+3 a^{2} x, \quad a$ not a square in F_{q}	$q \equiv \pm 2 \bmod 5$
$x^{5}-2 a x^{3}+a^{2} x, \quad a$ not a square in F_{q}	13
$x^{6} \pm 2 x$	$q \equiv 0 \bmod 5$
$x^{6} \pm a^{4} x^{3}+a^{2} x^{2} \pm 5 x, \quad a \neq 0 \quad 11$	
$x^{6} \pm 4 a^{2} x^{3}+a x^{2} \pm 4 x, \quad a=0 \quad$ or $\quad a$ not a square in F_{q}	11
	11

The following result provides the connection between complete mapping polynomials and normalized permutation polynomials.

Theorem 3. Let $f \in F_{q}[x]$ be of degree n with $n \geqslant 3$ if $\operatorname{gcd}(n, q)=1$ and $n \geqslant 2$ if $\operatorname{gcd}(n, q)>1$, and let \tilde{f} be the normalized polynomial of f. Then f is a complete mapping polynomial of F_{q} if and only if there exists a normalized polynomial \tilde{g} such that:
(i) \tilde{f} and \tilde{g} are permutation polynomials of F_{q};
(ii) $\tilde{g}(x)-\tilde{f}(x)=a_{0}^{-1} x$, where a_{0} is the leading coefficient of f.

Proof. If $\operatorname{gcd}(n, q)=1$, let $f(x)=a_{0} x^{n}+n a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}$. Then

$$
\tilde{f}(x)=a_{0}^{-1}\left[f\left(x-a_{1} a_{0}^{-1}\right)-f\left(-a_{1} a_{0}^{-1}\right)\right]
$$

and the normalized polynomial $\tilde{g}(x)$ of $f(x)+x$ is given by

$$
\begin{aligned}
\tilde{g}(x) & =a_{0}^{-1}\left[f\left(x-a_{1} a_{0}^{-1}\right)+\left(x-a_{1} a_{0}^{-1}\right)-f\left(-a_{1} a_{0}^{-1}\right)+a_{1} a_{0}^{-1}\right] \\
& =a_{0}^{-1}\left[f\left(x-a_{1} a_{0}^{-1}\right)+x-f\left(-a_{1} a_{0}^{-1}\right)\right]
\end{aligned}
$$

Hence $\tilde{g}(x)-\tilde{f}(x)=a_{0}^{-1} x$. If f is a complete mapping polynomial of F_{q}, then (i) and (ii) follow. Conversely, if (i) and (ii) hold, then $f(x)=a_{0} \tilde{f}(x+b)+c$ for suitable $b, c \in F_{q}$, and so $f(x)$ and $a_{0} \tilde{g}(x+b)+c-b=a_{0}\left[\tilde{f}(x+b)+a_{0}^{-1} x\right.$ $\left.+a_{0}^{-1} b\right]+c-b=f(x)+x$ are permutation polynomials of F_{q}, that is f is a complete mapping polynomial of F_{q}.

If $\operatorname{gcd}(n, q)>1$, let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$, then $\tilde{f}(x)=a_{0}^{-1}[f(x)$ $\left.-a_{n}\right]$ and the normalized polynomial $\tilde{g}(x)$ of $f(x)+x$ is given by $\tilde{g}(x)=$ $a_{0}^{-1}\left[f(x)+x-a_{n}\right]$. Hence $\tilde{g}(x)-\tilde{f}(x)=a_{0}^{-1} x$. The proof is completed in the same way as in the case where $\operatorname{gcd}(n, q)=1$.

Degree $\leqslant 1$. $f(x)=a x+b \in F_{q}[x]$ is a permutation polynomial of F_{q} if and only if $a \neq 0$. Thus $f(x)$ is a complete mapping polynomial of F_{q} if and only if $a \neq 0,-1$.

Degree 2. If $f(x)=a x^{2}+b x+c \in F_{q}[x]$ is a complete mapping polynomial of F_{q} of degree 2, then by Theorem 3 and Table 1 we have q even and $\tilde{f}(x)=\tilde{g}(x)=x^{2}$. Thus $a^{-1} x=\tilde{g}(x)-\tilde{f}(x)=0$, a contradiction. There are thus no complete mapping polynomials of degree 2 .

Degree 3. If $f(x)=a_{0} x^{3}+\cdots+a_{3} \in F_{q}[x]$ is a complete mapping polynomial of F_{q} of degree 3, then by Theorem 3 and Table 1 either $q \equiv 2 \bmod 3$ or $q \equiv 0 \bmod 3$. If $q \equiv 2 \bmod 3$, then $\tilde{f}(x)=\tilde{g}(x)=x^{3}$, thus $a_{0}^{-1} x=\tilde{g}(x)-\tilde{f}(x)=$ 0 , a contradiction. Let $q \equiv 0 \bmod 3$. Then $\tilde{f}(x) \neq \tilde{g}(x)$, otherwise we obtain a contradiction. Thus either (i) $\tilde{g}(x)=x^{3}-a x$ and $\tilde{f}(x)=x^{3}$; (ii) $\tilde{g}(x)=x^{3}$ and $\tilde{f}(x)=x^{3}-a x$; or (iii) $\tilde{g}(x)=x^{3}-a x$ and $\tilde{f}(x)=x^{3}-b x$, where $a \neq b$ and
both are nonsquares in F_{q}. If (i) holds, then $a_{0}^{-1} x=\tilde{g}(x)-\tilde{f}(x)=-a x$, therefore $a_{0}=-a^{-1}$. If (ii) holds, then $a_{0}^{-1} x=\tilde{g}(x)-\tilde{f}(x)=a x$, thus $a_{0}=a^{-1}$. If (iii) holds, then $a_{0}^{-1} x=\tilde{g}(x)-\tilde{f}(x)=(b-a) x$, thus $a_{0}=(b-a)^{-1}$. Thus $f(x) \in$ $F_{q}[x]$ is a complete mapping polynomial of F_{q} of degree 3 if and only if $q \equiv 0 \bmod 3$ and either $f(x)=-a x^{3}+c, f(x)=a x^{3}-x+c$, or $f(x)=(b-$ $a)^{-1} x^{3}-b(b-a)^{-1} x+c$, where $a \neq b$ are nonsquares in F_{q} and $c \in F_{q}$ is arbitrary.

In like manner, the complete mapping polynomials of degree 4 and 5 can be determined, as can be those of degree 6 for fields of order relatively prime to 6 . These results are summarized in the following table.

Table 2

Complete Mapping Polynomials	q
$\begin{aligned} & a x+b, \quad a, b \in F_{q}, \quad a \neq 0,-1 \\ & -a x^{3}+c, \quad a x^{3}-x+c, \quad(b-a)^{-1} x^{3}-b(b-a)^{-1} x+c \end{aligned}$ $a, b, c \in F_{q}, \quad a \neq b \text { nonsquares in } F_{q}$ $-(x+a)^{4}+3 x+b, \quad(x+a)^{4}+3 x+b, \quad a, b \in F_{7}$ arbitrary $a^{-1}\left(x^{4}+b x^{2}+c x\right)+d, \quad a, b, c, d \in F_{q}, \quad a \neq 0$ such that $x^{4}+b x^{2}+c x$ and $x^{4}+b x^{2}+(a+c) x$ each have $x=0$ as the unique root in F_{q} $\begin{aligned} & 5 a^{-2}\left[(x+b)^{5}+a(x+b)^{3}+8 a^{2} x\right]+c, \\ & 8 a^{-2}\left[(x+b)^{5}+a(x+b)^{3}+3 a^{2} x\right]+c, \\ & a, b, c \in F_{13}, \quad a \text { not a square in } F_{13} \\ & a(x+b)^{5}+c, \quad a(x+b)^{5} \pm x+c, \quad b, c \in F_{9} \text { arbitrary, } \quad a^{2}=2 \\ & -a x^{5}+c, \quad a x^{5}-x+c, \quad(a-b)^{-1} x^{5}-a(a-b)^{-1} x+c, \end{aligned}$ $a, b, c \in F_{q}, \quad a \neq b$ not fourth powers in F_{q} $\begin{aligned} & -5(x+b)^{6}+x+c, \quad-2(x+b)^{6}-4 x+c, \quad 2(x+b)^{6}-4 x+c \\ & 5(x+b)^{6}+x+c, \quad-3(x+b)^{6}+5 x+c, \quad 3(x+b)^{6}+5 x+c \\ & 5(x+b)^{6}-2 x+c, \quad-2(x+b)^{6}+3 x+c, \quad 2(x+b)^{6}+3 x+c \\ & -5(x+b)^{6}-2 x+c, \quad 4(x+b)^{6}+5 x+c, \quad-4(x+b)^{6}+5 x+c \end{aligned}$ $b, c \in F_{11} \text { arbitrary }$	all q $q \equiv 0 \bmod :$ 7 $q \equiv 0 \bmod { }^{2}$ 13 9 $q \equiv 0 \bmod \leq$ 11

3. A special class of complete mapping binomials

In this section we obtain a necessary and sufficient condition for a binomial in $F_{q}[x]$ of the form $a x^{(q+n-1) / n}+b x, q \equiv 1 \bmod n, n \geqslant 2$, to be a complete mapping polynomial of F_{q}, and the case $n=2$ is examined more closely. In this way we will establish the existence of complete mapping polynomials of reduced degree >1 for all F_{q} with $q>5$.

From Theorem 8.92 of [7] it follows that, for q sufficiently large, permutation polynomials of F_{q} of the form $x^{(q+n-1) / n}+b x, q \equiv 1 \bmod n, n \geqslant 2$, exist. Polynomials of the form $x^{(q+1) / 2}+b x$, q odd, have been studied in [1], [2], and sufficient conditions were obtained for such binomials to be permutation polynomials of F_{q}.

If $n \geqslant 2$ is an integer and $q \equiv 1 \bmod n$, let ω be a primitive nth root of unity in F_{q}. Let $\psi_{n}: F_{q} \rightarrow F_{q}$ be the mapping defined by $\psi_{n}(c)=c^{(q-1) / n}, c \in F_{q}$. Then ψ_{n} maps F_{q}^{*} homomorphically onto the subgroup of F_{q}^{*} generated by ω.

Lemma 1. If $n \geqslant 2$ is an integer such that $q \equiv 1 \bmod n$, then $x^{(q+n-1) / n}+b x \in$ $F_{q}[x]$ is a permutation polynomial of F_{q} if and only if the following conditions hold:
(i) $(-b)^{n} \neq 1$;
(ii) $\psi_{n}\left(\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}\right) \neq \omega^{j-i}$ for all $0 \leqslant i<j<n$, where ω is a fixed primitive nth root of unity in F_{q}.

Proof. Put $f(x)=x^{(q+n-1) / n}+b x$. Let b satisfy (i) and (ii) of the lemma. If $f(c)=0$ for some $c \in F_{q}^{*}$, then for some $0 \leqslant i<n$ we have $0=b c+c^{(q+n-1) / n}$ $=\left(b+c^{(q-1) / n}\right) c=\left(b+\omega^{i}\right) c$. Now $(-b)^{n} \neq 1$ implies that $b+\omega^{i} \neq 0$, hence $c=0$, a contradiction. If $f\left(c_{1}\right)=f\left(c_{2}\right), c_{1}, c_{2} \in F_{q}^{*}$, then $\left(b+c_{1}^{(q-1) / n}\right) c_{1}=(b$ $\left.+c_{2}^{(q-1) / n}\right) c_{2}$, thus for some $0 \leqslant i, j<n$ we have $\left(b+\omega^{i}\right) c_{1}=\left(b+\omega^{j}\right) c_{2}$. Without loss of generality we may assume $i \leqslant j$. Thus $\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}=c_{2} c_{1}^{-1}$, hence $\psi_{n}\left(\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}\right)=\psi_{n}\left(c_{2}\right) \psi_{n}\left(c_{1}^{-1}\right)=\omega^{j-i}$, which is a contradiction unless $i=j$. In this case $c_{2} c_{1}^{-1}=\left(b+\omega^{i}\right)\left(b+\omega^{i}\right)^{-1}=1$, thus $c_{1}=c_{2}$. Therefore $f(x)$ is a permutation polynomial of F_{q}.

To prove the necessity, suppose first that $(-b)^{n}=1$. Then $b+\omega^{i}=0$ for some $0 \leqslant i<n$. Let $c \in F_{q}$ be such that $\psi_{n}(c)=\omega^{i}$. Then $c \neq 0$ and $f(c)=0=f(0)$, so that $f(x)$ fails to be a permutation polynomial of F_{q}.

Suppose $\psi_{n}\left(\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}\right)=\omega^{j-i}$ for some $0 \leqslant i<j<n$. Let $a=(b+$ $\left.\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}$ and let $d \in F_{q}^{*}$ be such that $\psi_{n}(d)=\omega^{j}$. Then $\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}$ $=a=d d^{-1} a$ and $\psi_{n}\left(d a^{-1}\right)=\omega^{i}$. Therefore $\left(b+\omega^{i}\right) d a^{-1}=\left(b+\omega^{j}\right) d$ and $f\left(d a^{-1}\right)=f(d)$, so that $f(x)$ fails to be a permutation polynomial of F_{q} since $a \neq 1$.

Theorem 4. If $n \geqslant 2$ is an integer such that $q \equiv 1 \bmod n$, then $a x^{(q+n-1) / n}+b x$ $\in F_{q}[x], a \neq 0$, is a complete mapping polynomial of F_{q} if and only if the following conditions hold:
(i) $b^{n} \neq(-a)^{n},(b+1)^{n} \neq(-a)^{n}$;
(ii) $\psi_{n}\left(\left(b+a \omega^{i}\right)\left(b+a \omega^{j}\right)^{-1}\right) \neq \omega^{j-i}$ and $\psi_{n}\left(\left(b+1+a \omega^{i}\right)\left(b+1+a \omega^{j}\right)^{-1}\right)$ $\neq \omega^{j-i}$ for all $0 \leqslant i<j<n$, where ω is a fixed primitive nth root of unity in F_{q}.

Proof. $f(x)=a x^{(q+n-1) / n}+b x$ is a complete mapping polynomial of F_{q} if and only if $a^{-1} f(x)$ and $a^{-1}(f(x)+x)$ are permutation polynomials of F_{q}. But by Lemma $1, a^{-1} f(x)$ and $a^{-1}(f(x)+x)$ are permutation polynomials of F_{q} if and only if:
(A) $\left(-a^{-1} b\right)^{n} \neq 1,\left(-a^{-1}(b+1)\right)^{n} \neq 1$;
(B) $\psi_{n}\left(\left(a^{-1} b+\omega^{i}\right)\left(a^{-1} b+\omega^{j}\right)^{-1}\right) \neq \omega^{j-i}$ and $\psi_{n}\left[\left(a^{-1}(b+1)+\omega^{i}\right)\left(a^{-1}(b+1)\right.\right.$ $\left.\left.+\omega^{j}\right)^{-1}\right] \neq \omega^{j-i}$ for all $0 \leqslant i<j<n$.
(i) is equivalent to (A) and (ii) is seen to be equivalent to (B) by noting that $\left(a^{-1} b+\omega^{i}\right)\left(a^{-1} b+\omega^{j}\right)^{-1}=\left(b+a \omega^{i}\right)\left(b+a \omega^{j}\right)^{-1}$ and $\left(a^{-1}(b+1)+\omega^{i}\right)\left(a^{-1}(b\right.$ $\left.+1)+\omega^{j}\right)^{-1}=\left(b+1+a \omega^{i}\right)\left(b+1+a \omega^{j}\right)^{-1}$.

Let $n=2$ and q be odd. We shall denote ψ_{2} simply by ψ. In this case $\omega=-1$, and $\psi(c)=1$ if and only if $c \neq 0$ and c is a square in F_{q}.

Theorem 5. Let q be odd and $\tilde{f}(x)=x^{(q+1) / 2}+b x \in F_{q}[x]$. Then $f(x)$ is a permutation polynomial of F_{q} if and only if $\psi\left(b^{2}-1\right)=1$.

Proof. By Lemma 1 with $n=2$ and $\omega=-1, f(x)$ is a permutation polynomial of F_{q} if and only if $b^{2}-1 \neq 0$ and $\psi\left[(b+1)(b-1)^{-1}\right] \neq-1$. But $\psi[(b+1)(b-$ $\left.1)^{-1}\right]=\psi\left[(b+1)(b-1)^{-1}\right] \psi\left((b-1)^{2}\right)=\psi\left(b^{2}-1\right)$, and $b^{2}-1 \neq 0$ if and only if $\psi\left(b^{2}-1\right) \neq 0$. Thus $f(x)$ is a permutation polynomial of F_{q} if and only if $\psi\left(b^{2}-1\right) \neq 0,-1$. Since the image of ψ is $\{0, \pm 1\}$, the result follows.

Remark 1. It is easily seen that $\psi\left(b^{2}-1\right)=1$ precisely if b is of the form $b=\left(c^{2}+1\right)\left(c^{2}-1\right)^{-1}$ for some $c \in F_{q}$ with $c^{2} \neq 0,1$. Carlitz [1] has shown that for elements b of this form, $x^{(q+1) / 2}+b x$ is a permutation polynomial of F_{q}. One arrives at a simpler form for b by noting that $\psi\left(b^{2}-1\right)=1$ if and only if $b=2^{-1}\left(c+c^{-1}\right)$ for some $c \in F_{q}$ with $c^{2} \neq 0,1$.

Theorem 6. Let q be odd and $f(x)=a x^{(q+1) / 2}+b x \in F_{q}[x], a \neq 0$. Then $f(x)$ is a complete mapping polynomial of F_{q} if and only if $\psi\left(b^{2}-a^{2}\right)=\psi\left((b+1)^{2}-\right.$ a^{2}) $=1$.

Proof. Using arguments similar to those in the proof of Theorem 4, this follows from Theorem 5.

Remark 2. It can be verified that the family of polynomial mappings in $F_{q}[x]$ of the form $a x^{(q+1) / 2}+b x$ is closed under composition. In fact, if $f_{1}(x)=$ $a x^{(q+1) / 2}+b x$ and $f_{2}(x)=c x^{(q+1) / 2}+d x$ are in $F_{q}[x], q$ odd, then

$$
\left(f_{1} \circ f_{2}\right)(x) \equiv(a e+b c) x^{(q+1) / 2}+(a f+b d) x \bmod \left(x^{q}-x\right)
$$

where $e+f=(c+d)^{(q+1) / 2}$ and $e-f=(d-c)^{(q+1) / 2}$.
Remark 3. Let $q>3$ be odd and $f(x)=b x^{q-2}+x^{(q-3) / 2} \in F_{q}[x]$. By arguments similar to those in Lemma 1 and Theorem 5 one shows that $f(x)$ is a permutation polynomial of F_{q} if and only if $\psi\left(b^{2}-1\right)=1$. It should be noted, however, that for $b \neq 0, f(x)$ is never a complete mapping polynomial of F_{q}. This follows from Theorem 1 and the fact that $f(x)$ has reduced degree $q-2$.

The criterion in Theorem 6 leads to enumerative results which indicate that there are comparatively many complete mapping polynomials of F_{q} of the form $x^{(q+1) / 2}+b x$.

Theorem 7. The number N of elements $b \in F_{q}$ such that $x^{(q+1) / 2}+b x$ is a complete mapping polynomial of F_{q} satisfies

$$
\begin{equation*}
N \geqslant \frac{1}{4} q-\frac{5}{2}-\frac{3}{4} q^{1 / 2} \tag{1}
\end{equation*}
$$

if F_{q} is of characteristic >3. If F_{q} is of characteristic 3, we have

$$
N= \begin{cases}\frac{q-9}{4} & \text { if } q \equiv 1 \bmod 4, \tag{2}\\ \frac{q-3}{4} & \text { if } q \equiv 3 \bmod 4 .\end{cases}
$$

Proof. Let η be the quadratic character of F_{q}. Then from Theorem 6 and the definition of ψ we get for F_{q} of characteristic >3,

$$
\begin{aligned}
N= & \frac{1}{4} \sum_{\substack{b \in F_{q} \\
b \neq-2, i, 0,1}}\left[1+\eta\left(b^{2}-1\right)\right]\left[1+\eta\left((b+1)^{2}-1\right)\right] \\
& =\frac{1}{4} \sum_{b \in F_{q}}\left[1+\eta\left(b^{2}-1\right)\right]\left[1+\eta\left((b+1)^{2}-1\right)\right]-\frac{1}{4}(4+2 \eta(3)+2 \eta(-1)) \\
= & \frac{1}{4} q+\frac{1}{2} \sum_{b \in F_{q}} \eta\left(b^{2}-1\right)+\frac{1}{4} \sum_{b \in F_{q}} \eta((b-1) b(b+1)(b+2)) \\
& -1-\frac{1}{2}(\eta(3)+\eta(-1)) .
\end{aligned}
$$

Now

$$
\begin{equation*}
\sum_{b \in F_{q}} \eta\left(\left(b+c_{1}\right)\left(b+c_{2}\right)\right)=-1 \quad \text { for } c_{1}, c_{2} \in F_{q}, c_{1} \neq c_{2} \tag{3}
\end{equation*}
$$

by [6], Lemma 14.1.1, and so

$$
N=\frac{1}{4} q-\frac{3}{2}-\frac{1}{2}(\eta(3)+\eta(-1))+\frac{1}{4} \sum_{b \in F_{q}} \eta((b-1) b(b+1)(b+2)) .
$$

According to Weil's estimate for character sums (see [11, page 43, Theorem $\left.2 \mathrm{C}^{\prime}\right]$) we have

$$
\left|\sum_{b \in F_{q}} \eta((b-1) b(b+1)(b+2))\right| \leqslant 3 q^{1 / 2}
$$

hence (1) follows. If F_{q} is of characteristic 3, then

$$
\begin{aligned}
N & =\frac{1}{4} \sum_{\substack{b \in F_{q} \\
b \neq 0 . \pm 1}}\left[1+\eta\left(b^{2}-1\right)\right]\left[1+\eta\left((b+1)^{2}-1\right)\right] \\
& =\frac{q-3}{4}+\frac{1}{2} \sum_{\substack{b \in F_{q} \\
b \neq 0, \pm 1}} \eta\left(b^{2}-1\right)+\frac{1}{4} \sum_{\substack{b \in F_{q} \\
b \neq 0, \pm 1}} \eta\left(b(b+1)(b-1)^{2}\right) \\
& =\frac{q-3}{4}+\frac{1}{2} \sum_{b \in F_{q}} \eta\left(b^{2}-1\right)-\frac{1}{2} \eta(-1)+\frac{1}{4} \sum_{b \in F_{q}} \eta(b(b+1))-\frac{1}{4} \eta(-1) \\
& =\frac{1}{4}(q-6-3 \eta(-1))
\end{aligned}
$$

by (3). Thus (2) follows since $\eta(-1)=1$ for $q \equiv 1 \bmod 4$ and $\eta(-1)=-1$ for $q \equiv 3 \bmod 4$.

Corollary 1. Complete mapping polynomials of F_{q} of the form $x^{(q+1) / 2}+b x$ exist exactly for all odd $q \geqslant 13$ and for $q=7$.

Proof. The lower bound in (1) and the expressions in (2) are positive for $q>25$. Thus it remains to consider the odd prime powers $q \leqslant 25$. We can take $b=2$ for $q=23$ and $25, b=3$ for $q=7$ and $17, b=5$ for $q=19$, and $b=6$ for $q=13$. The cases $q=3$ and 9 can be eliminated by (2), and for $q=5$ and 11 one shows by inspection that there is no complete mapping polynomial of the desired form.

A basic question for the applications (see for example [9]) is that of the existence of complete mapping polynomials of reduced degree >1, which can now be settled as follows.

Theorem 8. For any finite field F_{q} with $q>5$ there exist complete mapping polynomials of F_{q} of reduced degree >1.

Proof. For $q=7$ and all odd $q \geqslant 13$, this follows from Corollary 1 . For $q=9$ and 11, polynomials of the desired type can be obtained from Table 2. For even $q>5$, we use the following argument to show that there exist complete mapping polynomials of F_{q} of degree 4 . The number of monic irreducible polynomials over F_{q} of degree 3 is given by $\left(q^{3}-q\right) / 3$. On the other hand, there are q^{2} ordered pairs of elements of F_{q}. Since $\left(q^{3}-q\right) / 3>q^{2}$ for $q>5$, there exist an ordered pair (a_{1}, a_{2}) with $a_{1}, a_{2} \in F_{q}$ and two distinct elements $d_{1}, d_{2} \in F_{q}$ such that $x^{3}+a_{1} x^{2}+a_{2} x+d_{i}$ is irreducible over F_{q} for $i=1,2$. Changing x into $x-a_{1}$, we get two irreducible polynomials $x^{3}+b x+c_{i}, i=1,2$, over F_{q} with $c_{1} \neq c_{2}$. It follows then from Table 2 that $\left(c_{2}-c_{1}\right)^{-1}\left(x^{4}+b x^{2}+c_{1} x\right)$ is a complete mapping polynomial of F_{q}.

Remark 4. Theorem 8 is best possible in the sense that for $q \leqslant 5$ every complete mapping polynomial of F_{q} is of reduced degree 1 . This is trivial for $q=2$. For $q=3$ it is obvious and for $q=4,5$ it follows, respectively, from the remark after Proposition 2 and Theorem 1 that every complete mapping polynomial of F_{q} has reduced degree $\leqslant 2$. Since there are no quadratic complete mapping polynomials (see Section 2), the claim is established.

Remark 5. Theorem 8 can also be proved elementarily, that is without using Corollary 1 which depends on Weil's estimate. If F_{q} is of characteristic >7, then Theorem 6 shows that $24 x^{(q+1) / 2}+25 x$ is a complete mapping polynomial of F_{q} of reduced degree >1. If F_{q} is of characteristic 3 or 5 , then suitable polynomials can be obtained from Table 2. If F_{q} is of characteristic 7 , then $x^{(q+1) / 2}+3 x$ is suitable by Theorem 6. For F_{q} of characteristic 2 the same argument as in the proof of Theorem 8 is used. We note that "almost universal" complete mapping polynomials obtained from Theorem 6 , such as $24 x^{(q+1) / 2}+25 x$, are obviously connected with Pythagorean triples.

4. Permutation binomials

In the preceding section we considered binomials $a x^{k}+b x$ with k depending on q, and many complete mapping polynomials were obtained. If k is fixed independently of q, the situation changes. In fact, apart from some obvious exceptions, such a binomial is not even a permutation polynomial of F_{q} once q is sufficiently large. One such exception is the case $b=0$, since it is known that $a x^{k}$,
$a \in F_{q}^{*}$, is a permutation polynomial of F_{q} if and only if $\operatorname{gcd}(k, q-1)=1$, and from this it follows easily that for fixed $k \geqslant 1$ there exist infinitely many q such that x^{k} is a permutation polynomial of F_{q}. For if k is odd, take the infinitely many primes $q \equiv 2 \bmod k$. If k is even, consider $q=2^{r}$ and note that $\operatorname{gcd}\left(k, 2^{r}-1\right)>1$ if and only if $2^{r} \equiv 1 \bmod p_{i}$ for one of the odd prime divisors p_{i} of k. But the latter condition is equivalent to $r \equiv 0 \bmod e_{i}$ for some i, where e_{i} is the multiplicative order of $2 \bmod p_{i}$, and there are of course infinitely many r which do not satisfy any of these congruences.

LEMMA 2. The binomial $a x^{k}+b x \in F_{q}[x]$ with $a b \neq 0$ is permutation polynomial of F_{q} if and only if the equation

$$
\begin{equation*}
y^{k-1}+a b^{-1}\left(x^{k-1}+x^{k-2}+\cdots+x+1\right)=0 \tag{4}
\end{equation*}
$$

only has solutions $\left(x_{0}, y_{0}\right) \in F_{q} \times F_{q}$ with either $x_{0}=1$ or $y_{0}=0$.
Proof. Suppose the condition of the Lemma is satisfied. Now let $a c_{1}^{k}+b c_{1}=$ $a c_{2}^{k}+b c_{2}$ with $c_{1}, c_{2} \in F_{q}, c_{1} \neq c_{2}$. Without loss of generality, we can assume $c_{2} \neq 0$. Then

$$
a c_{2}^{k}\left[\left(c_{1} c_{2}^{-1}\right)^{k}-1\right]+b c_{2}\left(c_{1} c_{2}^{-1}-1\right)=0
$$

Put $x_{0}=c_{1} c_{2}^{-1} \neq 1, y_{0}=c_{2}^{-1} \neq 0$. Then $a y_{0}^{-k}\left(x_{0}^{k}-1\right)+b y_{0}^{-1}\left(x_{0}-1\right)=0$, hence $y_{0}^{k-1}+a b^{-1}\left(x_{0}^{k-1}+x_{0}^{k-2}+\cdots+x_{0}+1\right)=0$, a contradiction. Thus $a x^{k}+b x$ is a permutation polynomial of F_{q}. The converse is shown similarly.

We note that when $k=2$, we cannot have a permutation polynomial of F_{q} of the form $a x^{2}+b x, a b \neq 0$. This follows either from Lemma 2 or directly from the fact that such a binomial has two distinct roots in F_{q}. Thus we can assume $k>2$.

Equation (4) is of the form $y^{d}-f(x)=0$, which has been studied extensively both by the methods of algebraic geometry and by the well-known elementary methods of Stepanov and Schmidt. When $k>2$, then for equation (4) we have $d=k-1, m=\operatorname{deg}(f)=k-1$, thus we have here a case where Stepanov's standard condition $\operatorname{gcd}(m, d)=1$ is not satisfied. We will therefore use Schmidt's more general results for absolutely irreducible equations (see [10], [11]). By an absolutely irreducible equation we mean an equation $G(x, y)=0$ with $G(x, y)$ absolutely irreducible over F_{q}, that is irreducible over the algebraic closure \bar{F}_{q}.

Lemma 3. Let $k>2$. Then $y^{k-1}+c\left(x^{k-1}+x^{k-2}+\cdots+x+1\right), c \in F_{q}^{*}$, is absolutely irreducible over F_{q} if and only if k is not a power of the characteristic of F_{q}.

Proof. We use the fact that $y^{d}-f(x)$ is absolutely irreducible over F_{q} if and only if $D=\operatorname{gcd}\left(d, d_{1}, \ldots, d_{s}\right)=1$, where d_{1}, \ldots, d_{s} are the multiplicities of roots of $f(x)$ (see [11], page 11, Lemma 2C). In our case $f(x)=-c\left(x^{k}-1\right) /(x-1)$. Let p be the characteristic of F_{q} and $k=p^{t} u, \operatorname{gcd}(p, u)=1$. If $t=0$, then $f(x)$ has only simple roots, hence $D=1$. If $t>0, u \geqslant 2$, then $f(x)$ has the root 1 of multiplicity $p^{t}-1$ and $u-1$ roots $\neq 1$ of multiplicity p^{t}, hence $D=$ $\operatorname{gcd}\left(k-1, p^{t}-1, p^{t}, \ldots, p^{t}\right)=1$. If $t>0, u=1$, then $f(x)$ has the root 1 of multiplicity $p^{t}-1=k-1$, thus $D=\operatorname{gcd}(k-1, k-1)>1$ since $k>2$.

Theorem 9. Let $k>2$. Then: (i) if k is not a prime power, then for all finite fields F_{q} with $q \geqslant\left(k^{2}-4 k+6\right)^{2}$ there is no permutation polynomial of F_{q} of the form $a x^{k}+b x \in F_{q}[x]$ with $a b \neq 0$; (ii) if k is a power of the prime p, then for all finite fields F_{q} with $q \geqslant\left(k^{2}-4 k+6\right)^{2}$ and characteristic $\neq p$ there is no permutation polynomial of F_{q} of the form $a x^{k}+b x \in F_{q}[x]$ with $a b \neq 0$.

Proof. If the equation (4) is absolutely irreducible, then the number N of solutions $\left(x_{0}, y_{0}\right) \in F_{q} \times F_{q}$ satisfies

$$
\begin{equation*}
|N-q| \leqslant(k-2)^{2} q^{1 / 2} \tag{5}
\end{equation*}
$$

by [11, page 80]. On the other hand, the number N^{*} of solutions with either $x_{0}=1$ or $y_{0}=0$ satisfies $N^{*} \leqslant 2(k-1)$. For $q \geqslant\left(k^{2}-4 k+6\right)^{2}$ we get from (5),

$$
\begin{aligned}
N & \geqslant q^{1 / 2}\left[q^{1 / 2}-(k-2)^{2}\right] \geqslant\left(k^{2}-4 k+6\right)\left[k^{2}-4 k+6-(k-2)^{2}\right] \\
& =2\left(k^{2}-4 k+6\right)>2(k-1) \geqslant N^{*} .
\end{aligned}
$$

Thus there exists a solution $\left(x_{0}, y_{0}\right)$ of (4) with $x_{0} \neq 1$ and $y_{0} \neq 0$. The result follows now from Lemmas 2 and 3.

Corollary 2. If k and q are as in Theorem 9 , then there is no complete mapping polynomial of F_{q} of the form $a x^{k}+b x \in F_{q}[x]$ with $a \neq 0$.

In the exceptional case of Theorem 9, namely when k is a power of the characteristic of F_{q}, one can show that the conclusion of Theorem 9 is not valid.

Theorem 10. For fixed $k=p^{\prime}>2$, prime, there are infinitely many finite fields F_{q} of characteristic p for which there exist complete mapping polynomials of F_{q} of the form $a x^{k} \in F_{q}[x]$. If $p \geqslant 3$, one can find complete mapping polynomials of this form for any F_{q} of characteristic p.

Proof. If F_{q} is of characteristic p, then $a x^{k}, a \in F_{q}^{*}$, is always a permutation polynomial of F_{q}. Thus it remains to show that for infinitely many F_{q} there exist permutation polynomials of F_{q} of the form $a x^{k}+x, a \in F_{q}^{*}$. Since the mapping $c \in F_{q} \mapsto a c^{k}+c$ is a linear operator on F_{q} considered as a vector space over F_{p}, $a x^{k}+x$ is a permutation polynomial of F_{q} if and only if the polynomial only has the root 0 in F_{q}, or equivalently, if and only if $-a^{-1}$ is not a $(k-1)$ st power of an element of F_{q}^{*}. Such an element $a \in F_{q}^{*}$ can be found precisely if $\operatorname{gcd}(k-1$, $q-1)>1$. If $p \geqslant 3$, then $\operatorname{gcd}(k-1, q-1)=\operatorname{gcd}\left(p^{t}-1, q-1\right) \geqslant p-1$, so the condition is always satisfied. If $p=2$, then $k=2^{t}$ with $t \geqslant 2$, and one can find infinitely many powers q of 2 with $\operatorname{gcd}(k-1, q-1)>1$, for example take q to be any power of k.

More generally, one can study the question of finding permutation polynomials of F_{q} which are binomials

$$
\begin{equation*}
a x^{k}+b x^{j} \in F_{q}[x], \quad a b \neq 0,1 \leqslant j<k \tag{6}
\end{equation*}
$$

In the same way as Lemma 2, one shows the following criterion.

Lemma 4. The binomial (6) is a permutation polynomial of F_{q} if and only if the equation

$$
\begin{align*}
& y^{k-j}\left(x^{j-1}+x^{j-2}+\cdots+x+1\right) \tag{7}\\
& \quad+a b^{-1}\left(x^{k-1}+x^{k-2}+\cdots+x+1\right)=0
\end{align*}
$$

only has solutions $\left(x_{0}, y_{0}\right) \in F_{q} \times F_{q}$ with either $x_{0}=1$ or $y_{0}=0$.
Let $e=\operatorname{gcd}(k, j)$, then we can write $a x^{k}+b x^{j}=a\left(x^{e}\right)^{k / e}+b\left(x^{e}\right)^{j / e}$. Since the composition of two polynomials is a permutation polynomial if and only if each constituent is one, we get the following.

Lemma 5. The binomial (6) is a permutation polynomial of F_{q} if and only if $\operatorname{gcd}(e, q-1)=1$ and $a x^{k / e}+b x^{j / e}$ is a permutation polynomial of F_{q}, where $e=\operatorname{gcd}(k, j)$.

We can thus concentrate on the case where $\operatorname{gcd}(k, j)=1$. The following auxiliary results are needed.

Lemma 6. Let $\operatorname{gcd}(k, j)=1$ and $k, j>1$. Then for $f(x)=c\left(x^{k-1}+x^{k-2}\right.$ $+\cdots+x+1) \in F_{q}[x], c \neq 0$, and $g(x)=x^{j-1}+x^{j-2}+\cdots+x+1 \in F_{q}[x]$ we have:
(i) $f(x)$ and $g(x)$ are relatively prime;
(ii) if d and h are integers with $0<h<d$, then $f(x)^{h} g(x)^{d-h}$ is not a dth power.

Proof. Since $\operatorname{gcd}(k, j)=1, f(x)=c\left(x^{k}-1\right) /(x-1)$ and $g(x)=\left(x^{j}-\right.$ $1) /(x-1)$ are relatively prime. Furthermore, one of k and j is not divisible by the characteristic of F_{q}, and so one of $f(x)$ and $g(x)$ has only simple roots. Property (ii) is then clear.

Lemma 7. There exists a sequence $M_{3} \leqslant M_{4} \leqslant \cdots$ of positive integers with the following property: for $k>2$ and any finite field F_{q} with $q \geqslant M_{k}$, there is no permutation polynomial of F_{q} of the form $a x^{k}+b x^{j} \in F_{q}[x]$ with $a b \neq 0,1<j<k$, and $\operatorname{gcd}(k, j)=1$.

Proof. If $a b \neq 0,1<j<k$, and $\operatorname{gcd}(k, j)=1$, then it follows from Lemma 6 that the equation (7) satisfies the conditions of [11, page 175, Theorem 7B]. It follows from this theorem that the number N of solutions $\left(x_{0}, y_{0}\right) \in F_{q} \times F_{q}$ of (7) satisfies

$$
|N-q| \leqslant C(k-1, k-j) q^{1 / 2}
$$

for some positive constant $C(k-1, k-j)$ depending on $k-1$ and $k-j$. With $C(k)=\max _{j} C(k-1, k-j)$ we get

$$
|N-q| \leqslant C(k) q^{1 / 2}
$$

Let N^{*} be the number of solutions with either $x_{0}=1$ or $y_{0}=0$. If $x_{0}=1$, then (7) yields $j y_{0}^{k-j}+k a b^{-1}=0$, and since we cannot have $j=k=0$ in F_{q} because of $\operatorname{gcd}(k, j)=1$, we get at most $k-j$ values for y_{0}. If $y_{0}=0$, we obtain at most $k-1$ values for x_{0}. Altogether,

$$
N^{*} \leqslant(k-j)+(k-1) \leqslant 2 k-3 .
$$

Now choose $M_{3} \leqslant M_{4} \leqslant \cdots$ such that

$$
q-C(k) q^{1 / 2}>2 k-3 \text { for all } q \geqslant M_{k}
$$

Then $N>N^{*}$ for $q \geqslant M_{k}$, and the result follows from Lemma 4.

Theorem 11. Let $e=\operatorname{gcd}(k, j)$. If $e=k / 2$, then there is no permutation polynomial of F_{q} of the form (6). If either $e<k / 2, e<j$, or $e<k / 2, e=j$ and k / e is not a prime power, then there exists M_{k} such that for all finite fields F_{q} with $q \geqslant M_{k}$ there is no permutation polynomial of F_{q} of the form (6). If $e<k / 2, e=j$, and k / e is a power of the prime p, then for all F_{q} with $q \geqslant M_{k}$ and characteristic $\neq p$ there is no permutation polynomial of F_{q} of the form (6).

Proof. If $e=k / 2$, then $j=e$, and the resulting binomial $a x^{2 e}+b x^{e}$ is never a permutation polynomial of F_{q}. If $e<k / 2$ and $e<j$, then by Lemmas 5 and 7 we
will not get a permutation polynomial of F_{q} of the form (6) if $q \geqslant M_{k / e}$, thus a fortiori not if $q \geqslant M_{k}$. If $e<k / 2$ and $e=j$, then by Lemma 5 and Theorem 9 we get the desired results in the remaining cases.

Remark 6. In the case not covered by Theorem 11, namely $e<k / 2, e=j$, and k / e a power of the characteristic p of F_{q}, say $k / e=p^{t}$, the binomials are of the form $a x^{j p^{t}}+b x^{j} \in F_{q}[x]$. If $\operatorname{gcd}(j, q-1)>1$, no binomial of this form can be a permutation polynomial of F_{q}. If $\operatorname{gcd}(j, q-1)=1$, then by Lemma 5 and Theorem 10 there are infinitely many F_{q} of characteristic p for which there exist permutation polynomials of F_{q} of the form $a x^{j p^{1}}+x^{j}$ with $a \in F_{q}^{*}$.

References

1. L. Carlitz, 'Some theorems on permutation polynomials,' Bull. Amer. Math. Soc. 68 (1962), 120-122.
2. L. Carlitz, 'Permutations in finite fields,' Acta Sci. Math. (Szeged) 24 (1963), 196-203.
3. J. Dénes and A. D. Keedwell, Latin squares and their applications (Academic Press, New York, 1974).
4. L. E. Dickson, 'The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group,' Ann. of Math. (1) 11 (1896/97), 65-120.
5. L. E. Dickson, Linear groups (Dover, New York, 1958).
6. M. Hall, Jr., Combinatorial theory (Blaisdell Publ. Co., Waltham, Mass., 1967).
7. H. Lausch and W. Nöbauer, Algebra of polynomials (North-Holland, Amsterdam, 1973).
8. H. B. Mann, 'The construction of orthogonal latin squares,' Ann. Math. Statist. 13 (1942), 418-423.
9. H. Niederreiter and K. H. Robinson, 'Bol loops of order pq.' Math. Proc. Cambridge Philos. Soc. 89 (1981), 241-256.
10. W. M. Schmidt, 'Zur Methode von Stepanov,' Acta Arith. 24 (1973), 347-367.
11. W. M. Schmidt, Equations over finite fields (Lecture Notes in Math., Vol. 536, Springer-Verlag, Berlin-Heidelberg-New York, 1976).

Kommission für Mathematik
Österreichische Akademie der Wissenschaften
Dr. Ignaz-Seipel-Platz 2
A-1010 Wien
Austria

Department of Mathematics
University of the West Indies
Kingston 7
Jamaica

[^0]: © Copyright Australian Mathematical Society 1982

