A characterization of the Hall planes of odd order

P.B. Kirkpatrick

The Hall projective planes of odd order are characterized in terms of their translations, collineations which fix all the points of a Baer subplane, and involutory homologies.

1. Introduction

Let Π be a projective plane, τ_{∞} a line of Π and Π_{0} a Baer subplane of Π such that η_{∞} is a line of Π_{0}. We call II a generalized Hall plane with respect to l_{∞}, I_{0} if
(1) II is a translation plane with respect to l_{∞}, and
(2) II has a group of collineations which is transitive on the points of l_{∞} not in Π_{0}, and fixes every point in Π_{0}.

The object of this paper is to prove:
THEOREM. A projective plane Π is a Hall plane of odd order if and only if
(a) II is a finite generalized Hall plane with respect to some line τ_{∞} and Baer subplane Π_{0} containing τ_{∞}, and
(b) each point of $\underline{\underline{M}}=\left\{M \mid M \in Z_{\infty}\right.$ and $\left.M \in \Pi_{0}\right\}$ is the centre of an involutory homology with axis in Π_{0}.

The necessity of conditions (a) and (b) was proved by Hughes [6]

[^0]in 1959.
All finite planes with involutory homologies have odd order.
We use the terminology of Dembowski [2], except that we denote points by capital letters and the coordinate quadrangle $(0,0),(1,1),(0),(\infty)$ by $0, I, X, Y$ instead of $0, e, u, v$.

2. Preliminary results and lemmas

If O, I, X, Y is any coordinate quadrangle of a generalized Hall plane I, with $0, I, X, Y \in \Pi_{0}$ and $X, Y \in I_{\infty}$, then the corresponding ternary ring determines a quasifield F which has a sub-quasifield F_{0} such that whenever $z \in F \backslash F_{0}$ and $w \in F$ then $w=z \alpha+\beta$ for exactly one pair $(\alpha, \beta) \in F_{\mathrm{O}} \times F_{\mathrm{O}} \cdot F$ has a group of automorphisms which is transitive on $F \backslash F_{0}$ and fixes every element of F_{0}. Consequently, there exist four maps $f, g, h, k: F_{0} \rightarrow F_{0}$ with

$$
(z \alpha) z=z f(\alpha)+\dot{g}(\alpha) \text { and } \beta z=z h(\beta)+k(\beta)
$$

for all $z \in F \backslash F_{0}, \quad \alpha \in F_{0}, \quad \beta \in F_{0}$.
In addition to these facts, we shall need the classification of the subgroups of PSL(2, q) by Dickson ([3], Second Part, Chapter XII), and the following two results:

RESULT 1 (Kirkpatrick [7]). If π is a generalized Hall plane of odd order then F_{0} is a field and F is a right vector space (of dimension two) over F_{0} with respect to the operations induced by the quasifield structure of F. .

RESULT 2 (André [1]). If $\underline{\underline{H}}_{1}$ and $\underline{\underline{H}}_{2}$ are non-trivial homologies in a finite projective plane, and if H_{1} and H_{2} have the same axis but distinct centres, then the group $\left\langle\mathrm{H}_{1}, \underline{\underline{H}}_{2}\right.$) contains a non-trivial elation.

Let us assume throughout the remainder of the paper that I is a generalized Hall plane of odd order, with special line l_{∞} and special subplane Π_{0}; and that all coordinate systems mentioned shall have
$0, I \in \Pi_{0}$ and $X, Y \in \underline{M}=\left\{M \mid M \in Z_{\infty}\right.$ and $\left.M \in \Pi_{0}\right\}$. Then $\underline{\underline{M}}=\left\{(\alpha) \mid \alpha \in F_{0}\right\} \cup\{(\infty)\}$ and, by Result 1,
$(z \alpha+\beta) z=z[f(\alpha)+h(\beta)]+g(\alpha)+k(\beta), \forall z \in F \backslash F_{0}, \alpha \in F_{0}, \beta \in F_{0}$,
and the four maps are additive homomorphisms.
LEMMA 1. Every elation of $I I$ with centre in M is a translation.
Proof. Suppose there is an elation with centre $M \in M$ which is not a translation. There is an allowable coordinate system with $Y=M$. The non-trivial $(Y, O Y)$-elations are in one-to-one correspondence with the non-zero $d \in F$ such that

$$
x(d+y)=x d+x y, \forall x, y \in F
$$

If there exists such an element d, then, for some $\beta \in F_{0}, \beta \neq 0$, and $z \in F \backslash F_{0}, z(\beta+z)=z \beta+z z$ and $\beta(\beta+z)=\beta \beta+\beta z$. Now

$$
\begin{aligned}
\beta(\beta+z)=\beta \beta+\beta z & \Rightarrow(\beta+z) h(\beta)+k(\beta)=\beta \beta+z h(\beta)+k(\beta) \\
& \Rightarrow h(\beta)=\beta,
\end{aligned}
$$

and

$$
\begin{aligned}
z(\beta+z)=z \beta+z z & \Rightarrow(\beta+z-\beta)(\beta+z)=z \beta+z f(1)+g(1) \\
& \Rightarrow(\beta+z) f(1)+g(1)+(\beta+z) h(-\beta)+k(-\beta)=z[\beta+f(1)]+g(1) \\
& \Rightarrow f(1)+h(-\beta)=\beta+f(1) \\
& \Rightarrow h(\beta)=-\beta .
\end{aligned}
$$

This contradiction establishes the lemma.
LEMMA 2. II has an involutory ($X, O Y$)-homology if and only if $f_{f}=k=0$ (the zero map).

Proof. The $(X, O Y)$-homologies are given by $(x, y) \mapsto(x b, y)$ where $b \in N_{m}$,

$$
N_{m}=\{b \mid a(b c)=(a b) c ; \forall a, c \in F\}
$$

Suppose $(x, y) \mapsto(x z, y)$, where $z \in F \backslash F_{0}$, is an involutory homology. Then $(x z) z=x$ if $x \in F$, so that $z z=1$; and $z(z \dot{\alpha})=(z z) \alpha=\alpha$ if $\alpha \in F_{0}$, so that $f=0$ and $g(\alpha)=\alpha^{-1}$ if $\alpha \neq 0$. But g is an
additive homomorphism and F_{0} is a field of odd order, so we have a contradiction.

Now the multiplicative group of F_{0} is cyclic, with unique involution -l, and it is easily verified that if $f=k=0$ then $-1 \in N_{m}$. Suppose, on the other hand, that $-1 \in N_{m}, \alpha \in F_{0}$ and $z \in F \backslash F_{0}$. Then

$$
\begin{aligned}
& \alpha(-z)=(-\alpha) z=-(\alpha z), \\
& \text { and so }(-z) h(\alpha)+k(\alpha)=-[z h(\alpha)+k(\alpha)] . \text { Thus } k=0, \text { and, if } \beta \in F_{0}, \\
& {[(z \alpha+\beta)(-1)] z }=-[(z \alpha+\beta) z] \\
&=-z[f(\alpha)+h(\beta)]-g(\alpha),
\end{aligned}
$$

whereas

$$
\begin{aligned}
(z \alpha+\beta)(-z) & =[(-z)(-\alpha)+\beta](-z) \\
& =(-z) f(-\alpha)+g(-\alpha)+(-z) h(\beta),
\end{aligned}
$$

that is, $f=0$ also.
LEMMA 3. Suppose Π has an involutory (X, oY)-homology $\underline{=}_{0, \infty}$ and an involutory $((\alpha), O(\beta))$-homology $H_{\alpha, \beta}$, where α and β are (distinct) non-zero elements of F_{0}. Then $H_{\alpha, \beta} \operatorname{maps}(z)$ to (-z), for all z in $F \backslash F_{0}$, and

$$
g(\tau)=\alpha B \gamma h^{-1}\left(\gamma^{-1} \tau\right) \text { for all } \tau \in F_{0} \text {, }
$$

where $\gamma=2(\alpha-\beta)^{-1}$.
Proof. $H_{\alpha, \beta}$ maps Y to (σ), where $\sigma=\frac{1}{2}(\alpha+\beta)$, and therefore ${ }_{\underline{=}}^{\alpha, \beta}$ maps any affine point (x, y) of Π to $\left(x_{1}, y_{1}\right)$, where

$$
y_{1}-x \beta=\left(x_{1}-x\right) \sigma \quad \text { and } \quad y_{1}-y=\left(x_{1}-x\right) \alpha
$$

The line $y=x z$ is mapped to a line $y=x w$. Substituting $y=x z$ and $y_{1}=x_{1} w$ in the above equations, we derive:

$$
x_{1} \omega-x_{1} \sigma=x \beta-x \sigma \text { and } x_{1} \omega-x_{1} \alpha=x z-x \alpha .
$$

These imply:

$$
x_{1}=x+(x \beta-x z)(\alpha-\sigma)^{-1} \text { and } x_{1} w=x_{1} \sigma+x(\beta-\sigma)
$$

Thus

$$
\begin{equation*}
[x+(x \beta-x z) \gamma] \omega=(x \beta-x z) \gamma \sigma+x \beta \text { for all } x \in F, \tag{1}
\end{equation*}
$$

where $Y=(\alpha-\sigma)^{-1}=2(\alpha-\beta)^{-1}$.
There exists an automorphism of F which maps z to w, while fixing each element of F_{0}. Suppose this maps w to v. Then we deduce from (1):

$$
[x+(x \beta-x w) \gamma] v=(x \beta-x w) \gamma \sigma+x \beta \text { for all } x \in E .
$$

But $\underline{H}_{\alpha, \beta}$ maps (w) to (z), so (1) also yields:

$$
[x+(x \beta-x w) \gamma] z=(x \beta-x w) \gamma \sigma+x \beta \text { for all } x \in F
$$

It follows that $v=z$, whence $w=-z+\lambda$ for some λ in F_{0}.
Now let G be the cyclic group $\left\langle\mathrm{H}_{=0, \infty}, \mathrm{H}_{\alpha, \beta}\right.$ 〉. There is a homomorphism $\varphi: G \rightarrow\left(F_{0},+\right)$ which maps any K in G to the μ in F_{0} such that $(z+\mu)=(z) \underline{K}$. We shall prove that φ is trivial. Write p equals the characteristic of $F_{0}, q=\left|F_{0}\right|$, and suppose that G contains an element $\underline{\underline{K}}$ of order p. Since K fixes 0 , and $\left(q^{2}-1, p\right)=1, K$ fixes another affine point A of Π_{0}. It follows that K is a central collineation with axis $O A$, when restricted to the subplane Π_{0}. We readily conclude from this that either the two homologies have the same centre or they have the same axis. This contradiction shows that $\left(|G|,\left|F_{0}\right|\right)=1$.

Since φ is trivial and $\underline{\underline{H}}_{0, \infty}$ maps (z) to $(-z), H_{=\alpha, \beta}$ also maps (z) to (-z).

Substituting $\omega=-\boldsymbol{z}$, and restricting x to F_{0}, we may simplify equation (1) to:

$$
-z h(x+x \beta \gamma)+g(h(x) \gamma)=x \beta(\gamma \sigma+1)-z h(x) \gamma \sigma .
$$

It follows that $g(h(x) \gamma)=x \beta(\gamma \sigma+1)$ for all x in F_{0}. Since $\gamma \sigma+1=\alpha \gamma$, the lemma is proved.

3. Proof of the theorem

We now assume that each point of M is the centre of an involutory homology with axis in Π_{0}. The theorem is to be proved by considering separately the cases $q=\left|F_{0}\right| \equiv 3(\bmod 4)$ and $q \equiv 1(\bmod 4)$. We shall refer to the unordered pairs $\{(\alpha),(\beta)\}$ and $\{X, Y\}$ corresponding to the involutory $((\alpha), O(\beta))-,(X, O Y)-$ and $(Y, O X)$-homologies as "special pairs". These special pairs partition M and are permuted by each of the homologies (by Result 2 and Lemma 1).

Case $1: q \equiv 3(\bmod 4)$. The permutation induced by $\underline{H}_{0, \infty}$ on the set of $\frac{1}{2}(q+1)$ special pairs fixes $\{X, Y\}$ and therefore fixes at least one other special pair $\{(\alpha),(\beta)\}$. The corresponding homologies $H_{\alpha, \beta}$ and $H_{B, \alpha}$ both interchange X and Y. We can change coordinates so that $H_{\alpha, \beta}$ becomes $H_{1,-1}$. By Lemma 3,

$$
g(\tau)=-h^{-1}(\tau) \text { for all } \tau \in F_{0}
$$

Now consider any $\underline{H}_{\alpha, \beta}$ with $\alpha \neq \pm 1$. Since
$\stackrel{H}{-1}_{1,-1}^{H_{\alpha, \beta}}{ }_{1,-1}=\underline{\underline{H}}_{\alpha^{-1}, \beta^{-1}}$, we have, from Lemma 3 again

$$
g(\tau)=\alpha \beta \gamma h^{-1}\left(\gamma^{-1} \tau\right)=\alpha^{-1} \beta^{-1}(-\alpha \beta \gamma) h^{-1}\left(-\alpha^{-1} \beta_{\gamma^{-1}}^{-1} \tau\right),
$$

and so $\alpha \beta h^{-1}\left(\gamma^{-1} \tau\right)=h^{-1}\left(\alpha^{-1} \beta^{-1} \gamma^{-1} \tau\right)$. Putting $\tau=\gamma \rho$, we deduce that

$$
h^{-1}\left(\alpha^{-1} \beta^{-1} \rho\right)=\alpha \beta h^{-1}(\rho) \text { for all } \rho \in F_{0}
$$

It follows that either $\alpha \beta$ is in the prime subfield $G F(p)$ of F_{0}, or h^{-1} induces an involutory automorphism of the extension of GF(p) by $\alpha \beta$. Since $q \equiv 3(\bmod 4)$, the first alternative is the only possibility. Thus $\alpha \beta= \pm 1$, and $g(\gamma)= \pm \gamma h^{-1}(1)= \pm \gamma \quad$ (since $1 . z=z .1$), whence $h^{-1}(\gamma)=\mp \gamma$. But γ ranges over exactly half of the non-zero elements of
F_{0}, since $\gamma=2(\alpha-\beta)^{-1}$ and if $\gamma^{\prime}=\gamma$ then $\alpha^{\prime} \beta^{\prime}=\alpha \beta$ (Lemma 3). So we may choose a basis for F_{0} (as a vector space over $G F(p)$) from among the values taken by γ, and relative to this basis h has a diagonal matrix whose diagonal entries are ± 1.

If one or more of these entries is -1 , then a contradiction results. For $h(1)=1$ implies that at least one entry is +1 , and so h has only $p^{i}+p^{j}-1$ eigenvectors, for some i, j with $p^{i+j}=p^{n}=q, i>0$, $j>0$. But h has at least $\frac{1}{2}\left(p^{n}-1\right)$ eigenvectors, so
$p^{i}+p^{j}-1 \geq \frac{1}{2}\left(p^{n}-1\right)$. Simple calculations now show that (since p is an odd prime) $q=9$, contradicting $q \equiv 3(\bmod 4)$.

Thus $h(\tau)=\tau$ and $g(\tau)=-\tau$ for all τ in F_{0}, that is F is a Hall system.

Case 2: $q \equiv 1(\bmod 4)$. We show first that ${\underset{\sim}{H}}^{H}, \infty$ does not interchange the two points of any special pair. Suppose the contrary. Then choose coordinates so that $\{(1),(-1)\}$ is a special pair. Let ε be a square root of -1 in F_{0}, and $\{(\varepsilon),(\beta)\}$ the corresponding special pair. Each of ${\underset{H}{H}, \infty}^{\infty}$ and ${\underset{\sim}{H}}_{1,-1}$ maps this special pair to a special pair. So $\{(-\varepsilon),(-\beta)\}$ and $\left\{(-\varepsilon),\left(\beta^{-1}\right)\right\}$ are special pairs, that is $\beta^{2}=-1$, and $\{(\varepsilon),(-\varepsilon)\}$ is a special pair. By Lemma 3,

$$
-h^{-1}(\tau)=g(\tau)=-\varepsilon h^{-1}(\varepsilon \tau) \text { for all } \tau \in E_{0}
$$

Thus $h^{-1}(\varepsilon)=-\varepsilon$, and so ε does not lie in $G F(p)$, and h^{-1} induces an involutory automorphism of the extension of $G F(p)$ by ε. This field contains an element ρ such that $h(\rho) \rho=-1$. But

$$
(z+\rho) z=g(1)+z h(\rho)=-1-z \rho^{-1}=(z+\rho)\left(-\rho^{-1}\right)
$$

if $z \in F \backslash F_{0}$. This contradiction proves our original assertion.
It follows that the collineation group K generated by our involutory homologies is transitive on the set of $\frac{1}{2}(q+1)$ special pairs.

Let K^{*} be the group induced on the points of M by K, and let H^{*} be the subgroup of K^{*} generated by all the products of two non-trivial elements of K^{*}. Then K^{*} is a subgroup of $\operatorname{PSL}(2, q)$, since $q \equiv 1(\bmod 4)$. Also $\left[K^{*}: H^{*}\right]=2$ and $\frac{1}{2}(q+1)\left|\left|K^{*}\right|\right.$. But $\frac{1}{2}(q+1)$ is odd, so $q+1| | K^{*} \mid$ and H^{*} is transitive on the set of special pairs.

Now $\left(\left|K^{*}\right|, q\right)=1$, by an argument used in the proof of Lemma 3 ; also $K^{*} \leq \operatorname{PSL}(2, q)$, and $q+1| | K^{*} \mid$. So either K^{*} is dihedral of order $q+1$ or K^{*} is isomorphic to A_{4}, S_{4} or A_{5} (Dickson [3]). Since $q \equiv 1(\bmod 4), K^{*}$ is dihedral of order $q+1$, and H^{*} is cyclic.

The situation, then, is that our involutory homologies, restricted to the affine portion of Π_{0}, are the reflections in an orthogonal group $O(2, q)$, and therefore $\alpha \beta$ has the same value for all ${\underset{\sim}{\alpha}, \beta}$. Since $g(\gamma)=\alpha \beta \gamma$ for all γ corresponding to homologies $H_{\alpha, \beta}$, an argument used in Case 1 shows that $g(\tau)=\alpha \beta \tau$ for all τ in F_{0}. But $g(\tau)=\alpha \beta \gamma h^{-1}\left(\gamma^{-1} \tau\right)$, and so $h(\tau)=\tau$ for all τ in F_{0}. Thus F is once again a Hall system, and the theorem is proved.

References

[1] Johannes André, "Über Perspektivitäten in endichen projektiven Ebenen", Arch. Math. 6 (1954), 29-32.
[2] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin, Heidelberg, New York, 1968).
[3] Leonard Eugene Dickson, Linear groups, with an exposition of the Galois field theory (B.G. Teubner, Leipzig, 1901; reprinted Dover, New York, 1958).
[4] Marshall Hall, "Projective planes", Trans. Amer. Math. Soc. 54 (1943), 229-277.
[5] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
[6] D.R. Hughes, "Collineation groups of non-desarguesian planes, I. The Hall Veblen-Wedderburn systems", Amer. J. Math. 81 (1959), 921-938.
[7] P.B. Kirkpatrick, "Generalization of Hall planes of odd order", BuZZ. Austral. Math. Soc. 4 (1971), 205-209.

Department of Pure Mathematics, University of Sydney,

Sydney,
New South Wales.

[^0]: Received 14 December 1971.

