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1. Introduction
Most work in genetic algebras has been concerned with inheritance which

is symmetric with respect to sex, in that the characters studied are determined
by genes located at autosomal loci, and it is assumed that the segregation
pattern is the same in males and females. When asymmetric situations are
studied, the development of the theory is complicated by the higher dimensions
of the algebras, and by a feature to which Etherington (3, p. 40) drew attention,
namely the fact that the passage from the gametic to the zygotic algebra no
longer quite corresponds to the process of duplication, as it does in the sym-
metric case. Etherington gave some results for the gametic and zygotic algebras
of a single sex linked diallelic locus, and its properties were discussed further
by Gonshor (4, p. 44). In a second paper (5, p. 334) Gonshor studied sex
linkage in the case of multiple alleles, choosing a canonical basis which exhibited
very clearly the multiplication table and ideal structure of the algebra. His
treatment from the statement of the multiplication table in terms of the natural
basis to its expression in terms of a canonical basis, is repeated in the displayed
relations (4)-(8) below, for completeness and to establish the present notation.

In another direction, Reiers0l (10, pp. 33, 40) showed that a certain recurrent
sequence H(n) which could be but was not necessarily a sequence of non-
associative powers, determined the distribution of a sex-linked character in
successive generations, playing a role analogous to that of the plenary powers
(3, p. 28) in the symmetric situation.

In the next two sections I study a single multiallelic locus, completely o r
partially linked to the sex determining locus, and obtain canonical forms for
the gametic and zygotic algebras. In § 4 I then examine briefly the process of
passing from the zygotic to the copular algebra.

2. Complete sex linkage. The gametic and zygotic algebras
Consider first the gametic algebra $ of a single locus with r+1 alleles which

I have called an elementary algebra (9, p. 316). In terms of its natural basis
{a0, ..., ar} whose elements correspond to the actual allelic forms, its multi-
plication table is

fliflj- = i(a,+«,-). (1)

E.M.S.—H
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In terms of the canonical basis defined by

c0 = a0

ct = ao-ait ijt 0 (2)
the multiplication table is

Co = c0 j
\ (3)

Except on two occasions where it is explicitly mentioned, the convention will
be followed that letters appearing as subscripts to a may take all integral values
from 0 to n, while those appearing as subscripts to c are restricted to the range
1 to n.

The sex-linked zygotic algebra (:S?) is defined to be the algebra whose natural
basis consists of (i) the elements a0, ..., at, and (ii) the unordered pairs (ah aj),
which may be written for brevity au, and whose multiplication table is

aflj = auakl = 0 (4)

a A/ = l(°k + at + aik+a,,) (5)

The vector space underlying J5f is thus the direct sum of spaces equivalent to
those underlying ?§, and its commutative duplicate ^'. (A prime denotes
duplication as defined in (2)). In terms of human genetics the basis of the first
subspace represents possible male zygotic types, and that of the second, possible
female types. The relations (4) express the fact that two individuals of the
same sex cannot produce offspring.

Now let the canonical basis for <§ given by (2), and that given by the induced
transformation of the basis of ^ ' , namely

Coo = °00

(6)

be taken as a basis for <£. In view of (4),

c^j = CijCkl = O, all i, j , k, I, (7)

while from (4) and (5) the rest of the multiplication table is given by

CO0 C0j Cjk

c0

Cj

0

0 . (8)

It is of interest to note that as a consequence of the extremely simple structure
of elementary algebras, the same multiplication table would be obtained if
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instead of (2) the new basis were defined by any transformation of ^ given by

c0 = T.x0Jaj

with I.xOj = 1, I.Xij = 0 (i # 0) and the transformation which this induces
in ST.

Before continuing with the study of S£, a concept will be introduced which
characterises the equal division of offspring between the sexes.

Definition 1. The algebra 5" with basis elements m and w, and commutative
multiplication table

m2 = w2 = 0, mw = i(m-\- w)

will be called the sex differentiation algebra.

In terms of a new basis p = m + w, q = m — w the multiplication table is
P2 =P,q2 = -P, Pi = 0-

Thus the ideal S?2 is isomorphic to the coefficient field.
Definition 2. An algebra will be said to be dibaric if it admits a homo-

morphism onto Sf.

Proposition 1. If an algebra s/ is dibaric. then s&2 is baric.

Proof. Since 5 is a homomorphic image of A, S2 is a homomorphic image
of A2. But S2 is isomorphic to the coefficient field.

Proposition 2. The zygotic sex-linked algebra of a single r+l allelic locus,
Z£, is dibaric.

Proof. The required correspondence may be defined in terms of the basis
by taking

co->w; cOQ-*w; ct, cOj, ckl-+0.

Reference to (8) shows that this is a homomorphism.
It follows that JS?2 is a baric algebra. The elements occurring in the cells

of (8) provide a basis, but if a further transformation is applied by taking
eo ~

»i = c(-cOi,
the multiplication table takes the form

e0 uk vk

" i

0

0 (9)

0

0 .
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The sequence of principal powers of the nil ideal of if2 is

jr(&2) = {ut, vb ctj}
Jf\<£2) = {ctJ}
Jf\<e2) = {0}

all of which are ideals. Hence JS?2 is a special train algebra, and it can be seen
from (9) that its dimension is l+2r+^r(r+l), and its train roots are 1, \ (r
times), — i (r times) and 0 (ir(r+1) times). The principal train equation can
also be seen from (9) to be

The plenary train equation may be obtained using the methods developed in
(7). Let E be the squaring operator denned by Ex
element of .SP of unit weight

E(e0 + £ aiui+ £
i i

= x2 Then for a general

£ YuCii+2
i i i i<j

= eo+ X «««,-* £ M + £ (tf-
i i i

I<J

The set of coordinates a;, fij, ytj can be supplemented with a set of quadratic
functions of them, namely the set apj, a^j, ^iXj, Pfij for i = 1, ...,n; j = 1, ...,n
and the operation of E represented by a matrix multiplication given essentially
after expansion of the vector replacing suffixed components by all possible
values, by

1

0

0

0

0

0

0

0

- i
0

0
n

0

0

0

0

1

0

0

0

1

0

0

0

- i
0

0

X

0
0

0

0

- i
0

i

0

0

0

0

0

i
- i

0

0

0

0

0

0

0

a.-

fit
apj

"iPj

Pflj

PiPj

Vit

—

-frlfij

Ifitfij

The minimal polynomial of the matrix on the left, even when expanded, is
E(E— l)(E+i)(E— \), and hence the plenary train equation of J5? is

3. Partial sex linkage
The phenomenon discussed here exists in some mammals, but although

still a subject of controversy, its existence in man appears doubtful (11, p. 251).
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In this situation (/•+1)2 types of male zygotes have to be considered, labelled
aiU) where the first suffix indicates the allele linked to the X gene, and the
bracketed suffix that linked to the Y gene. If crossing over occurs between
the locus being studied and the sex-determining locus in a proportion 9 of the
cases, then aiU) will behave like at of the previous section in a proportion
1 — 0 of cases, and like aj in the remaining 9 of them. Thus the multiplication
table for the zygotic algebra of partial sex linkage, which will be denoted by

It may be noted that the direct summand of the vector space which corresponds
to the male zygotic types is obtained by non-commutative duplication of that
underlying G. The induced transformation of its basis, which replaces the
transformation (6) is

c0(0) = a0(0)

co(o = ao(0)~ao(o / J J \
Ci(0) = fl0(0)~ai(0)

C'O) = a0(0)~aOO')~ai(0)+ai(j)-

After some calculation, the multiplication table is found to be

coo co* cu

(12)

together with
CfiA, = cl(j)cm = 0, all i, j , k, I.

The mapping cO(O)-»w; coo->w; c0(0, cl(0), c,0), cOi, c,-O)-»0 exhibits J5ffl as
a dibaric algebra. The elements cO(O) + coo, c,(0), c0(0, c0-, c0/) c£(;) may be
chosen as a basis for £?l. If 0 # £, the principal powers of its nil ideal are

c0(0)

ci(0)

C0(i)

c,vn

icow+icoo

iVcOii) + i(l-9)cOi

Kl-0)cO(o+i0cOi

0

i0cfc(O+Hi-0j

Ki-0)c*(o+i6

0

0

cu 0

cu 0

0

If 9 = \, jf2 is smaller, in fact J/"\&\) = {cij+ciU)}. In either case the
principal powers of Jf are ideals, and so if \ is a special train algebra. It can
also be seen from (12) that e0 = cO(O) + coo is an idempotent. A further trans-
formation producing a table analogous to (9) cannot be carried through in an
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equally simple way for general values of 0. The new entries in the multiplica-
tion table involving e0 can be written as

C-O(i)

'-Oi

-cu - 0

(13)

(14)

Thus the operation of multiplication by e0 corresponds to multiplication by a
matrix which is the direct sum of (i) the unit matrix of order 1, (ii) r matrices
of order 3, each of which has the form

-o ie id -0n
0 K I -0 ) ±0
1 o i

and (iii) a zero matrix of order r2+ir(r+1).

The proper values of (14) are X = \ and

On putting <j> = \9—£ this can be written as

The case 0 = 0 corresponds to complete linkage. It is then possible to
" identify " all the natural basis elements ai(J) for j = 0, ..., r in the table (10),
and (15) gives X = \, — \ as in the previous section. The case 9 = \ corresponds
to no linkage. Here a,O) and aj0) may be identified in (10), and the resulting
algebra is then the direct product ZxS of the autosomal zygotic algebra and
the sex differentiation algebra. The values given by (15) are X = 0 (twice).
If 0 ^ 0 ^ \ the values of X given by (15) are real, while if \<Q ^ 1 they are
complex, but in all cases | X \<i and consequently (4, p. 42) the sequence of
plenary powers of an element of unit weight tends to a limiting idempotent.

If a circle denotes the product of two elements of the vector space of SCg

evaluated according to the rules of if 0, and a dot that evaluated according to
those of if £, then (10) can be written as

atU)0u = ( 2 0 - l)a( U) o akl +2(1-6)aiW. akl.

This exhibits iffl as a mixture of two special train algebras, a concept which
has appeared in studies of polyploidy (6, p. 6) and linkage between autosomal
loci (9). However, although if0 and Jzf̂  admit a common weight function
and the decompositions induced by the sequences Jf, Jf2, Jfz are compatible,
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it is impossible to find a basis such that the matrices corresponding to multipli-
cation by e0 are simultaneously diagonalised, and hence the train roots of J£?o

are not given as mixtures of those of SC0 and if^.

4. The copular algebra
Returning to the case of complete linkage, consider the duplicate of if,

abbreviating (ah aj), (ah aJk), (a,v, akl) to a,. y, a( Jk and atji kl. The multiplica-
tion table may be obtained from (5). The elements a^ and aiJt kl are annihilators,
while

ai, ;*«;, a = Te(a>, u + au /, + ak, is + "k, u + as, tj + a,_ ik + a,_ tJ + a, ik

+ Vij, h + "u, i, + aiki ls + aiK „ + ajt s + aJt , + akiS+ ak_,). (16)

In an asymmetric genetic situation, the square of the zygotic algebra contains
all those elements representing populations which are half male and half
female, and is thus the natural object to study. In if', the duplicate of £?,
such populations are represented by the sub vector space spanned by {aiiJk}.
The complement of this, spanned by {«,_,-, aijt k,} is an ideal of annihilators
in -S?', which will be denoted by J. Now in (16) in which multiplication in ££'
is specified in terms of a basis consisting of elements of unit weight, the first
8 elements in the brackets on the right represent elements in the difference
algebra if' — J, and the last eight belong to £. Then to preserve the baric
property let a multiplication denoted by * be defined on <£'—J by

flj, jk*at, s, = 2a,, Jkah a (mod J\ (17)

The multiplication table of the new algebra in terms of the transformed basis
cltJk can be obtained by duplicating (8) and applying (17), and is

Co

Co

c,.

Ci.

00

Oi

00

0 /

CO, 00

C 0 , 00

C 0 , 0*

4 0, Oft ' 4- ft, 00

icft, oi + i c i , oft

Cft, 00

i co , oft

i c i , Ok

0

Cft, 01

tc0, kl

K M

0

0

while cOf ij and c,-_ Jk are annihilators. This is clearly a baric algebra with a
weight function defined by c o o o -> l ; c0> Oi, ch 00, c(> 0J, co_ y , c,tJk-+0. The
powers of the nil ideal are

•M" = l c 0 , 0i> C,,00> ci, 0j> cO,ip ct,jk}

However, since c0> oo*c;,oj = ico, tp it is not a special train algebra.
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Corrigenda

In (6) p. 2, 1. 14 read Dfij for DaDb: p. 3, 1. 6 read j<m fory ^ m: p. 4
in the second displayed equation read Ek~l for Ek; and in the next line 2k

fork.
In (8) there is a confusion between the symmetric and the asymmetric ways

of writing forms in doubly suffixed quantities. If on p. 292 one works with
both dtj and djh remembering that they represent the same element, the

n n

definition of the typical element should be x = £ £ atj^u w i t n a<v = aj'<>
i= 0 j = 0

and the factor £ on the right of the equation in the proof of Proposition 3 should
be deleted. Alternatively, one may work only with dtJ for j ^ /, leading to
slightly less elegant formulae. I am indebted to Dr E. Wallace of Leeds
University for drawing my attention to this point.
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