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Abstract . We consider the motion of a spherically-symmetric balloon satellite 
perturbed by the Earth's oblateness and solar radiation pressure. For equatorial 
satellite orbits and neglecting the Earth obliquity, the orbit-averaged equations for 
eccentricity and longitude of pericenter are integrable in quadratures (Krivov and 
Getino, 1996). The instability zone associated with the saddle separatrix in the 
phase space has been found and explored in depth. For semimajor axes about two 
Earth's radii, and for area-to-mass ratios in the order of several tens cm 2 g - 1 , the 
amplitude and period of eccentricity oscillations may change nearly twofold under 
a small change of initial conditions or force parameters. We then restore the actual 
Earth obliquity of 23?5 and consider a spatial (non-integrable) problem. Near the 
saddle separatrix, a stochasticity zone appears that leads to large unpredictable 
eccentricity variations. The quasirandom motions of space balloons are investi­
gated in terms of two-symbol (0-1) sequences by methods of stochastic celestial 
mechanics. 

1. Introduct ion 

This paper is a continuation of our study (Krivov and Getino, 1996), dea­
ling with dynamics of spherical Ear th satellites with large area-to-mass 
ratios, moving in high-altitude low-inclination orbits. We take into account 
two perturbing forces — due to oblateness of the Earth and solar radiation 
pressure — and make reasonable simplifications. Then, we study the resul-
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ting ideal problem and investigate intricate dynamical effects arising from 
the coupling of the two disturbing forces indicated above. 
In Section 2, we consider the planar problem. It means that we artificially 
set Ear th 's obliquity to zero and suppose the orbital plane of a satellite to 
be equatorial. This problem is integrable and admits an exhaustive quali­
tative analysis to be done. In Section 3, we set the Earth obliquity to its 
actual value 23?5 and therefore obtain a non-integrable problem. Stochastic 
features of the motion are investigated here. Section 4 lists our conclusions. 

2. P lanar Case: Integrable P r o b l e m 

An elliptic orbit in the planar problem is described by three orbital ele­
ments: semimajor axis a, eccentricity e, and longitude of pericenter u>. The 
semimajor axis a is not subject to secular changes, until the shadowing 
effects are included, and can be treated as a given parameter. Hence, we 
should follow the evolution of two elements: e and Q. Instead of w, it is more 
convenient to use solar angle, <J>Q = Q — A© (A© is the longitude of Sun), 
which represents the angular distance between the pericenter and direction 
toward the Sun. As independent variable, we will use A@ which, since the 
Earth 's orbital eccentricity is neglected, is a linear function of time. 

We introduce two dimensionless parameters characterizing the strength 
of the perturbing forces: radiative parameter C and oblateness parameter 
W. The first of them is defined as 

r = l n_ _ Fpr _ F@a2 

2C Tn@' a ~ Fgr~ GMc7, 

where n and ra0 are mean motions of the satellite and Sun, a is the ratio of 
radiative to gravity force, F© is the solar flux at 1AU, GM is the Earth 's 
gravitational parameter, c is the speed of light, and 7 is the area-to-mass 
ratio of the satellite. We assume the reflectance factor to be unity. 

The oblateness parameter W is introduced as 

2 \ a ) n@ 

where J2 and R denote the oblateness coefficient and equatorial radius of 
the Earth, respectively. The product TIQW equals the precession rate of a) 
due to J2 for a nearly circular orbit. Numerically, W = 1 at a = 1.94/?. 

The orbit-averaged equations for e and 4>® c a n D e written in a semica-
nonical form (Krivov et al. , 1996; Hamilton and Krivov, 1996): 

de _ \fiTe> d% d(j>@ = VJn?dU 

d\Q e d(j>Q dXQ e de 
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with the autonomous "Hamiltonian" 

U = \ / l - e2 + Cecos<f>@ + (W/3) ( l - e 2 ) " 3 / 2 (2) 

and therefore admit an integral of the motion 

7i(e,<j)Q) = const. (3) 

Writing the equations of motion in semicanonical form (l)-(2) allows 
one to perform an exhaustive analysis of their solutions for various combi­
nations of the force parameters. This analysis has been done in (Hamilton 
and Krivov, 1996) and (Krivov and Getino, 1996). It turns out tha t the 
solutions possess some peculiar properties, including drastic changes in the 
dynamics under small changes of the force parameters or initial data . 

Here, we only give an illustrative example. In Figures la,b,c, we show the 
phase portraits of the dynamical system for the semimajor axis a = 2.5R 
that corresponds to the oblateness parameter W = 0.409. The radiative pa­
rameter C equals to 0.100,0.122..., and 0.150, respectively, tha t corresponds 
to 7 = 146, 179, and 220 cm2 g - 1 . We show only one half of a portrait for 
<J)Q € [0,180°] because of reflection symmetry <f>@ ->• 360° -<£©. In all cases, 
the phase portrait (e, <£0) contains five fixed points: saddles Pi = (0,90°) 
and P 2 = (0,270°), a maximum P 3 = (e3 ,0) , a saddle P4 = (e4 ,0) , and a 
minimum F5 = (es, 180°). There exists a saddle separatrix, a pair of phase 
curves that s tar t from P\ and end at the same point. Another phase curve 
of special interest is the e = 0 trajectory associated with an initially circular 
orbit. The e = 0 trajectory always s tar ts from the point (e = 0 , 0 0 = 90°) 
and may lie below the saddle separatrix, coincide with it, or go above the 
separatrix, as illustrated by Figures la,b,c, respectively. In the first case, 
the maximum eccentricity of emax = 0.37 is reached at <J>Q = 0, whereas 
in the third case emax = 0.81 is reached at <j>® = 180°. Accordingly, a 
striking jump in the eccentricity occurs under a small change in the radia­
tive parameter, namely when C passes through the value 0.122 (the second 
case). 

Another way to see the sharp changes in the dynamics is to vary the 
initial data . If we star t two trajectories from two points in the phase space, 
which are close enough, but lie on the different sides of the separatrix, 
we have drastically different solutions. This is illustrated by Figures ld,e,f. 
These panels are drawn for the same values of C as Figures la,b,c, respecti­
vely, and portray the eccentricity histories for the pairs of trajectories, lying 
close to the separatrix on the opposite sides of it. In Figure Id, the initial 
da ta are (e = 0.08,<£© = 180°) and (e = 0.10,<j>Q = 180°); in Figure le , 
they are (e = 0.01, <£0 = 80°) and (e = 0.01,^® = 100°); in Figure Id, 
we chose (e = 0.12, <J>Q = 0) and (e = 0.14, <j>® = 0). Both amplitude and 
period of eccentricity oscillations differ nearly twofold! 
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Figure 1. The phase portraits (left panels) and eccentricity histories (right ones) for 
Eqs. (1) for several special choices of force parameters and initial data. See text for further 
explanation. 

3 . Spatial Case: Non-Integrab le P r o b l e m 

Now, we come to a more general case. We take into account the tilt of 
the Ear th 's equatorial plane to the ecliptic. Besides, we allow an initially 
zero orbital inclination (with respect to equatorial plane) to evolve, as it 
must, since the radiation pressure force no longer acts in the equatorial 
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TABLE 1. Binary-coded trajectories within the stochasticity zone. 
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plane. As a method of investigation of the non-integrable problem, we use 
numerical integrations of the orbit-averaged equations of motion derived in 
(Krivov et a/., 1996, Eqs. (17)-(20)). A question to ask is: what properties 
of the solutions of the planar (integrable) problem hold true and what new 
properties appear? 

A general theory of dynamical systems suggests tha t the solutions are 
likely not to change appreciably, as long as they lie far enough from the 
saddle separatrix. On the contrary, the behavior is quite different near the 
separatrix where a stochasticity zone should appear. To describe the mo­
tions in this zone, we can use the methods of symbolic dynamics. Each 
trajectory is coded by an infinitely long sequence of binary symbols. We 
use [o] and 0_ to mark tha t a trajectory passes along the lower and up­
per branches of the separatrix, respectively. In other words, a symbol "o" 
appears when eccentricity reaches its minimum (becomes < 0.2 in our nu­
merical examples), and a symbol "O" is added into the sequence when e 
attains a maximum (becomes > 0.4). After a long "stay" near the saddle 
point F4, a trajectory leaves it along one of the two branches of the sepa­
ratrix, either lower ("o") or upper ("0") ones, with the next symbol being 
not determined by a preceding one. 

The following numerical example illustrates stochastic motions near the 
saddle separatrix. Consider a family of trajectories parametrized by an in­
itial value of solar longitude XQ . The other initial da ta and parameter values 
are: C = 0.01 and W = 0.8 (or a = 2MR = 13000 km and 7 = 16 cm2 g _ 1 ) ; 
Earth 's obliquity e = 23?5; initial eccentricity e0 = 0.12511536; initial incli­
nation IQ — 0; initial solar angle <pQ = 180°. Table 1 presents three series of 

https://doi.org/10.1017/S0252921100046819 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046819


366 A.V. KRIVOV ET AL. 

binary-coded trajectories. Each of them contains 11 trajectories with diffe­
rent initial values of solar longitude: A0 from 0.0 to 1?0 with step 0.1 (case 
"a") ; A0 from 0?0015 to 0?0016 with step 10" 5 ("b"); A0 from 0?00154314 
to 0?00154315 with step 10~9 ("c"). These three sequences of A0 are thus 
nested, with the next one being much narrower than the previous one. The 
left column shows tha t the width of the stochasticity zone is ~ 1°; beyond 
this zone the trajectories have one and the same code. Conversely, within 
the zone an arbitrarily small change in initial A0 causes an unpredictable 
change in the trajectory code! It resembles a fractal structure. 

4 . C o n c l u s i o n s 

1. We considered a new integrable case of the photogravitational plane-
tocentric problem with two perturbing forces — oblateness of a planet and 
solar radiation pressure — and applied the results to space balloons that 
orbit the Ear th . Integrability of the problem allows one to fully describe all 
variants of the orbital evolution of a balloon satellite in the planar approxi­
mation (i.e. neglecting the Ear th ' s obliquity and for equatorial orbits). We 
particularly found the regions in the phase space where small changes in 
the force parameters or initial da ta may cause sharp orbital changes. 

2. We then restored the actual Ear th 's obliquity of 23?5 and considered 
a non-integrable spatial problem, but yet confined ourselves to initially 
equatorial satellite orbits, so tha t the problem was close to an integrable 
one. Numerical investigations of this "perturbed" system show that the 
trajectories in the spatial case are similar to those in the planar problem. 
The exception is for vicinities of the saddle separatrix in the phase space, 
where a stochastic zone arises. In this zone, the eccentricity oscillations 
are large and practically unpredictable, so that the satellite orbits are very 
unstable. 
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