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We employ a recently introduced structured input–output analysis (SIOA) approach
to analyse streamwise and spanwise wavelengths of flow structures in stably stratified
plane Couette flow. In the low-Reynolds-number (Re) low-bulk Richardson number (Rib)
spatially intermittent regime, we demonstrate that SIOA predicts high amplification
associated with wavelengths corresponding to the characteristic oblique turbulent bands
in this regime. SIOA also identifies quasi-horizontal flow structures resembling the
turbulent–laminar layers commonly observed in the high-Re high-Rib intermittent regime.
An SIOA across a range of Rib and Re values suggests that the classical Miles–Howard
stability criterion (Rib ≤ 1/4) is associated with a change in the most amplified flow
structures when the Prandtl number is close to one (Pr ≈ 1). However, for Pr � 1,
the most amplified flow structures are determined by the product PrRib. For Pr �
1, SIOA identifies another quasi-horizontal flow structure that we show is principally
associated with density perturbations. We further demonstrate the dominance of this
density-associated flow structure in the high Pr limit by constructing analytical scaling
arguments for the amplification in terms of Re and Pr under the assumptions of unstratified
flow (with Rib = 0) and streamwise invariance.

Key words: stratified turbulence, shear-flow instability, transition to turbulence

1. Introduction

Statically stable density stratification in wall-bounded shear flows plays an important
role in many industrial and environmental applications, e.g. in cooling equipment (Zonta
& Soldati 2018), and the turbulent boundary layers governing atmospheric and oceanic
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flows (Pedlosky 2013; Vallis 2017). In the atmospheric boundary layer, stable stratification
arising from strong ground cooling effects is of particular importance at night (Nieuwstadt
1984; Mahrt 1999, 2014) and near the polar region (Grachev et al. 2005). At the ocean floor,
stable density stratification is known to influence the boundary layer thickness (Weatherly
& Martin 1978; Lien & Sanford 2004).

(Stably) stratified plane Couette flow (PCF) is a canonical model for stratified
wall-bounded shear flow. When the density as well as the velocity is maintained at
different values at the two horizontal boundary planes, with gravity acting vertically,
stratified PCF has the added benefit (as defined more precisely below) that a natural
bulk Richardson number Rib can be defined, thereby enabling the relative significance
of the imposed stratification and shear to be captured. Furthermore, unstratified PCF
has no linear instability for any Reynolds number (Re, again defined more precisely
below) (Romanov 1973), and yet is observed to transition at Reynolds numbers as low as
Re = 360 ± 10 (Tillmark & Alfredsson 1992). Stratified PCF is a convenient model flow
for investigating the effect of stable stratification on the transition dynamics (Deusebio,
Caulfield & Taylor 2015).

Stable stratification provides a restoring buoyancy force inhibiting vertical motion
(Turner 1979; Davidson 2013). Thus, transition to turbulence in stably stratified PCF
typically occurs at a higher Reynolds number than unstratified PCF; see e.g. Deusebio et al.
(2015); Eaves & Caulfield (2015); Deguchi (2017) and Olvera & Kerswell (2017). In the
transitional regime, both stratified PCF and unstratified PCF exhibit spatial intermittency;
i.e. the coexistence of laminar and turbulent regions. In the relatively low-Re low-Rib
intermittent regime, the spatial intermittency in stratified PCF is characterized by oblique
turbulent bands (Deusebio et al. 2015; Taylor et al. 2016) at least qualitatively similar to
those seen in unstratified PCF (Prigent et al. 2003; Duguet, Schlatter & Henningson 2010)
with a very large channel size (∼O(100) times the channel half-height). In the high-Re
high-Rib intermittent regime, flow structures are instead characterized by turbulent and
laminar layers over the vertical direction due to the strong effect of buoyancy (Deusebio
et al. 2015). This spatial intermittency directly imposes challenges for the computation
of averaged measurements of flow behaviour (such as the efficiency of mixing or the
dissipation rate), and thus an understanding of the underlying mechanisms is important
for the parameterization of turbulence properties, in particular the irreversible mixing in
stratified flows (Caulfield 2020, 2021).

The existence of a unique critical Richardson number that separates flow into laminar
and turbulent regimes is questionable, to put it mildly (Andreas 2002; Galperin,
Sukoriansky & Anderson 2007). A threshold value close to 1/4 is supported by some field
measurements (Kundu & Beardsley 1991) and experiments (Rohr et al. 1988), although
other field measurements reported sustained turbulence in flows with Richardson numbers
�1 (Lyons, Panofsky & Wollaston 1964). More recently, increasing evidence has been
found that vertically sheared stably stratified flow appears to self-organize to maintain
an appropriately defined Richardson number near 1/4, both in field observations (Smyth
& Moum 2013; Smyth, Nash & Moum 2019) and in simulations (Salehipour, Peltier &
Caulfield 2018). This threshold value of 1/4 also appears in the classical ‘Miles–Howard’
theorem (Howard 1961; Miles 1961), which provides a necessary condition for linear
instability in inviscid, non-diffusive steady parallel flow. In particular, it states that
instability requires that the local or gradient Richardson number be less than 1/4
somewhere. Therefore, it is of interest to consider stratified PCF as a well-controlled
sheared stratified flow to investigate whether some kind of self-organized criticality and/or
marginal stability naturally emerges in a viscous and diffusive flow.
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The Prandtl number (Pr = ν/κ , where ν is the kinematic viscosity and κ is the
diffusivity of the density field) plays a perhaps unsurprisingly important role in
determining flow structures. For example, for sufficiently small Pr, flows with the same
value of the product PrRib develop the same averaged vertical density profile (Langham,
Eaves & Kerswell 2020). This observation that the product PrRib determines flow
behaviour in the low Prandtl number limit is widely observed in stratified shear flows; see
e.g. Lignieres (1999); Garaud, Gallet & Bischoff (2015); Garaud, Gagnier & Verhoeven
(2017) and Garaud (2021). Conversely, in the high Prandtl number regime, studies of exact
coherent structures in stratified PCF (Langham et al. 2020) show that a nearly uniform
density region forms near the channel centre, and the influence of bulk Richardson number
on the averaged properties of the flow are significantly reduced. Moreover, Taylor & Zhou
(2017) proposed a multi-parameter criterion for the formation of a ‘staircase’ in the density
distribution (i.e. a distribution with relatively deep ‘layers’ of nearly uniform density
separated by relatively thin interfaces of enhanced density gradient) which suggests that
this staircase formation is actually favoured for a large Prandtl number (Taylor & Zhou
2017). The sharpness of the density interfaces also appears to increase as the Prandtl
number increases (Zhou et al. 2017b). In addition, increasing the Prandtl number has a
larger influence on the mean density profiles than on the mean velocity profiles (Zhou,
Taylor & Caulfield 2017a).

The oblique turbulent bands observed in the intermittent regime of stratified PCF
(Deusebio et al. 2015; Taylor et al. 2016) require a very large channel size to accommodate
them fully, which poses challenges for both simulations and experiments. The three
different flow parameters of interest, Re, Rib and Pr also lead to computational challenges
in exploring the full range of flow regimes. To overcome these challenges to direct
numerical simulation (DNS), we use an input–output (resolvent) analysis based approach.
Such methods, built upon the spatio-temporal frequency response, have been widely
employed in unstratified wall-bounded shear flows (Farrell & Ioannou 1993a; Bamieh
& Dahleh 2001; Jovanović & Bamieh 2005; McKeon & Sharma 2010; McKeon 2017).
This analysis framework has the advantage of computational tractability and is not subject
to finite channel effects. Related analysis has shown promise in studying stratified flows,
including inviscid stratified shear flow with constant shear (Farrell & Ioannou 1993b),
stratified PCF (Jose et al. 2015, 2018) and stratified turbulent channel flow (Ahmed et al.
2021).

In this work, we extend the structured input–output analysis (SIOA) originally developed
for unstratified PCF (Liu & Gayme 2021) to stratified PCF. Prior application of the
SIOA approach to unstratified transitional wall-bounded shear flows (Liu & Gayme
2021) demonstrated that including the componentwise structure of the nonlinearity
uncovers a wider range of known key flow features identified through nonlinear analysis,
experiments and DNS, but not captured through traditional (unstructured) input–output
approaches. Here, SIOA for stratified PCF includes the effect of nonlinearity in the
momentum and density equations (under the Boussinesq approximation) within a
computationally tractable linear framework through a feedback interconnection between
the linearized dynamics and a structured forcing that is explicitly constrained to preserve
the componentwise structure of the nonlinearity. The structured singular value (Doyle
1982; Safonov 1982) of the spatio-temporal frequency response associated with this
feedback interconnection can then be calculated at each streamwise and spanwise length
scale. This structured singular value can be interpreted as the flow structure that shows the
largest input–output gain (amplification) given the structured feedback interconnection.

Here, we apply the SIOA to characterize highly amplified flow structures in the
intermittent regime of stratified PCF and investigate the behaviour of the flow across
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a range of Re, Rib and Pr. Our aims are twofold. First, we wish to investigate whether
the structures predicted by the SIOA can be quantitatively identified with fully nonlinear
structures that have been observed in previously reported DNS of stratified PCF with
specific values of the control parameters Re, Rib and Pr. Second, we wish to explore the
dependence on the control parameters of predictions from the SIOA in parameter regimes
which are not (as yet) accessible to DNS. More specifically, to address our first aim, we
examine how Re and Rib affect flow structures with Prandtl number set at Pr = 0.7, i.e. the
value for air. We demonstrate that SIOA does indeed predict the characteristic wavelengths
and angle of the oblique turbulent bands observed in very large channel size DNS of the
low-Re low-Rib intermittent regime of stratified PCF at the same Pr (Deusebio et al. 2015;
Taylor et al. 2016). We further show that, in the high-Re high-Rib intermittent regime,
the SIOA identifies quasi-horizontal flow structures resembling turbulent–laminar layers
(Deusebio et al. 2015).

Having achieved our first aim, and demonstrated the usefulness of the SIOA for
identifying realistic nonlinear flow structures, we then turn our attention to our second aim.
We demonstrate that increasing the bulk Richardson number reduces the amplification of
streamwise-varying flow structures. These results show that the classical Miles–Howard
stability criterion (Rib ≤ 1/4) appears (perhaps fortuitously) to be associated with a
change in the most amplified flow structures, which is robust for a wide range of Re and
valid at Pr ≈ 1.

We then examine flow behaviour at different Rib and Pr. For flows with Pr � 1, a larger
bulk Richardson number is required to reduce the amplification of streamwise-varying
flow structures to the same level as streamwise-independent ones compared with Pr ≈ 1.
The largest amplification also is predicted to occur at the same value of the product
PrRib consistent with the observation of the averaged density profile only varying with
the product PrRib in the Pr � 1 regime (Langham et al. 2020). For flows with Pr �
1, the SIOA identifies another quasi-horizontal flow structure independent of Rib. By
decomposing input–output pathways into separate components associated with velocity
and density fluctuations, we show that these quasi-horizontal flow structures at Pr � 1
are primarily associated with fluctuations in the density field. We further highlight
the importance of this density-associated flow structure at Pr � 1 by constructing an
analytical scaling argument for the input–output amplification in terms of Re and Pr under
the assumptions of unstratified flow (with Rib = 0) and streamwise invariance. The above
observations using SIOA distinguish two types of quasi-horizontal flow structures, one
associated with the high-Re high-Rib regime and the other one associated with density
perturbations that emerges in the high Pr regime.

To achieve our twin aims, and to demonstrate the above summarized results, the
remainder of this paper is organized as follows. Section 2 describes the flow configuration
of stratified PCF and then develops the SIOA for this flow. Section 3 analyses the results
obtained from SIOA focusing on the wall-parallel length scale of flow structures. In § 4,
we develop analytical scaling arguments with respect to Re and Pr to investigate behaviour
for flows in the high Pr limit. Finally we draw conclusions and suggest some avenues of
future work in § 5.

2. Structured input–output response of stratified flow

2.1. Governing equations
We consider stably stratified PCF between two infinite parallel plates and employ x,
y and z to denote the streamwise, wall-normal (or vertical) and spanwise directions.
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–uξ · ∇u
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–uξ · ∇ρ
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fz,ξ

fρ,ξ

(b)(a)

Figure 1. (a) Schematic of stably stratified PCF with laminar base flow U( y) = yex and background density
ρ̄ = −y. The gravity vector g = −gey is orthogonal to the channel walls. The blue and red colours represent
high-density and low-density fluids, respectively. (b) Block diagram of the feedback interconnection between
the linearized dynamics and structured forcing (outlined by the blue dashed line) in (2.4) modelling the
nonlinearity.

The corresponding (assumed incompressible) velocity components are denoted as u, v
and w. The coordinate frames and configurations for this stratified PCF are shown in
figure 1. We express the velocity field as a vector utot = [utot vtot wtot]T with T indicating
the transpose. We then decompose the velocity field into the sum of a laminar linearly
varying base flow U( y) = y and fluctuations about the base flow u; i.e. utot = U( y)ex + u
with ex denoting the x-direction (streamwise) unit vector. The pressure field is similarly
decomposed as ptot = P + p. We decompose the density ρtot as the sum of a reference
density ρr, a base, again linearly varying, density ρ̄ = −y and a density fluctuation ρ; i.e.
ρtot = ρr + ρ̄ + ρ. We use ρ0 to denote half of the density difference between the top and
bottom walls, which is assumed to be much smaller than the reference density ρ0 � ρr so
that the Boussinesq approximation can be used.

The dynamics of the fluctuations u, p and ρ is hence governed by the Navier–Stokes
equations for an incompressible velocity field under the Boussinesq approximation and an
advection–diffusion equation for the density

∂tu + U∂xu + v
dU
dy

ex + Ribρey + ∇p − 1
Re

∇2u = −u · ∇u, (2.1a)

∂tρ + U∂xρ + v
dρ̄
dy

− 1
RePr

∇2ρ = −u · ∇ρ, (2.1b)

∇ · u = 0. (2.1c)

Here, the spatial variables are normalized by the channel half-height h, and the velocity is
normalized by half of the velocity difference between the top and bottom walls Uw, where
±Uw is the velocity at the channel walls. Time and pressure are normalized by h/Uw
and ρrU2

w, respectively. The base density field ρ̄( y) and the density fluctuations ρ are
normalized by ρ0. Under this normalization, the base density profile ρ̄ = −y is balanced
by a hydrostatic pressure P = Riby2/2.

The non-dimensional control parameters are the Reynolds number Re, the Prandtl
number Pr and the bulk Richardson number Rib, naturally defined as

Re := Uwh
ν
, Pr := ν

κ
, Rib := gρ0h

ρrU2
w
, (2.2a–c)

where ν is the kinematic viscosity, κ is the molecular diffusivity of the density scalar
and g is the magnitude of gravity. The gravity vector is in the direction orthogonal
to the wall g = −gey with ey denoting the y-direction (wall-normal, or vertical) unit
vector. In equation set (2.1), ∇ := [∂x ∂y ∂z]T represents the gradient operator, and ∇2 :=
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∂2
x + ∂2

y + ∂2
z represents the Laplacian operator. We impose no-slip boundary conditions

at the wall u( y = ±1) = 0 and Dirichlet boundary conditions for density fluctuations
ρ( y = ±1) = 0 that can be maintained by e.g. constant temperatures at the wall with a
linear equation of state (with the hotter plate at the top).

A large body of linear analysis techniques views the nonlinear terms as a forcing, which
enables these terms to be represented as an unmodelled effect (which can be thought of
as some type of ‘uncertainty’ in the equations). There are a wide range of such models,
but a common approach is a delta-correlated or coloured stochastic forcing that captures
a wide range of the unmodelled effects, see e.g. the discussion in Farrell & Ioannou
(1993a), Bamieh & Dahleh (2001), Jovanović & Bamieh (2005), McKeon & Sharma
(2010), McKeon (2017) and Zare, Jovanović & Georgiou (2017). Here, we similarly write
the nonlinear terms as the forcing

f u := −u · ∇u = [−u · ∇u −u · ∇v −u · ∇w
]T =:

[
fx fy fz

]T
. (2.3a)

fρ := −u · ∇ρ, (2.3b)

which turns (2.1) into a set of linear evolution equations subject to the forcing terms f u
and fρ .

We now construct a model of the nonlinearity, where the velocity field −u in (2.3)
associated with the forcing components can be viewed as the gain operator of an
input–output system in which the velocity and density gradients ∇u, ∇v, ∇w and ∇ρ
act as the respective inputs and the forcing components fx, fy, fz and fρ act as the respective
outputs. This input–output models of the nonlinear components in the momentum and
density equations (2.3), are respectively given by

f u,ξ := −uξ · ∇u = [−uξ · ∇u −uξ · ∇v −uξ · ∇w
]T =:

[
fx,ξ fy,ξ fz,ξ

]T
,

(2.4a)

fρ,ξ := −uξ · ∇ρ. (2.4b)

Here, −uξ in (2.4) maps the corresponding velocity and density gradients into each
component of the modelled forcing driving the linearized dynamics. This forcing in (2.4)
is referred to as structured forcing because it preserves the componentwise structure
of the nonlinear terms in (2.3). Figure 1(b) shows a block diagram of the feedback
interconnection between the linearized dynamics and this forcing whose block-diagonal
structure mirrors the nonlinear interactions in the Navier–Stokes equations, i.e. the forcing
does not include terms such as −u · ∇v in the forcing fx,ξ since this term does not appear
in the Navier–Stokes equations.

Although the nonlinearity in (2.3) can be written in many different ways, the current
formulation leads to a straightforward and unified formulation for structured forcing in
each momentum and density equation in (2.4). We next exploit this form of the equations
to construct an input–output map using the structured singular value formalism (Packard
& Doyle 1993; Zhou, Doyle & Glover 1996). This map will enable us to analyse the
fluctuations which are prominent in the intermittent regime.

2.2. Structured input–output response
We need to define the spatio-temporal frequency response HS

∇( y; kx, kz, ω) of stratified
PCF that will form the basis of the structured input–output response. We use the
superscript S to distinguish this operator from its counterpart for unstratified wall-bounded
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shear flow (Liu & Gayme 2021). We employ the standard transformation to express the
velocity field dynamics in (2.1) in terms of the wall-normal velocity v and the wall-normal
vorticity ωy := ∂zu − ∂xw (Schmid & Henningson 2012). This transformation enforces
the incompressibility constraint in (2.1c) and eliminates the pressure by construction. We
exploit shift invariance in the (x, z) spatial directions and assume shift invariance in time
t, which allows us to perform the following triple Fourier transform:

ψ̂( y; kx, kz, ω) :=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z, t) exp(−i(kxx + kzz + ωt)) dx dz dt, (2.5)

where i = √−1, ω is the temporal frequency and kx = 2π/λx and kz = 2π/λz are the x
and z wavenumbers, respectively. The sign of the temporal frequency ω in (2.5) is chosen
for ease of employing control-oriented toolboxes in our computations.

The resulting equations describing the transformed linearized equations subject to the
forcing

[
f u,ξ
fρ,ξ

]
are given by

iω

⎡
⎣ v̂

ω̂y
ρ̂

⎤
⎦ = ÂS

⎡
⎣ v̂

ω̂y
ρ̂

⎤
⎦ + B̂S

⎡
⎢⎢⎣

f̂x,ξ
f̂y,ξ
f̂z,ξ
f̂ρ,ξ

⎤
⎥⎥⎦ , (2.6a)

⎡
⎢⎣

û
v̂

ŵ
ρ̂

⎤
⎥⎦ = ĈS

⎡
⎣ v̂

ω̂y
ρ̂

⎤
⎦ . (2.6b)

The operators in equation set (2.6) are defined as

ÂS(kx, kz) := M̂−1

⎡
⎢⎢⎢⎢⎢⎣

−ikxU∇̂2 + ikxU′′ + ∇̂4

Re
0 Rib(k2

x + k2
z )

−ikzU′ −ikxU + ∇̂2

Re
0

−ρ̄′ 0 −ikxU + ∇̂2

RePr

⎤
⎥⎥⎥⎥⎥⎦ ,

(2.7a)

B̂S
(kx, kz) := M̂−1

⎡
⎣−ikx∂y −(k2

x + k2
z ) −ikz∂y 0

ikz 0 −ikx 0
0 0 0 I

⎤
⎦ , M̂ :=

⎡
⎣∇̂2 0 0

0 I 0
0 0 I

⎤
⎦ ,

(2.7b)

ĈS
(kx, kz) := 1

k2
x + k2

z

⎡
⎢⎣

ikx∂y −ikz 0
k2

x + k2
z 0 0

ikz∂y ikx 0
0 0 k2

x + k2
z

⎤
⎥⎦ , (2.7c)

where U′ := dU( y)/dy, U′′ := d2U( y)/dy2, ρ̄′ := dρ̄( y)/dy, ∇̂2 := ∂yy − k2
x − k2

z ,
∇̂4 := ∂

(4)
y − 2(k2

x + k2
z )∂yy + (k2

x + k2
z )

2 and I is the identity operator. The equation
associated with the ÂS operator in (2.7a) can also be obtained by generalizing the classical
Taylor–Goldstein equation (Goldstein 1931; Taylor 1931; Smyth & Carpenter 2019) to
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f̂ x,ξ

û

ŵ
v̂

ρ̂

f̂ y,ξ

f̂ z,ξ

f̂ρ,ξ

HS

diag (∇̂, ∇̂, ∇̂, ∇̂)

diag (– ûξ
T, – ûξ

T, – ûξ
T, – ûξ

T)

ĈS (iω I3×3 – A ̂S )–1 B̂S ∇̂û
∇̂v̂
∇̂ŵ
∇̂ρ̂

HS∇

ûΞS

(b)(a)

Figure 2. Block diagram showing the feedback interconnection of the SIOA framework applied to stratified
PCF. (a) Redraws figure 1(b), where the blocks inside of (- -, blue) lines represent the modelled forcing in (2.9)
corresponding to the bottom block in figure 1(b) also inside of (- -, blue). (b) Redraws (a) after discretization
with the top block corresponding to the combination of the two top blocks in (a) and the bottom block
corresponding to the bottom block of (a).

include viscosity, density diffusivity and coupling with wall-normal vorticity ω̂y with
kz /= 0. The boundary conditions associated with (2.6) are v̂( y = ±1) = (∂v̂/∂y)( y =
±1) = ω̂y( y = ±1) = ρ̂( y = ±1) = 0.

The spatio-temporal frequency response HS of the system in (2.6), which maps
the input forcing to the velocity and density fields at the same spatial-temporal

wavenumber–frequency triplet; i.e.
[

û( y;kx,kz,ω)
ρ̂( y;kx,kz,ω)

]
= HS( y; kx, kz, ω)

[
f̂ u,ξ ( y;kx,kz,ω)

f̂ρ,ξ ( y;kx,kz,ω)

]
, is

given by

HS( y; kx, kz, ω) := ĈS
(

iωI3×3 − ÂS
)−1 B̂S. (2.8)

Here, I3×3 := diag(I, I, I), where diag( · ) indicates a block-diagonal operation.
The linear form of (2.4a)–(2.4b) allows us to perform the same spatio-temporal Fourier

transform on the model of the nonlinearity, which can be decomposed as⎡
⎢⎢⎣

f̂x,ξ
f̂y,ξ
f̂z,ξ
f̂ρ,ξ

⎤
⎥⎥⎦ = diag

(−ûT
ξ ,−ûT

ξ ,−ûT
ξ ,−ûT

ξ

)
diag

(∇̂, ∇̂, ∇̂, ∇̂)⎡
⎢⎣

û
v̂

ŵ
ρ̂

⎤
⎥⎦ . (2.9)

A block diagram illustrating this decomposition of the modelled nonlinearity is shown
inside the blue dashed line (- -, blue) in figure 2(a). This block-diagonal structure
constrains the modelled nonlinear interactions, i.e. provides structured forcing.

In order to isolate the gain operator −uξ , we combine the linear gradient operator
with the spatio-temporal frequency response of the linearized system (2.8). The resulting
modified frequency response operator with outputs that are the vectorized gradients of the
velocity and density components is defined as

HS
∇( y; kx, kz, ω) := diag

(∇̂, ∇̂, ∇̂, ∇̂)HS( y; kx, kz, ω). (2.10)

The resulting system model can be redrawn as a feedback interconnection between this
linear operator and the structured uncertainty

ûS
Ξ := diag

(−ûT
ξ ,−ûT

ξ ,−ûT
ξ ,−ûT

ξ

)
. (2.11)
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Structured input–output analysis of stratified Couette flow

Here, the structure is introduced in terms of the diagonal form of ûS
Ξ that enforces

the componentwise structure of the nonlinearity in the forcing model defined in (2.4).
Figure 2(b) illustrates this feedback interconnection between the modified spatio-temporal
frequency response and the structured uncertainty, where HS

∇ and ûS
Ξ , respectively,

represent the spatial discretizations (numerical approximations) of HS
∇ in (2.10) and ûS

Ξ in
(2.11).

We are interested in characterizing the horizontal length scales of the most amplified
flow structures under this structured forcing. This amplification can be quantified in terms
of the structured singular value of the modified frequency response operator HS

∇; see e.g.
Packard & Doyle (1993, definition 3.1) and Zhou et al. (1996, definition 11.1), which is
defined as follows.

DEFINITION 2.1. Given wavenumber and frequency pair (kx, kz, ω), the structured
singular value μÛS

Ξ
[HS

∇(kx, kz, ω)] is defined as

μÛS
Ξ

[
HS

∇(kx, kz, ω)
]

:= 1

min{σ̄ [ûS
Ξ ] : ûS

Ξ ∈ ÛS
Ξ, det[I − HS

∇(kx, kz, ω)ûS
Ξ ] = 0} .

(2.12)
If no ûS

Ξ ∈ ÛS
Ξ makes I − HS

∇ûS
Ξ singular, then μÛS

Ξ
[HS

∇] := 0.
Here, σ̄ [ · ] is the largest singular value, det[ · ] is the determinant of the argument, and I

is the identity matrix. The subscript of μ in (2.12) is a set ÛS
Ξ containing all uncertainties

having the same block-diagonal structure as ûS
Ξ ; i.e.

ÛS
Ξ :=

{
diag

(−ûT
ξ ,−ûT

ξ ,−ûT
ξ ,−ûT

ξ

)
: −ûT

ξ ∈ C
Ny×3Ny

}
, (2.13)

where Ny denotes the number of grid points in y.

Definition 2.1 suggests that the inverse of the structured singular value 1/μ is the
minimal norm of the perturbation ûS

Ξ that destabilizes the feedback interconnection in
figure 2(b) in the input–output sense defined by the small gain theorem, see Liu & Gayme
(2021, proposition 2.2) and Zhou et al. (1996, theorem 11.8). This interpretation suggests
that the flow field is more sensitive to perturbations with the flow structures associated
with a larger amplification measured by the structured singular value μ. A similar notion
of destabilizing perturbation was also employed to interpret the largest (unstructured)
singular value (Trefethen et al. 1993, p. 581).

Here, the form of structured uncertainty in (2.13) allows the full degrees of freedom for
the complex matrix −ûT

ξ ∈ CNy×3Ny for ease of computation. While uξ is not constrained
to be incompressible, the incompressibility of u and the role of pressure are accounted for
within the current v-ωy formulation. Further refinement to better represent the physics
and uncover the form of uξ requires an extension of both the analysis method and
computational tools. These extensions are beyond the scope of the current work.

We then define the structured response following Liu & Gayme (2021) as

‖HS
∇‖μ(kx, kz) := sup

ω∈R

μÛS
Ξ

[
HS

∇(kx, kz, ω)
]
, (2.14)

where sup represents a supremum (least upper bound) operation. Here, we abuse the
notation and terminology by writing ‖ · ‖μ (Packard & Doyle 1993), although this
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quantity is not a proper norm. We employ this notation in analogy with the corresponding
unstructured response of the feedback interconnection, which is given by

‖HS
∇‖∞(kx, kz) := sup

ω∈R

σ̄
[
HS

∇(kx, kz, ω)
]
. (2.15)

This quantity is the unstructured counterpart of ‖HS
∇‖μ, which is obtained by replacing

the structured uncertainty set ÛS
Ξ with the set of full complex matrices C4Ny×12Ny . In

both cases, a larger value indicates that the corresponding flow structures (associated
with a particular kx and kz pair) have larger amplification under either structured or
unstructured feedback forcing. For example, a larger value of ‖HS

∇‖μ(kx, kz) indicates that
the corresponding flow structures (associated with a particular kx and kz pair) have larger
amplification under structured feedback in figure 2(b).

2.3. Numerical method
We employ the Chebyshev differential matrix (Trefethen 2000; Weideman & Reddy
2000) to discretize the operators in equation set (2.7). Our code is validated through
comparison with the unstratified PCF and Poiseuille flow results in Jovanović (2004),
Jovanović & Bamieh (2005) and Schmid (2007). The implementation of stratification
is validated by reproducing the maximum growth rate of the linear normal mode in
a layered stratified PCF determined by Eaves & Caulfield (2017, figures 3 and 6a),
as well as the linear stability predictions for the unstable stratification configuration in
Olvera & Kerswell (2017, figure 1 and appendix B). We use Ny = 60 collocation points
not including the boundary points over the wall-normal extent, as well as 48 and 36
logarithmically spaced streamwise and spanwise wavenumbers in the respective spectral
ranges kx ∈ [10−4, 100.48] and kz ∈ [10−2, 101.2], unless otherwise mentioned. To verify
that this resolution is sufficient to achieve grid convergence we recomputed selected results
with 1.5 times the number of collocation points in the wall-normal direction and verified
that the results did not change. The quantity ‖HS

∇‖μ in (2.14) for each wavenumber pair
(kx, kz) is computed using the mussv command in the Robust Control Toolbox (Balas
et al. 2005) of MATLAB. The arguments of mussv employed here include the state-space
model of HS

∇ that samples the frequency domain adaptively. The BlockStructure argument
comprises four full Ny × 3Ny complex matrices, and we use the ‘Uf’ algorithm option.

3. Structured spatio-temporal frequency response of stratified flow

In this section, we use the SIOA approach described in § 2.2 to characterize the flow
structures that are most amplified in stably stratified PCF.

3.1. Low-Re low-Rib vs high-Re high-Rib intermittency
In this subsection, we analyse flow structures that are prominent in either the low-Re
low-Rib or the high-Re high-Rib intermittent regime (Deusebio et al. 2015). Here, we keep
the Prandtl number fixed at Pr = 0.7. This value corresponds to thermally stratified air and
is the same value studied by Deusebio et al. (2015). We first consider a flow with Re = 865,
Rib = 0.02 and Pr = 0.7, where oblique turbulent bands have been observed (Deusebio
et al. 2015; Taylor et al. 2016). In order to evaluate the relative effect of the feedback
interconnection and the imposed structure, we also compute ‖HS

∇‖∞(kx, kz) defined in
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Figure 3. Plots of (a) log10[‖HS
∇‖μ(kx, kz)], (b) log10[‖HS‖∞(kx, kz)] and (c) log10[‖HS

∇‖∞(kx, kz)] for
stratified PCF at Re = 865, Rib = 0.02 and Pr = 0.7. Here, the symbols (�) are characteristic wavelengths
(λx = 32π, λz = 16π) corresponding to the oblique turbulent band observed in DNS in the same flow regime
(Deusebio et al. 2015; Taylor et al. 2016). The lines (–) are λz = λx tan(27◦) indicating the 27◦ angle of the
oblique turbulent bands.

(2.15) and

‖HS‖∞(kx, kz) := sup
ω∈R

σ̄
[
HS(kx, kz, ω)

]
. (3.1)

Here, HS is the discretization of spatio-temporal frequency response operator HS in (2.8),
i.e. the spatio-temporal frequency operator governing the linearized dynamics without
the feedback interconnection. The values of ‖H‖∞ for unstratified plane Couette and
plane Poiseuille flows were previously analysed in Jovanović (2004), Schmid (2007)
and Illingworth (2020). The quantity in (3.1) describes the maximum singular value of
the frequency response operator HS, which represents the maximal gain of HS over all
temporal frequencies; i.e. the worst-case amplification over harmonic inputs.

Figure 3 shows ‖HS
∇‖μ in (a) alongside (b) ‖HS‖∞ and (c) ‖HS

∇‖∞. We indicate the
characteristic wavelength pair λx = 32π, λz = 16π corresponding to the oblique turbulent
bands observed in DNS under the same flow regime (Deusebio et al. 2015; Taylor et al.
2016, figure 2b) in these panels using the symbol (�, black). These structures are observed
to have a characteristic inclination angle (measured from the streamwise direction in x–z
plane) of θ := tan−1(λz/λx) ≈ 27◦, which is indicated in all panels by the black solid
line (–) that plots λz = λx tan(27◦). While there is some footprint of these structures
and this angle in all three panels, the correspondence with the peak amplitude is most
prominent in (a). In fact, the peak value of ‖HS

∇‖μ in (a) occurs at streamwise and
spanwise wavenumbers associated with the characteristic wavelengths and angle of the
oblique turbulent bands reported in DNS (Deusebio et al. 2015; Taylor et al. 2016), and
the line representing the angle of the oblique turbulent bands crosses through the centre of
the narrow roughly elliptical peak region whose principal axis coincides with this angle.
The results in figure 3(a) suggest that the SIOA captures both the wavelengths and angle
of the oblique turbulent bands in the low-Re low-Rib intermittent regime of stratified
PCF. This analysis suggests that these oblique turbulent bands arise in the intermittent
regime of stratified PCF due to their large amplification, or equivalently their sensitivity
to disturbances.

The traditional input–output analysis results, ‖HS‖∞ in (b), provide a noticeable
improvement compared with growth rate analysis (as presented in more detail in
Appendix A) and are also able to identify the preferred wavenumber pair in this
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Figure 4. Plots of log10[‖HS
∇‖μ(kx, kz)] at Pr = 0.7 and: (a) Re = 4250 and Rib = 0.02; (b) Re = 865 and
Rib = 0.2541 and (c) Re = 52 630 and Rib = 0.15.

intermittent regime. However, this analysis suggests larger amplification of the streamwise
elongated modes. Moreover, the inclusion of an unstructured feedback loop quantified
through ‖HS

∇‖∞ in (c) correctly orders the relative amplification between the oblique
turbulent bands and streamwise elongated structures (kx ≈ 0). The differences between
‖HS

∇‖∞ and ‖HS‖∞ are likely associated with the additional ∇̂ operator in defining
H∇ in (2.10), which emphasizes flow structures with a larger horizontal wavenumber.
The difference between ‖HS

∇‖μ and ‖HS
∇‖∞ is associated with the structured feedback

interconnection that constrains the permissible feedback pathway, which weakens the
amplification associated with the lift-up mechanism; see similar discussion on unstratified
PCF (Liu & Gayme 2021, § 3.3). A comparison of the results in figure 3 suggests that it
is the imposition of the componentwise structure from the nonlinear terms in (2.3) that
further improves the prediction of the oblique turbulent bands.

We now consider the high-Re high-Rib intermittent regime, which was shown to be
qualitatively different in behaviour from the low-Re low-Rib intermittent regime (Deusebio
et al. 2015). We first isolate the effect of increasing either Re or Rib. Figure 4(a) presents
‖HS

∇‖μ for a flow with Rib = 0.02 and Re = 4250. The larger colour bar range vs
figure 3 highlights the expected higher magnitudes vs those for a flow with a lower
Reynolds number (Re = 865). We can see that the wavenumber pair of the peak region
extends towards smaller values (larger wavelengths) than those associated with the oblique
turbulent bands that were in the peak region in figure 3(a). Figure 4(b) presents ‖HS

∇‖μ
for a higher bulk Richardson number Rib = 0.2541 and the same Re and Pr values as
figure 3(a). Here, the amplification associated with the streamwise-varying flow structures
such as the oblique turbulent bands observed in figure 3(a) is reduced and quasi-horizontal
flow structures (kx ≈ 0, kz ≈ 0) show a similar level of amplification (see the bottom left
corner in figure 4b). Note that this flow structure associated with kx ≈ 0, kz ≈ 0 is referred
to as quasi-horizontal to distinguish it from a horizontally uniform mode (kx = 0, kz = 0).

Armed with these insights, we consider the combined high-Re high-Rib intermittent
regime (Re = 52 630 and Rib = 0.15); these values correspond to the results shown in
figure 7 of Deusebio et al. (2015). Figure 4(c) presents ‖HS

∇‖μ for these parameter
values with an increased wall-normal grid with Ny = 90. Here, the amplification of the
oblique turbulent band is of a similar order to that of flow structures with a wide range
of wavenumber pairs ranging from kx � 10−2 and kz � 1 down to kx ≈ 0 and kz ≈ 0.
These latter flow structures resemble the quasi-horizontal flow structures that have a
horizontal length scale much larger than their vertical length scales, which are limited
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Structured input–output analysis of stratified Couette flow

by the channel height and therefore restricted to non-dimensional scales of the order of
2. The response in this regime, therefore, shows a large qualitative difference from that in
the low-Re low-Rib (Re = 865 and Rib = 0.02) intermittent regime shown in figure 3(a).
This qualitative difference mirrors the different features in intermittent regimes described
by Deusebio et al. (2015), where oblique turbulent bands are prevalent in the low-Re
low-Rib intermittent regime, but the high-Re high-Rib intermittent regime is characterized
by turbulent–laminar layers indicating a large horizontal length scale.

In figure 4(c), we also observe that the quasi-horizontal flow structures have a
streamwise wavelength much larger than their spanwise wavelength (λx � λz), which is
also consistent with the observation in Deusebio et al. (2015) that the turbulent and laminar
layers in the high-Re high-Rib intermittent regime are homogeneous in the streamwise
direction. This behaviour can be understood through an order of magnitude estimation of
the terms in the continuity equation. We assume highly anisotropic flow with v ≈ 0 under
strong stratification, which simplifies the continuity equation to ∂u/∂x + ∂w/∂z = 0. We
further assume that the restoring buoyancy force due to stratification does not have a
preference between the streamwise or spanwise direction and, therefore, we also assume
∂u/∂x and ∂w/∂z are the same order of magnitude. However, in the current stratified
PCF configuration, streamwise velocity is associated with a characteristic velocity much
larger than its spanwise counterpart due to the base flow velocity. As a result, streamwise
variation is reduced much faster than spanwise variation (i.e. kx � kz) to keep ∂u/∂x and
∂w/∂z the same order of magnitude.

3.2. Case Rib > 1/4: a change in the most amplified flow structures
The Miles–Howard theorem (Howard 1961; Miles 1961) implies that the laminar base
flow would be linearly stable in the limits where ν and κ both are zero if Rib > 1/4.
Although the theorem is not applicable to unsteady flows with finite Re and Pr, it has also
been observed that a ‘marginal’ or ‘critical’ Richardson number near this threshold value
appears to emerge naturally in simulations (Salehipour et al. 2018) and field measurement
(Smyth et al. 2019). In the previous section, we noted that increasing Rib = 0.02 to
Rib = 0.2541, for a fixed Reynolds number of Re = 865, reduces the overall response and
changes the types of flow structures, (kx, kz) wavenumber pairs, that exhibit the largest
response, see figures 3(a) and 4(b). In this subsection, we further investigate whether this
apparently marginal threshold Rib � 1/4 is associated with a change in flow structures and
whether this behaviour is independent of Re. As in the previous subsection, the Prandtl
number is fixed at Pr = 0.7.

Here, we aggregate results varying over a range of (kx, kz) wavenumber pairs in terms
of the maximum value

‖HS
∇‖M

μ := max
kz,kx

‖HS
∇‖μ(kx, kz), (3.2)

over the wavenumber domain kx ∈ [10−6, 100.48] and kz ∈ [10−6, 100.48]. Lowering the
minimum value of the wavenumber ranges vs those considered in the previous subsection
is motivated by the observation in figure 4 that both the kx and kz values corresponding to
the peak region decrease with increasing Reynolds and Richardson numbers. To separate
streamwise-varying and streamwise-independent flow structures, we similarly evaluate

‖HS
∇‖sc

μ := max
kz,kx=10−6

‖HS
∇‖μ(kx, kz). (3.3)

This quantity restricts the streamwise wavenumber to kx = 10−6 to approximate the
streamwise constant modes and computes the maximum value over kz ∈ [10−6, 100.48],
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Figure 5. The dependence on Rib and Re of ‖HS
∇‖M

μ (–, black) and ‖HS
∇‖sc

μ (- -, red) at Pr = 0.7. Each black
marker on the lines of ‖HS

∇‖M
μ indicates the associated value of (a) Re and (b) Rib defined in the legend.

Each red marker on the lines of ‖HS
∇‖sc

μ indicates the same parameter value for (a) Re and (b) Rib as the
corresponding black one.

where we use an upper bound of 100.48 rather than the larger value of 101.2 to save
computation time. This change in the upper bound was not found to affect the results
since the kz associated with the maximum value was consistently found to be below this
upper bound. The restriction in streamwise wavelengths to kx = 10−6 naturally includes
the quasi-horizontal flow structures prevalent in the high-Re high-Rib regime (kx ≈ 0,
kz ≈ 0) as an extreme case, but excludes streamwise-varying flow structures such as the
oblique turbulent bands observed in the low-Re low-Rib regime discussed in § 3.1.

Figure 5 shows the variation of ‖HS
∇‖M

μ (solid lines) and ‖HS
∇‖sc

μ (dashed lines)
with bulk Richardson number Rib ∈ [0, 6] and Reynolds number Re ∈ [865, 15 000]. The
quantities ‖HS

∇‖M
μ including streamwise-varying flow structures are very close to ‖HS

∇‖sc
μ

when Rib � 1/4 for the full range of Reynolds numbers Re ∈ [865, 15 000] in figure 5(a).
This phenomenon is also reflected in figure 5(b), where for flows with Rib = 0.24 and
Rib = 0.75, the curves for ‖HS

∇‖M
μ and ‖HS

∇‖sc
μ largely overlap. These trends suggest that

the inviscid marginal stability value Rib = 1/4 predicted by the Miles–Howard theorem
(Howard 1961; Miles 1961) for laminar flow is apparently associated with a change in the
most amplified flow structure in stratified PCF at finite Re and Pr ∼ 1.

The plots in figure 5 show that the largest amplification of the streamwise-invariant
modes represented by ‖HS

∇‖sc
μ (dashed lines) do not appear to be influenced by Rib, as

shown by the horizontal dashed lines in figure 5(a) and the overlapping dashed lines
in figure 5(b). We further explore this Rib independence for streamwise constant flow
structures by considering the limit of horizontal invariance ∂x( · ) = 0 and ∂z( · ) = 0
(kx = 0 and kz = 0), which directly results in ∂yv = 0 due to the continuity equation.
The boundary condition v( y = ±1) = 0 then directly results in v = 0. Using these
assumptions, the advection terms vanish (i.e. U∂x( · ) = 0, and u · ∇( · ) = 0) in each
momentum and density equation. The terms associated with the background shear and
density gradient also vanish due to zero wall-normal velocity; i.e. vU′ = vρ̄′ = 0.

These observations lead to a simplification of the momentum and density equations in
(2.1) to

∂tu = 1
Re
∂yyu, ∂yp = −Ribρ, (3.4a,b)

∂tw = 1
Re
∂yyw, ∂tρ = 1

RePr
∂yyρ. (3.4c,d)
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Here, we can see that horizontal momentum and density field equations are all reduced to
the diffusion equation, and the wall-normal momentum equation is reduced to a balance
between the buoyancy force and the vertical pressure gradient i.e. to a hydrostatic balance.
This balance suggests that the only dependence on Rib can be absorbed into the pressure
by rescaling pressure and thus does not influence the quasi-horizontal flow structures. The
results presented in figures 3(a) and 4 suggest that flow structures with kx = 10−4 lead to
the same structured response ‖HS

∇‖μ at a wide range of spanwise wavenumbers kz ≤ 1,
and this value is consistent with that of quasi-horizontal flow structures (kx ≈ 0, kz ≈ 0)
that are independent of Rib.

This analysis provides evidence that quasi-horizontal flow structures are associated with
amplification which is independent of Rib. Instead, high Rib (i.e. strong stratification) will
reduce the amplification of other horizontally varying flow structures such as the oblique
turbulent bands observed in the low-Re low-Rib intermittent regime of stably stratified
PCF. Furthermore, it appears in figure 5(b) that quasi-horizontal flow structures are also
increasingly amplified as Re increases with scaling law ‖HS

∇‖sc
μ ∼ Re. This behaviour

indicates that quasi-horizontal flow structures may prefer a high-Re high-Rib regime. In
§ 4, we further explore this scaling law ‖HS

∇‖sc
μ ∼ Re by developing analytical scaling

arguments for ‖HS
∇‖μ in unstratified and streamwise-invariant flow.

3.3. Effects of low and high Pr
The Prandtl number is known to play an important role in the types of flow structures
characterizing stratified PCF (Taylor & Zhou 2017; Zhou et al. 2017a,b; Langham et al.
2020). The Prandtl number also varies over a wide range in different applications. For
example, Pr � 1 is relevant for flow in the stellar interior; see e.g. Garaud (2021), while a
Prandtl number of Pr = 7 corresponds to thermally stratified water. The Schmidt number
(the analogous parameter to the Prandtl number for compositionally induced density
variations) for salt-stratified water is significantly larger Sc � 700. Moreover, the Prandtl
number is obviously not well defined under the inviscid and non-diffusive assumptions
of the Miles–Howard theorem. In this subsection, we explore the effect of low or high
Prandtl number on flow structures. Here, we keep the Reynolds number fixed at Re = 4250
following Zhou et al. (2017a,b). In order to resolve fully the additional scales introduced at
high Pr, we increase the number of wall-normal grid points to Ny = 120 at Pr = 70, which
is chosen as a more computationally accessible ‘large’ value, as previously considered by
Zhou et al. (2017a,b).

We first investigate the effect of low Pr. The cross-channel density profiles of exact
coherent structures in stratified PCF were shown to match in flows with the same PrRib
at Pr ∈ [10−4, 10−2] (Langham et al. 2020, figure 3). This combined measure PrRib has
been proposed as the natural control parameter for stably stratified shear flows at the low
Prandtl number limit Pr � 1 (Lignieres 1999; Garaud et al. 2015). In order to further
explore this dependence, we plot ‖HS

∇‖M
μ as a function of PrRib for Prandtl numbers in the

range Pr ∈ [10−4, 7] in figure 6. Here, the results ‖HS
∇‖M

μ for Pr ∈ [10−4, 10−1] (magenta
dashed lines) again show a natural matching dependence on PrRib. This behaviour breaks
down for flows with Pr ≥ 1, as shown in figure 6. A similar end to the region of matched
dependence on PrRib alone is observed in studies using exact coherent structures, where
the density profile at Pr = 0.1 deviates from the matching profiles for flows with Pr ∈
[10−4, 10−2] yet fixed PrRib (Langham et al. 2020, figure 3).
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Figure 6. The dependence on PrRib of ‖HS
∇‖M

μ at Re = 4250.
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Figure 7. The dependence on Rib and Pr of ‖HS
∇‖M

μ (–, black) and ‖HS
∇‖sc

μ (- -, red) at Re = 4250. Each black
marker on the lines of ‖HS

∇‖M
μ indicates the associated value of (a) Pr and (b) Rib indicated in the legend. Each

red marker on the lines of ‖HS
∇‖sc

μ indicates the same parameter as the corresponding black marker.

In figure 7, we plot ‖HS
∇‖M

μ and ‖HS
∇‖sc

μ as a function of Rib and Pr over the respective
ranges Rib ∈ [0, 6] and Pr ∈ [10−4, 70]. Figure 7(a) shows that the marginal stability value
Rib = 1/4 is not associated with any significant changes in the types of flow features
undergoing the largest amplification for flows with Pr = 0.01 (�). Figure 7(b) further
suggests that flows with smaller Pr require a larger Rib to reduce the amplification of
streamwise-varying flow structures to the same level as streamwise constant structures.
This behaviour is consistent with the observation that the exact coherent structures in the
low Pr limit require a larger Rib to be affected by stratification in PCF (Langham et al.
2020). Figure 7 further shows that, for flows with high Pr, the quantities ‖HS

∇‖M
μ and

‖HS
∇‖sc

μ are the same over a wide range of Rib ∈ [0, 6]. In particular, the horizontal lines
plotted in figure 7(a) for flows with different Rib collapse to one line in the high Pr � 1
regime shown in figure 7(b). This observation is also consistent with Langham et al.
(2020), who noted that, in the high Prandtl number limit Pr � 1, the effect of increasing
Rib is mitigated.

In order to investigate in isolation the effect of Prandtl number on the amplification
of each wavenumber pair (kx, kz), in figure 8 we plot ‖HS

∇‖μ(kx, kz) for flows with
(a) Pr = 10−4, (b) Pr = 7 and (c) Pr = 70. The peak region in figure 8(a) at Pr = 10−4

resembles the shape of the peak region for unstratified PCF (Liu & Gayme 2021, figure 4a).
We have also computed the results for unstratified PCF at the same Reynolds number Re =
4250 (not shown here), and we find almost the same results as shown in figure 8(a). This
similarity suggests that, for the same bulk Richardson number, a lower Prandtl number
will result in a weakening of the stabilizing effect of stratification. Comparing ‖HS

∇‖μ in
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Figure 8. Plots of log10[‖HS
∇‖μ(kx, kz)] at Re = 4250, Rib = 0.02 with three different Prandtl numbers at

(a) Pr = 10−4, (b) Pr = 7 and (c) Pr = 70.

figure 4(a) at Pr = 0.7 with the same quantity at Pr = 7 and Pr = 70, respectively shown
in figures 8(b) and 8(c), we notice that the amplification associated with the wavenumber
pair kx = 10−4 and kz = 10−2 increases with Pr. More specifically, the value of ‖HS

∇‖μ
associated with kx = 10−4 and kz = 10−2 becomes comparable to the values associated
with the kx ≈ 10−2 and kz ≈ 10−1 at Pr = 7 as shown in 8(b). The wavenumber pair
kx = 10−4 and kz = 10−2 is associated with the largest magnitude over the (kx, kz) contour
region at Pr = 70, as shown in figure 8(c).

The quasi-horizontal flow structures (kx ≈ 0, kz ≈ 0) observed in flows at high Pr have
different features from those previously observed in the high-Re, high-Rib regime (e.g.
results for flows with Re = 52 630 and Rib = 0.15 shown in figure 4c) and described in
§ 3.1. This indicates that a new type of quasi-horizontal flow structure appears in flows
with sufficiently high Pr. The appearance of this flow structure at a high Pr suggests that
this flow structure is associated with fluctuations in the density field. This can be further
explored by isolating the input–output pathway for each component of the momentum
and density equations, i.e. inputs fx, fy, fz, fρ in (2.3) to outputs u, v, w and ρ. These
input–output pathways can be studied through the definition of operators HS

ij, where
j defines the forcing input component (j = x, y, z, ρ) and i = u, v,w, ρ describes each
velocity or density output component

HS
ij = ĈS

i

(
iωI3×3 − ÂS

)−1 B̂S
j , (3.5)

with

B̂S
x := B̂S [I 0 0 0

]T
, B̂S

y := B̂S [
0 I 0 0

]T
, (3.6a,b)

B̂S
z := B̂S [

0 0 I 0
]T
, B̂S

ρ := B̂S [
0 0 0 I]T

, (3.6c,d)

ĈS
u := [I 0 0 0

] ĈS
, ĈS

v := [
0 I 0 0

] ĈS
, (3.6e, f )

ĈS
w := [

0 0 I 0
] ĈS

, ĈS
ρ := [

0 0 0 I] ĈS
. (3.6g,h)

Figures 9 and 10 present quantities ‖HS
ij‖∞ ij = ux, vy,wz and ρρ for the

control parameters (Re = 865,Rib = 0.02,Pr = 0.7) and (Re = 4250,Rib = 0.02,Pr =
70) respectively. The combined effect of these four panels associated with the input
and output in the same component resembles the shape of ‖HS

∇‖μ at the same
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Figure 9. Componentwise values of log10[‖HS
ij‖∞](kx, kz) at Re = 865, Rib = 0.02, Pr = 0.7 (ij =

ux, vy,wz, ρρ). Note the range of the colour bar for each panel is modified based on the maximum value
of the particular quantity: (a) ‖HS

ux‖∞; (b) ‖HS
vy‖∞; (c) ‖HS

wz‖∞; (d) ‖HS
ρρ‖∞.
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Figure 10. Componentwise values of log10[‖HS
ij‖∞](kx, kz) at Re = 4250, Rib = 0.02, Pr = 70 (ij =

ux, vy,wz, and ρρ). Note the range of the colour bar for each panel is modified based on the maximum value
of the particular quantity: (a) ‖HS

ux‖∞; (b) ‖HS
vy‖∞; (c) ‖HS

wz‖∞; (d) ‖HS
ρρ‖∞.

flow regime in figures 3(a) and 8(c). This correspondence is because the structured
feedback interconnections in (2.4a)–(2.4b) constrain the permissible feedback pathways.
In figure 10, (d) ‖HS

ρρ‖∞ (associated with input fρ and output ρ) is significantly larger
than the responses shown in the other panels for a flow with Pr = 70, suggesting the
strong role of density in the amplification for this parameter range. We can further isolate
each component of the frequency response operator HS

∇ by defining

HS
∇ij = ∇̂HS

ij. (3.7)

The values ‖HS
∇ij‖∞, not shown here for brevity, show qualitatively similar behaviour to

‖HS
ij‖∞ as plotted in figures 9 and 10. This componentwise analysis demonstrates that

the quasi-horizontal flow structures appearing at high Pr are associated with density
fluctuations. The appearance of this type of quasi-horizontal flow structure associated
with density fluctuations in a high Pr regime is qualitatively consistent with previous
observations that sharp density gradients or even density ‘staircases’ can be observed when
Pr is increased (Taylor & Zhou 2017; Zhou et al. 2017b).

4. Scaling for density-associated flow structures when Pr � 1

The previous subsection reveals the appearance of quasi-horizontal flow structures
associated with density fluctuations in the Pr � 1 limit. In this section, we construct
an analytical scaling of ‖HS

∇‖μ in terms of Re and Pr to provide further evidence that
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such flow structures prefer the Pr � 1 regime. The analytical scaling in terms of Re and
Pr can also further provide insight into high Re and Pr flow regimes beyond the current
computation range achievable through DNS.

We assume streamwise-invariance (kx = 0) and unstratified flow (Rib = 0) to facilitate
analytical derivation. The importance of streamwise-invariant flow structures is suggested
by the quasi-horizontal flow structures (kx ≈ 0 and kz ≈ 0), which are nearly streamwise
constant. The independence with respect to variations in Rib of the amplification of
streamwise-invariant flow structures ‖HS

∇‖sc
μ shown in figures 5 and 7 and the analysis

of Langham et al. (2020) suggest that Rib = 0 (i.e. density fluctuations can be treated
as a passive scalar) is a reasonable regime to consider to obtain further insight. The
analytically derived Re and Pr scalings of each component of HS

ij in (3.5) and HS
∇ij in

(3.7) are presented in theorems 4.1(a) and (b), respectively.

THEOREM 4.1. Consider streamwise-invariant (kx = 0) unstratified (Rib = 0) plane
Couette flow with a passive scalar ‘density’ field.

(a) Each component of ‖HS
ij‖∞ (i = u, v,w, ρ and j = x, y, z, ρ) scales as⎡

⎢⎢⎢⎢⎣
‖HS

ux‖∞ ‖HS
uy‖∞ ‖HS

uz‖∞ ‖HS
uρ‖∞

‖HS
vx‖∞ ‖HS

vy‖∞ ‖HS
vz‖∞ ‖HS

vρ‖∞
‖HS

wx‖∞ ‖HS
wy‖∞ ‖HS

wz‖∞ ‖HS
wρ‖∞

‖HS
ρx‖∞ ‖HS

ρy‖∞ ‖HS
ρz‖∞ ‖HS

ρρ‖∞

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Re hS
ux(kz) Re2 hS

uy(kz) Re2 hS
uz(kz) 0

0 Re hS
vy(kz) Re hS

vz(kz) 0

0 Re hS
wy(kz) Re hS

wz(kz) 0

0 Re2Pr hS
ρy(kz) Re2Pr hS

ρz(kz) RePr hS
ρρ(kz)

⎤
⎥⎥⎥⎥⎦ , (4.1)

where functions hS
ij(kz) are independent of Re and Pr.

(b) Each component of ‖HS
∇ij‖∞ (i = u, v,w, ρ and j = x, y, z, ρ) scales as⎡

⎢⎢⎢⎢⎣
‖HS

∇ux‖∞ ‖HS
∇uy‖∞ ‖HS

∇uz‖∞ ‖HS
∇uρ‖∞

‖HS
∇vx‖∞ ‖HS

∇vy‖∞ ‖HS
∇vz‖∞ ‖HS

∇vρ‖∞
‖HS

∇wx‖∞ ‖HS
∇wy‖∞ ‖HS

∇wz‖∞ ‖HS
∇wρ‖∞

‖HS
∇ρx‖∞ ‖HS

∇ρy‖∞ ‖HS
∇ρz‖∞ ‖HS

∇ρρ‖∞

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Re hS
∇ux(kz) Re2 hS

∇uy(kz) Re2 hS
∇uz(kz) 0

0 Re hS
∇vy(kz) Re hS

∇vz(kz) 0

0 Re hS
∇wy(kz) Re hS

∇wz(kz) 0

0 Re2Pr hS
∇ρy(kz) Re2Pr hS

∇ρz(kz) RePr hS
∇ρρ(kz)

⎤
⎥⎥⎥⎥⎦ , (4.2)

where functions hS
∇ij(kz) are independent of Re and Pr.

The first three columns and three rows presented in (4.1) are the same as those
derived in Jovanović (2004, theorem 11) for unstratified wall-bounded shear flows
with no passive scalar field. The details of the proof are presented in Appendix B.
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These results demonstrate that Pr only contributes to the scaling associated with the
density field (here of course assumed to be a passive scalar); i.e. the bottom rows of (4.1)
and (4.2) corresponding to the density output. We also note that the rightmost columns of
(4.1) and (4.2) show that the forcing in the density equation fρ does not influence the output
corresponding to velocity components u, v and w, which is consistent with the assumption
that Rib = 0, in that the density perturbation behaves as a passive scalar.

The effect of imposing a componentwise structure for the nonlinearity within the
feedback is analogous to the effect seen in unstratified PCF (Liu & Gayme 2021, § 3.3).
The imposed correlation between each component of the modelled forcing fx,ξ , fy,ξ , fz,ξ ,
fρ,ξ , and the respective velocity and density components u, v, w, ρ constrain the influence
of the forcing to its associated component of the velocity or density field. Thus, the overall
scaling of ‖HS

∇‖μ is related to the worst-case scaling of the diagonal terms in (4.2) in
theorem 4.1. The concept is formalized in theorem 4.2, and we relegate the details of the
proof to Appendix B.

THEOREM 4.2. Given a wavenumber pair (kx, kz)

‖HS
∇‖μ ≥ max[‖HS

∇ux‖∞, ‖HS
∇vy‖∞, ‖HS

∇wz‖∞, ‖HS
∇ρρ‖∞]. (4.3)

We can combine results in theorems 4.1(b) and 4.2 to obtain the scaling of ‖HS
∇‖μ in

corollary 4.3

COROLLARY 4.3. Consider streamwise-invariant (kx = 0) unstratified (Rib = 0) PCF
with a passive scalar ‘density’ field

‖HS
∇‖μ(0, kz) ≥ max[Re hS

∇ux(kz),Re hS
∇vy(kz),Re hS

∇wz(kz),RePr hS
∇ρρ(kz)], (4.4)

where functions hS
∇ij(kz) with ij = ux, vy,wz, ρρ are independent of Re and Pr.

Although corollary 4.3 provides a lower bound on ‖HS
∇‖μ, the numerical results suggest

that ‖HS
∇‖μ follows the same Re and Pr scaling as the right-hand side of (4.4) in corollary

4.3. For example, corollary 4.3 suggests that the lower bound of ‖HS
∇‖μ(0, kz) will scale

as ∼Re at a fixed Pr, which is consistent with the red dashed lines of figure 5(b). At
a fixed Re, corollary 4.3 also suggests that ‖HS

∇‖μ(0, kz) ∼ Pr in the limit Pr � 1, but
‖HS

∇‖μ(0, kz) will become independent of Pr in the limit Pr � 1. This is also consistent
with the numerical results shown in the red dashed lines of figure 7(b) that suggest
‖HS

∇‖sc
μ ∼ Pr when Pr � 1 and independently of Pr when Pr � 1. For Pr � 1, theorem

4.2 and corollary 4.3 further suggest that the component ‖HS
∇ρρ‖∞ associated with the

density will dominate the overall behaviour of ‖HS
∇‖μ, which is consistent with the large

amplification of quasi-horizontal flow structures associated with density fluctuations, i.e.
‖HS

ρρ‖∞ shown in figure 10(p). Corollary 4.3 further supports the notion that the flow
structures associated with density fluctuations prefer the flow regime with Pr � 1 under
the assumptions of streamwise-invariant (kx = 0) and unstratified (Rib = 0) flow.

5. Conclusions and future work

In this paper, we have extended the SIOA originally developed for unstratified
wall-bounded shear flows (Liu & Gayme 2021) to stratified PCF. We first apply SIOA
to characterize highly amplified flow structures in the intermittent regimes of stratified
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PCF. We examine how variations in Re and Rib affect flow structures with Pr = 0.7. SIOA
predicts the characteristic wavelengths and angle of the oblique turbulent bands observed
in very large channel size DNS of the low-Re low-Rib intermittent regime of stratified
PCF (Deusebio et al. 2015; Taylor et al. 2016). In the high-Re high-Rib intermittent
regime, SIOA identifies quasi-horizontal flow structures resembling turbulent–laminar
layers (Deusebio et al. 2015).

Having validated the ability of the SIOA approach to predict important structures in
the intermittent regime, we next investigate the behaviour of the flow across a range
of important control parameters Re, Rib and Pr. Increasing Rib is shown to reduce the
amplification of streamwise-varying flow structures. The results indicate that the classical
marginally stable Rib = 1/4 for the laminar base flow appears to be associated with a
change in the most amplified flow structures, an observation which is robust for a wide
range of Re and valid at Pr ≈ 1.

We then examine flow behaviour at different Rib and Pr. For flows with Pr � 1, a
larger value of Rib is required to reduce the amplification of streamwise-varying flow
structures to the same level as streamwise-invariant ones compared with flows with
Pr ≈ 1. The largest amplification also occurs at the same value of PrRib, consistent
with the observation of matching averaged density profile for flows with the same value
of PrRib in the Pr � 1 regime (Langham et al. 2020). For flows with Pr � 1, the
SIOA identifies another quasi-horizontal flow structure that is independent of Rib. By
decomposing input–output pathways into each velocity and density component, we show
that these quasi-horizontal flow structures for flows with Pr � 1 are associated with
density fluctuations. The importance of this density-associated flow structure for flows
with Pr � 1 is further highlighted through a derived analytical scaling of amplification
with respect to Re and Pr under the assumptions that the flow is streamwise invariant
(kx = 0) and unstratified (i.e. Rib = 0 and the density behaves as a passive scalar). The
above observations using SIOA distinguish two types of quasi-horizontal flow structures,
one emerging in the high-Re high-Rib regime and the other one (associated with density
fluctuations) emerging in the high Pr regime.

The results here suggest the promise of this computationally tractable approach in
identifying horizontal length scales of prominent flow structures in stratified wall-bounded
shear flows and opens up many directions for future work. For example, this framework
may be extended to other stratified wall-bounded shear flows such as stratified channel
flow (Garcia-Villalba & del Alamo 2011), stratified open channels (Flores & Riley 2011;
Brethouwer, Duguet & Schlatter 2012; Donda et al. 2015; He & Basu 2015, 2016) and the
stratified Ekman layer (Deusebio et al. 2014), where intermittent regimes of flow dynamics
were also observed. This framework may also be extended to configurations where the
background density gradient and velocity gradient are orthogonal, e.g. spanwise stratified
PCF (Facchini et al. 2018; Lucas, Caulfield & Kerswell 2019) and spanwise stratified plane
Poiseuille flow (Le Gal et al. 2021).
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Figure 11. Plot of R(ÂS)(kx, kz) for stratified plane Couette flow in a flow with Re = 865, Rib = 0.02 and
Pr = 0.7.

Appendix A. Growth rate analysis

Here, we present the growth rate of the dynamics in (2.6) computed as

R[ÂS(kx, kz)] := max{Re[eig(ÂS(kx, kz))]}, (A1)

where eig( · ) is the eigenvalue of the argument, Re[ · ] represents the real part, max{ · } is
the maximum value of the argument and ÂS is the discretization of operator ÂS. Figure 11
shows the growth rate R(ÂS)(kx, kz) in (A1). Here, we observe that this modal growth rate
analysis R(ÂS)(kx, kz) cannot distinguish a preferential structure size over a wide range
of wavenumbers kx � 1 and kz � 10, and there is no identified instability consistent with
Davey & Reid (1977).

Appendix B. Proofs of theorems 4.1–4.2

B.1. Proof of theorem 4.1
Proof . The proof of theorem 4.1 naturally follows the procedure in unstratified flow
(Jovanović 2004; Jovanović & Bamieh 2005; Jovanović 2021) and is outlined as a block
diagram in figure 12. Under the assumption of streamwise invariance (kx = 0) and taking
the passive scalar limit (Rib = 0) for stratified PCF in theorem 4.1, the operators ÂS, B̂S

and ĈS can be simplified and their non-zero elements can be defined as

ÂS(kx, kz) =

⎡
⎢⎢⎢⎢⎢⎣

∇̂−2∇̂4

Re
0 0

−ikzU′ ∇̂2

Re
0

−ρ̄′ 0
∇̂2

RePr

⎤
⎥⎥⎥⎥⎥⎦ , (B1a)

B̂S
(kx, kz) =

⎡
⎣ 0 −k2

z ∇̂−2 −ikz∇̂−2∂y 0
ikz 0 0 0
0 0 0 I

⎤
⎦ =:

⎡
⎢⎣ 0 B̂S

y,1 B̂S
z,1 0

BS
x,2 0 0 0
0 0 0 B̂S

ρ,3

⎤
⎥⎦ (B1b)
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f̂ x

ω̂y û

ŵ

v̂

v̂

–ρ̄′

– ikzU
′

ρ̂

f̂ y

f̂ z

f̂ρ

Re (iΩ1I – ∇̂–2∇̂4)–1 Re (iΩ1I – ∇̂2)–1

RePr (iΩ2I – ∇̂2)–1

ĈS
u,2

ĈS
w,1

ĈS
v,1

ĈS
ρ,3

∇̂û∇̂

∇̂

∇̂

∇̂

∇̂v̂

∇̂ŵ

∇̂ρ̂

B̂S
x,2

B̂S
y,1

B̂S
z,1

B̂S
ρ,3

Figure 12. Block diagram of the frequency response operator that maps forcing in each momentum and density
equation to each velocity and density gradient in streamwise-invariant (kx = 0) PCF with density assumed to be
a passive scalar (i.e. Rib = 0). Here, Ω1 = ωRe and Ω2 = ωRePr. The block outlined by (- -, red) contributes
to the scaling associated with ‖HS

uy‖∞, ‖HS
uz‖∞, while the block outlined by (- · -, blue) contributes to the

scaling associated with ‖HS
ρy‖∞, ‖HS

ρz‖∞.

ĈS
(kx, kz) =

⎡
⎢⎣

0 −i/kz 0
I 0 0

i∂y/kz 0 0
0 0 I

⎤
⎥⎦ =:

⎡
⎢⎢⎢⎢⎣

0 ĈS
u,2 0

ĈS
v,1 0 0

ĈS
w,1 0 0

0 0 ĈS
ρ,3

⎤
⎥⎥⎥⎥⎦ (B1c)

We employ a matrix inverse formula for the lower triangle block matrix

⎡
⎣L11 0 0

L21 L22 0
L31 0 L33

⎤
⎦−1

=
⎡
⎣ L−1

11 0 0
−L−1

22 L21L−1
11 L−1

22 0
−L−1

33 L31L−1
11 0 L−1

33

⎤
⎦ (B2)

to compute (iωI3×3 − ÂS)−1. Then, we employ a change of variableΩ1 = ωRe andΩ2 =
ωRePr to obtain componentwise frequency response operators HS

ij with i = u, v,w, ρ and
j = x, y, z, ρ as

HS
ux = ĈS

u,2Re
(

iΩ1I − ∇̂2
)−1 B̂S

x,2, (B3a)

HS
uy = ĈS

u,2Re
(

iΩ1I − ∇̂2
)−1

(−ikzU′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

y,1, (B3b)

HS
uz = ĈS

u,2Re
(

iΩ1I − ∇̂2
)−1

(−ikzU′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

z,1, (B3c)

HS
uρ = 0, (B3d)

HS
vx = 0, (B3e)

HS
vy = ĈS

v,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

y,1, (B3f )

HS
vz = ĈS

v,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

z,1, (B3g)

948 A10-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

64
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.648


C. Liu, C.P. Caulfield and D.F. Gayme

HS
vρ = 0, (B3h)

HS
wx = 0, (B3i)

HS
wy = ĈS

w,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

y,1, (B3j)

HS
wz = ĈS

w,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

z,1, (B3k)

HS
wρ = 0, (B3l)

HS
ρx = 0, (B3m)

HS
ρy = ĈS

ρ,3RePr
(

iΩ2I − ∇̂2
)−1

(−ρ̄′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

y,1, (B3n)

HS
ρz = ĈS

ρ,3RePr
(

iΩ2I − ∇̂2
)−1

(−ρ̄′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1 B̂S

z,1, (B3o)

HS
ρρ = ĈS

ρ,3RePr
(

iΩ2I − ∇̂2
)−1 B̂S

ρ,3. (B3p)

Taking the operation that ‖ · ‖∞ = sup
ω∈R

σ̄ [ · ] = sup
Ω1∈R

σ̄ [ · ] = sup
Ω2∈R

σ̄ [ · ], we obtain the

scaling relation in theorem 4.1(a).
Using the relation that HS

∇ij = ∇̂HS
ij in (3.7) with i = u, v,w, ρ, and j = x, y, z, ρ, and

similarly employing the definition of ‖ · ‖∞, we obtain the scaling relation in theorem
4.1(b). �

In figure 12, the block −ikzU′ inside the dashed line (- -, red) contributes to the relatively
large scalings of ‖HS

uy‖∞ ∼ Re2, ‖HS
uz‖∞ ∼ Re2 at high Re in (4.1) of theorem 4.1(a),

which has been attributed to the lift-up mechanism; see discussion in Jovanović (2021).
Similarly, the block −ρ̄′ outlined by (- · -, blue) contributes to the relatively large scalings
of ‖HS

ρy‖∞ ∼ Re2Pr, and ‖HS
ρz‖∞ ∼ Re2Pr at high Re or Pr. This similarity between

streamwise streaks and density streaks is consistent with the observation that passive
scalar streaks can be generated by the same lift-up mechanism as the streamwise streaks
(Chernyshenko & Baig 2005).

B.2. Proof of theorem 4.2
Proof . We define the set of uncertainties

ÛS
Ξ,ux :=

{
diag

(−ûT
ξ , 0, 0, 0

)
: −ûT

ξ ∈ C
Ny×3Ny

}
, (B4a)

ÛS
Ξ,vy :=

{
diag

(
0,−ûT

ξ , 0, 0
)

: −ûT
ξ ∈ C

Ny×3Ny
}
, (B4b)

ÛS
Ξ,wz :=

{
diag

(
0, 0,−ûT

ξ , 0
)

: −ûT
ξ ∈ C

Ny×3Ny
}
, (B4c)

ÛS
Ξ,ρρ :=

{
diag

(
0, 0, 0,−ûT

ξ

)
: −ûT

ξ ∈ C
Ny×3Ny

}
. (B4d)
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Here, 0 ∈ CNy×3Ny is a zero matrix with the size Ny × 3Ny. Then, using the definition of
the structured singular value in definition 2.1, we have

μÛS
Ξ,ux

[
HS

∇(kx, kz, ω)
]

= 1

min{σ̄ [ûS
Ξ,ux] : ûS

Ξ,ux ∈ ÛS
Ξ,ux, det[I − HS

∇(kx, kz, ω)ûS
Ξ,ux] = 0} (B5a)

= 1
min{σ̄ [−ûT

ξ ] : −ûT
ξ ∈ CNy×3Ny, det[I3Ny − HS

∇ux(kx, kz, ω)(−ûT
ξ )] = 0} (B5b)

= σ̄ [HS
∇ux(kx, kz, ω)]. (B5c)

Here, equality (B5a) is obtained by substituting the uncertainty set in (B4a) into definition
2.1. The equality (B5b) is obtained by performing a block-diagonal partition of terms
inside of det[ · ] and employing zeros in the uncertainty set in equation (B4a). Here,
HS

∇ux is the discretization of HS
∇ux and I3Ny ∈ C3Ny×3Ny in (B5b) is an identity matrix

with matching size (3Ny × 3Ny), where we use the subscripts to distinguish it from
I ∈ C12Ny×12Ny in (B5a). The equality (B5c) uses the definition of the unstructured singular
value; see e.g. Zhou et al. (1996, (11.1)).

Similarly, we have

μÛS
Ξ,vy

[
HS

∇(kx, kz, ω)
]

= σ̄ [HS
∇vy(kx, kz, ω)], (B6a)

μÛS
Ξ,wz

[
HS

∇(kx, kz, ω)
]

= σ̄ [HS
∇wz(kx, kz, ω)], (B6b)

μÛS
Ξ,ρρ

[
HS

∇(kx, kz, ω)
]

= σ̄ [HS
∇ρρ(kx, kz, ω)]. (B6c)

Using the fact that ÛS
Ξ ⊇ ÛS

Ξ,ij with ij = ux, vy,wz, ρρ and equalities in (B5)–(B6), we
have

μÛS
Ξ

[
HS

∇(kx, kz, ω)
]

≥ μÛS
Ξ,ij

[
HS

∇(kx, kz, ω)
]

= σ̄ [HS
∇ij(kx, kz, ω)]. (B7)

Applying the supreme operation sup
ω∈R

[ · ] on (B7) and using the definitions of ‖ · ‖μ
and ‖ · ‖∞ we have

‖HS
∇‖μ ≥ ‖HS

∇ux‖∞, ‖HS
∇‖μ ≥ ‖HS

∇vy‖∞, (B8a,b)

‖HS
∇‖μ ≥ ‖HS

∇wz‖∞, ‖HS
∇‖μ ≥ ‖HS

∇ρρ‖∞. (B8c,d)

This directly results in inequality (4.3) of theorem 4.2. �
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