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On the other hand, some other manufacturers use receiver bandwidths considerably
less than these values which, while it confers benefits in terms of target detectability
(lower KTB noise), may also lead to failure to observe frequency agile RACONS due to the
RACON reply frequency error causing the reply to be outside the radar receiver passband
for longer displayed range scales.

Reflections from the surface of a smooth sea can also cause the fading of RACON

responses. This effect, which can also adversely affect radar echoes and is known as
Lloyd's Mirror, is dependent upon the range of the RACON from the radar and also upon
the heights of the antennas of the radar and RACON above the sea surface.

The visibility of RACON responses at closer range can be affected by the improper
setting of the radar anti-clutter-sea (STC) controls, since, if the sea clutter suppression
threshold is set too high, it may also suppress RACON or other beacon replies.

4. FUTURE DEVELOPMENTS. A new development in marine navigation radar
technology which has implications for operation with standard RACONS, is the Signaal
SCOUT radar, now being tested by the Dutch and Canadian navies, SCOUT is a cw radar
having a peak transmitted power of 1 W compared with the 2 $ kW of a standard marine
navigation radar. The low transmitted power, together with the FM—cw mode of
operation, means that standard marine navigation RACONS, which require a pulsed signal,
will not be triggered.

Low peak transmitted powers are environmentally attractive and it seems likely that
SCOUT points the way for the future evolution of commercial marine navigation radar,
provided that the problem of incompatibility with RACONS and Search and Rescue
Transponders (SART), can be overcome.
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A Step by Step Method of Computing Points Along
the Arc of a Great Circle

Roy Williams

1. I N T R O D U C T I O N . On any surface with suitable continuity properties, the shortest
distance between two points on the surface is along the arc of a geodesic curve. A
geodesic curve on such a surface is defined as a curve on the surface along whose length,
at any point, the normal to the curve is also the normal to the surface at that point. On
the surface of a sphere, the geodesic arcs are the great circles and, except when the two
points are antipodean, the arc of the great circle joining them is unique.

In navigation the standard procedure for computing great circle course and distance,
and any intermediate points along the path, employs the methods of spherical
trigonometry. These methods, which usually involve the haversine formula and the
spherical cosine formula, are well tried and tested and give accurate results but they are
not sufficiently general and cannot be applied to surfaces other than the sphere. They can
be used to provide first approximations to the path of the geodesic on the surface of the
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Terrestial Spheroid and in the correction methods of Andoyer1 and Lambert2 but, if we
were to consider a surface other than the Earth, such as Jupiter, where the flattening
of the surface is much more distinct then, although the methods of spherical
trigonometry might still provide first approximations to the properties of the geodesic
arcs, some other method must provide the final answer.

It is the purpose here, using the methods of differential geometry, to derive an
equation in spherical coordinates for a great circle on the surface of a sphere from which,
at any point P along the path of the great circle where the longitude is 6, we can find
the latitude, 0, of the point P. <j> and 6 are defined in the ranges

—\n<<l><\n (North positive): 0 < 6 < in (East positive)

The method finds Clairaut's Equation which defines a geodesic curve on any surface
which is also a surface of revolution.

Using Clairaut's Equation and the Direct Cubic Spline Approximation to Integrals3 we
will also describe a method of computing the course and distance along the path of a great
circle which can be generalized to other surfaces of revolution and which, even in the
case of the sphere, might be considered a more straightforward alternative to the
methods of spherical trigonometry.

2. C L A I R A U T ' S E Q U A T I O N . A sphere is an example of a special set of surfaces known
as surfaces of revolution. A surface of revolution is formed by revolving a curve through
3600 around a fixed axis. A sphere, for instance, is formed by revolving a circle about
a diameter. On any surface of revolution which satisfies the required continuity
conditions, the special set of curves formed by the intersection of the surface with planes
through the axis of revolution are known as meridians. Meridians are geodesic curves.

Consider, then, a geodesic curve on a surface of revolution which passes through a set
of points [PJ and which cuts the meridian through a particular point P4 at an angle yi

(see Fig. 1). If it is the shortest distance from the point Pt to the axis of revolution, along

3. - - - - -

Fig.
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a line perpendicular to the axis of revolution, then for all points Pt on the geodesic,
Clairaut's Equation is

r{ sin yt = constant (1)

This equation is shown in the book by Lyusternik.4

If we consider a small element, 8s, of the great circle arc on the surface of a sphere
of radius a at a point P along its path then, by the methods of differential geometry, as
8s approaches zero, we can define a limiting triangle PQR (Fig. 2), right-angled at R,
in which PQ = ds; PR = acos<j)dd; QR = ad<j>; PQR" = y

where y is the angle at which the great circle cuts the meridian at P. The distance from
the point P along a line perpendicular to the axis of revolution is a cos <j> and, from
triangle PQR, we see that

a cos d> dd
( 2 )

so that, when the surface of revolution is a sphere, Clairaut's Equation may be
expressed as a differential equation in the form

2 2 (dd\

a cos p i — = constant (3)
\ds)

Now, at the vertex of a great circle, where the latitude is <j>v, say, the angle y = 90°,
sin 7 = 1 so that r = acos</>v and this is the value of the constant. Hence, using this in
equation (3), Clairaut's Equation becomes

( dd\—J = cos0v (4)

Using the relationship ds* = a2d<f? +a2 cos2

and the substitution y = a tan <f> we can transform equation (4) to

(!)

Hence, when the great circle crosses the Equator in longitude de, its solution is

y=yvsm(d-de)
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Replacing/ with atan^, we then find

tan <f> = tan 0V sin (6 - 8e) (6)

This is the equation of a great circle on the surface of a sphere. We can find the values
of <pv and 8e for a particular great circle. If the great circle passes through the points Po,
where the latitude is <j>0 and the longitude is 80, and the point Pn, where the latitude
is <j>n and the longitude is 8n, then we find, using equation (6)

tan 8. = -^ p f- (7)
tan <p0 cos 8n — tan <pn cos 00

and tan <j>v = t an <j>0 c o s e c (80 — 0e) (8 a)

or tan <j>v = tan <pn cosec (6n -8e) (8 b)

using (8 a) or (8 b) in whichever of <f>0 or <f>n is non-zero.
The problem of determining from equation (7) the value of 8e which suits the situation

is not as straightforward using automatic computation as it is by inspection. For a start,
when 80 > 8n, it is better to rename Po and Pn temporarily in the computer program
so that 80 < 8n and distance along the path of the great circle is always computed
travelling eastwards. The program must then allow for the fact that, when Po and Pn lie
in opposite hemispheres, the value of 8e obtained from equation (7) must be such that
80 < 8e< 8n. If, however, both Po and Pn lie in the same hemisphere then the value of
8e must be the largest value such that 8e < 60.

When the computations are complete the computer program will restore all the
original information and present the final results in the required order.

3. C O M P U T I N G COURSE AND DISTANCE. At any point along the path of a great
circle where the latitude is <f> we can find the course as angle, y, from Equation (1)
expressed in the form

sin y = cos <pv sec <j> (9)
where <f>v is the latitude of the vertex of the great circle. The distance, st, between the
points Po (latitude <j>0, longitude 80) and a point P( (latitude <j>u longitude 04) along the
path of the great circle can be found by separating the variables in Equation (4) and
integrating.

f%cosd
W e have s< = J ^ <IO>
We have j ^ c o s ^

Now (j> is a function of 6 and they are related by Equation (6) but, even though the
integration is with respect to 8, we do not need to express the integrand in terms of 6
since we will use a numerical method to perform the integration and will only need
ordinate values at a finite number of points. The method of integration we will use is
the direct cubic spline approximation to integrals.3

4. A NUMERICAL EXAMPLE. An an example of the application of the above analysis
to the computation of intermediate points along the path of a great circle on the surface
of a sphere, the course angle at the points and the distance between them, let us consider
the arc of the great circle which starts at the Equator in longitude o° and reaches its
vertex in latitude 4J0, longitude 900.

At a point P on this particular great circle arc, the latitude, <f>, and the longitude, 8,
are related by

tan (j> = sin 8

This is a consequence of equation (6).
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Let us choose a set of intermediate points [P4] along the path of this great circle arc
where the longitudes [6t] of these points are evenly spaced at j° intervals. The latitudes
[<j>^\ are given by

0 = tan"1

At the point P4 the integrand, Jt, in equation (10) is, in this case, given by

/ j = av
/2cos20<

and the course angle, yit is, from equation (9), given by

If St is the computed value of the distance ?0?t along the arc of the great circle and
the [Mt] are the ' Moments' of the cubic spline which are the computed values of the
derivative of the integrand

M( x djjid

then the step-by-step computational scheme for finding the latitudes of the points
along the path, the course angles and the distances is given by

S0 = ° -Jo = a V 2 : Mo = o : h = 77/36 : a = 3437.7468

For i = 1 to 18:
ei = ih
<j>i = tan"1 (sinfy)
yt = sin"1 ( jVzsec^ )
Jt = a\/2 cos2 0j

The results from the computation are shown in Table 1. The distances are given in
units of 1 min of arc on the Equator.

5. C O N C L U S I O N . The results shown in Table 1 are given correct to two decimal
places. The course angle is, in fact, correct to all the available accuracy on the computer
in use (10 digits) and the final distance is correct to five decimal places before rounding.

It is the belief of this author (with much experience at sea in calculating great circle
data) that there is less computation in the method presented here than with the methods
using spherical trigonometry and that, although a particularly straightforward example
was chosen to demonstrate the method, the computational scheme of Section 4 is
suitable for both manual and automatic computation. As pointed out in the introduction,
the method here has the advantage that it can be generalized to other surfaces which are
also surfaces of revolution and, indeed, this was done (though not explicitly) in the paper
by Williams and Phythian,5 where the shortest distance step by step along a geodesic arc
on the surface of a spheroid was computed. When used in an automatic mode this method
can also be adapted to update once an observed position has been found, and the great
circle track to the destination can be re-evaluated very quickly using the same
intermediate longitudes. When interfaced with a position fixing system the updating
procedure can, of course, be almost continuous giving the course along the tangent to
the great circle and the distance to the destination.
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TABLE I

i

1

2

3
4
5
6

7
8

9
1 0

11

12

13

H
i j

16

>7
18

* i

5°
10°

i j °
2O°

2 5°
30°

35°
40°

45°
50°

SS°
6o°

65°
70°

75°
80°

85°
90°

<t><
4° 58-9'
9 ° 5 i i '

14° 306'

•8° 52-9'

22° 54-6'
26° 3 3 9 '

29° 50-3'

32° 43-9'
35° >5"9'
37° 27-2'

39° >9-4'
40° 53-6'
42° 11-2'
43° 1 3 2 '

44° 00-4'

44° 337'
44° 5 3 4'
45° oo-o'

Course

045-22°
045-86°

046-92°

048-36°
050-14°
052-24°
054-60°
057-20°
060-00°
062-97°
06607°
069-30°
07261°
076-00°

07945°
o82-9j°
086-47°

090-00°

Distance

42320
840-12

I24J-2 2
1634-19
2004-20

235390
2683-15
299276
328414
355908
381954
406754

43°5°7
453403
475628
479356
J18760
5400-00
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Fast-Ferry Navigation

Dag Pike

Recent accidents to fast ferries, notably that to Sea Cat in Norway, have concentrated attention
on fast-ferry operations, and the navigation of this new generation of fast craft. The Sea Cat
accident was a navigation error which resulted in the vessel running on to rocks with the deaths
of two passengers, and brought into sharp focus the risks which can be inherent in fast-ferry
operations. It is suggested that prior to this accident there have probably been many other
navigation errors which have had the potential for serious consequences. This has prompted
a look at the problems and limitations of current high-speed navigation practices and possible
solutions to reduce the chance of accidents amongst the expanding fleet of high-speed ferries.
This paper also proposes a method by which standards of equipment and performance could
be established in order to provide a better basis for the evaluation of safety margins.
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