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Rational Points in Arithmetic Progressions
on y2

= xn + k

Maciej Ulas

Abstract. Let C be a hyperelliptic curve given by the equation y2
= f (x) for f ∈ Z[x] without multiple

roots. We say that points Pi = (xi , yi) ∈ C(Q) for i = 1, 2, . . . , m are in arithmetic progression if the

numbers xi for i = 1, 2, . . . , m are in arithmetic progression.

In this paper we show that there exists a polynomial k ∈ Z[t] with the property that on the elliptic

curve E′ : y2
= x3+k(t) (defined over the field Q(t)) we can find four points in arithmetic progression

that are independent in the group of all Q(t)-rational points on the curve E′. In particular this result

generalizes earlier results of Lee and Vélez. We also show that if n ∈ N is odd, then there are infinitely

many k’s with the property that on curves y2
= xn + k there are four rational points in arithmetic

progressions. In the case when n is even we can find infinitely many k’s such that on curves y2
= xn + k

there are six rational points in arithmetic progression.

1 Introduction

Many problems in number theory are equivalent to the problem of solving certain

equations or system of equations in integers or in rational numbers. Problems of this

type are called diophantine problems. In the case when a problem has infinitely many

solutions a natural question arises as to whether it is possible to show the existence of

rational parametric solutions i.e., solutions in polynomials or in rational functions.

In general, problems of this kind are difficult, and we do not have any general theory

that can even partially answer to such kind questions. For example, N. Elkies showed

in [3] that the set of rational points on the surface x4 + y4 + z4
= t4 is dense in the set

of all real points on this surface. However, we still do not known if this equation has

non-trivial rational parametric solutions i.e., a solution x, y, z, t ∈ Z[u] \ {0}.

In this paper we meet with a problem of a similar type. Our question is related to

the construction of integers k with the property that on the elliptic curve Ek : y2
=

x3 + k there are four rational points in arithmetic progression. Let us recall that for

the curve C : f (x, y) = 0 defined over Q , the rational points Pi = (xi , yi) on C

are in arithmetic progression if the numbers xi for i = 1, 2, . . . , n are in arithmetic

progression.

In connection with this problem Lee and Vélez showed in [5] that each rational

point on the elliptic curve E : y2
= x3 − 39x − 173 gives an integer k with the

property that on the elliptic curve Ek : y2
= x3 + k there are four rational points in

arithmetic progression. Due to the fact that the set E(Q) of all rational points on E is

generated by the point (11, 27) of infinite order, we get infinitely many k’s that satisfy

the demanded conditions.
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2 M. Ulas

It should be noted that S. P. Mohanty stated the following conjecture.

Conjecture 1.1 (S. P. Mohanty [6]) Let k ∈ Z and suppose that the rational points

Pi = (xi , yi) for i = 1, . . . , n are in arithmetic progression on the elliptic curve y2
=

x3 + k. Then n ≤ 4.

We think that the above conjecture is not true. It is likely that in order to find a

counterexample we should have plenty of k’s for which we have four points in arith-

metic progression on the curve Ek : y2
= x3 + k . Integers that satisfy this condition

will be called numbers of AP4 type. It is clear that we are interested in the numbers k

that are sixth power free i.e., p6 ∤ k for any prime p.

The main aim of this paper is to construct parametric families of numbers of AP4

type. We should note that it is unclear how the method employed in [5] can be used

in order to find families of this kind.

In Section 2 we show that each rational point on the surface

S : (p2 − 3q2 + 3r2 − s2)(11p2 − 18q2 + 9r2 − 2s2) = 3(2p2 − 5q2 + 4r2 − s2)2

gives us an integer k of AP4 type. In particular, we prove that there are infinitely

many rational curves on S. Using this result we deduce that the set of rational points

on the surface S is dense in the set of all real points on S in the Euclidean topology.

Moreover, using this result we show that there exists a polynomial k ∈ Z[t] with the

property that on the corresponding elliptic curve E ′ : y2
= x3 + k(t) defined over

Q(t) there are four Q(t)-rational points, and these points are independent in the set

E ′(Q(t)).

In Section 3 we consider natural generalizations of the problem of constructing

rational points in arithmetic progressions on hyperelliptic curves of the form y2
=

xn + k.

In Section 4 we give a special sextic hypersurface that is connected with the prob-

lem of construction of integers k with the property that there are five points in arith-

metic progression on the curve y3
= x3 + k.

2 Rational Points on S

In this section we are interested in constructing numbers of AP4 type. Let f (x) =

ax3 + bx2 + cx + d ∈ Q[a, b, c, d][x], and consider the curve C : y2
= f (x). Using

now the change of coordinates

(2.1) (x, y) =

( X − 3b

9a
,

Y

27a

)

with inverse (X,Y ) = (9ax + 3b, 27ay),

we can see that the curve C is birationally equivalent to the curve

E : Y 2
= X3 + 27(3ac − b2)X + 27(27a2d − 9abc + 2b3).

Let p, q, r, s be rational parameters, and let us put

(2.2)
a = −(p2 − 3q2 + 3r2 − s2)/6, b = (2p2 − 5q2 + 4r2 − s2)/2,
c = −(11p2 − 18q2 + 9r2 − 2s2)/6, d = p2.
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For a, b, c, d defined in this way we have

f (0) = p2, f (1) = q2, f (2) = r2, f (3) = s2.

We can see that in order to prove that the set of numbers of AP4 type contains the

image of a certain polynomial we must consider the surface 3ac = b2, where a, b, c, d

are defined as in (2.2).

Indeed, the points (0, p), (1, q), (2, r), (3, s) are in arithmetic progression on the

curve C , and due to the fact that our mapping from C to E given by (2.1) is affine,

we deduce that the images of these points will be in arithmetic progression on the

curve E. So we consider the surface in P3 given by the equation

S : (p2 − 3q2 + 3r2 − s2)(11p2 − 18q2 + 9r2 − 2s2) = 3(2p2 − 5q2 + 4r2 − s2)2.

It is easy to see that the surface S is singular and that the set (±1,±1,±1,±1) is the

set of all singular points (the signs + and − are independent of each other). The

surface S has eight singular points. Let us recall that if K is a field, then by S(K) we

denote the set of K-rational points on S.

We will show the following theorem.

Theorem 2.1 The set of rational curves on the surface S is infinite. In particular, the

set S(Q) is dense in the set of all real points S(R) in the Euclidean topology.

Proof In order to show that on the surface S there are infinitely many rational curves

defined over Q , let us consider the following system of equations

{

t(p2 − 3q2 + 3r2 − s2) = (2p2 − 5q2 + 4r2 − s2),

(11p2 − 18q2 + 9r2 − 2s2) = 3t(2p2 − 5q2 + 4r2 − s2),

or equivalently

(2.3)

{

(3t2 + 3t + 1)r2
= −(3t2 + 9t + 7)p2 + 2(3t2 + 6t + 4)q2,

(3t2 + 3t + 1)s2
= −2(3t2 + 12t + 13)p2 + 9(t2 + 3t + 3)q2,

where t is indeterminate. It is easy to see that each rational solution of the system

(2.3) leads us to the rational point on the surface S. From a geometric point of

view the system (2.3), as an intersection of two quadratic surfaces with rational point

(p, q, r, s) = (1, 1, 1, 1), is birationally equivalent to an elliptic curve defined over the

field Q(t). Now we will show the construction of an appropriate mapping.

Using the standard substitution (p, q, r) = (u + r, v + r, r) we can parametrize all

rational solutions of the first equation of the system (2.3) in the following way:











p = (3t2 + 9t + 7)u2 − 4(3t2 + 6t + 4)uv + 2(3t2 + 6t + 4)v2,

q = (3t2 + 9t + 7)u2 − 2(3t2 + 9t + 7)uv + 2(3t2 + 6t + 4)v2,

r = (3t2 + 9t + 7)u2 − 2(3t2 + 9t + 4)v2.
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Without loss of generality we can assume that u = 1. We then substitute the

parametrization we have obtained into the second equation in system (2.3) and we

get the curve defined over the field Q(t) with the equation

C : s2
= 4(3t2 + 6t + 4)2v4 + 8(3t2 + 6t + 4)(3t2 + 15t + 19)v3

− 4(36t4 + 243t3 + 618t2 + 702t + 313)v2

+ 4(3t2 + 9t + 7)(3t2 + 15t + 19)v + (3t2 + 9t + 7)2

with Q(t)-rational point Q = (0, 3t2 + 9t + 7). Let us define the following quantities

C(t) = (99t4 + 756t3 + 2253t2 + 3114t + 1709)/3,

D(t) = 36(t2 + 3t + 3)(3t2 + 12t + 13)(3t2 + 15t + 19).

Regarding Q as a point at infinity on the curve C and using the method described in

[7, p. 77], we conclude that C is birationally equivalent over Q(t) to the elliptic curve

with the Weierstrass equation

E : Y 2
= X3 + f (t2 + 3t)X + g(t2 + 3t),

where

f (u) = −27(1053u4 + 10152u3 + 37530u2 + 62616u + 39673),

g(u) = 54(9u2 + 60u + 85)(45u2 + 192u + 227)(63u2 + 312u + 397).

The mapping ϕ : E ∋ (X,Y ) 7→ (v, s) ∈ C is given by

v =

2Y − 27D(t) − 6(3t2 + 15t + 19)(X − 9C(t))

12(X − 9C(t))(3t2 + 6t + 4)
,

s =

−(2Y − 27D(t))2 + 4(2X + 9C(t))(X − 9C(t))2

72(3t2 + 6t + 4)(X − 9C(t))2
.

The discriminant of E is

28316(3 + 3t + t2)2(1 + 3t + 3t2)2(4 + 6t + 3t2)2

× (7 + 9t + 3t2)2(13 + 12t + 3t2)2(19 + 15t + 3t2)2,

so Et is singular for the values t ∈ A, where

A =



−15 ±
√
−3

6
,
−9 ±

√
−3

6
,
−3 ±

√
−3

6
,
−6 ±

√
−3

3
,
−3 ±

√
−3

3
,
−3 ±

√
−3

2

ff

.

For t ∈ A, the decomposition is of Kodaira classification type I2. Let us note that E

is a K3-surface. As we know, the Néron–Severi group over C, denoted by NS(E) =

NS(E, C), is a finitely generated Z-module. From Shioda [8], we have

rank NS(E, C) = rank E(C(t)) + 2 +
∑

ν

(mν − 1),
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where the sum ranges over all fibers of the pencil Et , with mν the number of irre-

ducible components of the fiber. Let us recall that if the fiber in the pencil Et is

smooth, then mν − 1 = 0, thus the series on the right-hand side is finite. We have

rank NS(E, C) = rank E(C(t)) + 2 + 6 · 2 · (2 − 1).

Since the rank of the Néron–Severi group of a K3-surface cannot exceed 20, the

rank E(C(t)) ≤ 6. Although it would be interesting to know the rank of E(C(t))

precisely, we are interested instead in the rank of E(Q(t)). We will show that

rank E(Q(t)) ≥ 1.

Let us note that the curve E has three points of order two

T1 = (6(9(t2 + 3t)2 + 60(t2 + 3t) + 85), 0),

T2 = (3(45(t2 + 3t)2 + 192(t2 + 3t) + 227), 0),

T3 = (−3(63(t2 + 3t)2 + 312(t2 + 3t) + 397), 0).

On the curve E we have also the point P = (XP,YP), where

XP = −3(9t4 + 108t3 + 357t2 + 468t + 229),

YP = 54(3t2 + 6t + 4)(3t2 + 9t + 7)(3t2 + 15t + 19).

It is easy to see that the point P is of infinite order on the curve E. In order to prove

this let us consider the curve E1 that is the specialization of the curve E at t = 1. We

have E1 : Y 2
= X3 − 48867651X + 115230640770. On the curve E1 we have the point

P1 = (−3513, 493506), which is the specialization of the point P at t = 1. Now, let

us note that

3P1 =

( 3953140143

1408969
,

24183154596042

1672446203

)

.

As we know, the points of finite order on the elliptic curve y2
= x3 + ax + b, a, b ∈ Z

have integer coordinates [9, p. 177], while 3P1 is not an integral point; therefore,

P1 is not a point of finite order on E1, which means that P is not a point of finite

order on E. Therefore, E is a curve of positive rank. In particular, we have proved

that 1 ≤ rank E(Q(t)) ≤ rank E(C(t)) ≤ 6. However, we have not identified the

Q(t) rank of E exactly. Numerical calculations give that for many specializations of

E at t ∈ Q we obtain that the rank of Et (Q) is equal to one, and this suggests that

rank E(Q(t)) = 1.

Before proving that the set of rational points on the surface S is dense in Eu-

clidean topology, we prove the Zariski density of the set of rational points. Because

the curve E is of positive rank over Q(t), the set of multiples of the point P, i.e.,

mP = (Xm(t),Ym(t)) for m = 1, 2, . . . , gives infinitely many Q(t)-rational points

on the curve E. Now, if we look at the curve E as an elliptic surface in the space

with coordinates (X,Y, t), we can see that each rational curve (Xm,Ym, t) is included

in the Zariski closure, say R, of the set of rational points on E. Because this closure

consists of only finitely many components, it has dimension two, and as the surface
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E is irreducible, R is the whole surface. Thus the set of rational points on E is dense

in the Zariski topology, and the same is true for the surface S.
To obtain the statement of our theorem, we have to use two beautiful results: a

theorem of Hurwitz [10, p. 78] and a theorem of Silverman [9, p. 368]. Let us recall

that Hurwitz’s theorem states that if an elliptic curve E defined over Q has positive

rank and one torsion point of order two (defined over Q), then the set E(Q) is dense

in E(R). The same result holds if E has three torsion points of order two under the

assumption that we have a rational point of infinite order that lives on the bounded

branch of the set E(R).

Silverman’s theorem states that if E is an elliptic curve defined over Q(t) with

positive rank, then for all but finitely many t0 ∈ Q , the curve Et0
obtained from the

curve E by the specialization t = t0 has positive rank. From this result we see that for

all but finitely many t ∈ Q , the elliptic curve Et is of a positive rank.

In order to finish the proof of our theorem let us define the polynomial Xi(t) to

be the X-coordinate of the torsion point Ti for i = 1, 2, 3. Tying these two cited

theorems together and the fact that we have inequalities X3(t) < XP(t) < X1(t) <
X2(t) for each t ∈ R, we conclude that for all but finitely many t the set Et (Q) is dense

in the set Et (R). This proves that the set E(Q) is dense in the set E(R) in Euclidean

topology. Thus, the set S(Q) is dense in the set S(R) in Euclidean topology.

Using the above result we can deduce the following theorem.

Theorem 2.2 There exists a polynomial k ∈ Z[t] with the property that there are

four independent Q(t)-rational points in arithmetic progression on the elliptic curve

E ′ : y2
= x3 + k(t).

Proof In order to construct a polynomial k ∈ Z[t] with the property that for all

t ∈ Z the value k(t) is a number of AP4 type, we use the points P and T1 we have

constructed in the proof of Theorem 2.1. Let us note that

P+T1 =

(

3(99t4+432t3+795t2+684t+251,−486(t2+3t+3)(3t2+3t+1)(3t2+6t+4)
)

.

Let us note that this point leads us to the point

ϕ(P + T1) =

( 3t2 + 9t + 10

3(2t + 3)
,−

(1 + 3t + 3t2)(18t4 + 162t3 + 516t2 + 738t + 413)

9(2t + 3)2

)

that belongs to the curve C constructed in the proof of the previous theorem. Per-

forming all necessary simplifications we find that the point ϕ(P + T1) gives the poly-

nomial solution of the equation defining the surface S in the form

p = 18t4 + 54t3 + 30t2 − 72t − 73, q = 18t4 + 90t3 + 192t2 + 210t + 107,
r = 18t4 + 126t3 + 354t2 + 456t + 233, s = 18t4 + 162t3 + 516t2 + 738t + 413.

Using this parametric solution and the remark on the beginning of our proof we

define the curve E ′ : y2
= x3 + k(t), where

k(t) = −3242(2t + 3)2(3t2 + 9t + 10)2(6t2 + 18t + 17)2h(t),
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and

h(t) = (t2 + 3t)4 + 612(t2 + 3t)3 + 300(t2 + 3t)2 − 3504(t2 + 3t) − 5329.

On the curve E ′ we have four points in arithmetic progression:

P1 = (t p(t), p(t)(18t4 + 54t3 + 30t2 − 72t − 73)),

P2 = ((t + 1)p(t), p(t)(18t4 + 90t3 + 192t2 + 210t + 107)),

P3 = ((t + 2)p(t), p(t)(18t4 + 126t3 + 354t2 + 456t + 233)),

P4 = ((t + 3)p(t), p(t)(18t4 + 162t3 + 516t2 + 738t + 413)),

where p(t) = 108(2t + 3)(3t2 + 9t + 10)(6t2 + 18t + 17).

We will show that the above points are independent in the group E ′(Q(t)) of all

Q(t)-rational points on the curve E ′. We specialize the curve E ′ at t = 1 and get the

elliptic curve E ′

1 given by the equation

E
′

1 : y2
= x3 − 111610206808689600.

On the curve E ′

1 we have the points

P1,1 = (487080, 62833320) P2,1 = (974160, 901585080)

P3,1 = (1461240, 1734491880) P4,1 = (1948320, 2698910280),

which are specializations of the points P1, P2, P3, P4 at t = 1. Using the APECS

program ([2]) we obtain that the determinant of the height matrix of the points

P1,1, P2,1, P3,1, P4,1 is equal to 266.618020487005. This proves that the points P1,1,
P2,1, P3,1, P4,1 are independent on the curve E ′

1, and thus we get that that the points

P1, P2, P3, P4 are independent on the curve E ′.

Remark 2.3 Let us consider the polynomial g(t, x) = x3 + k(t), where k ∈ Z[t]

was defined in the proof of the above theorem. Then in order to find a rational value

of t that gives five points in arithmetic progression on the curve Et we must have

g(t, (t − 1)p(t)) = ¤ or g(t, (t + 4)p(t)) = ¤. In other words we must be able to

find a rational point on one of the hyperelliptic curves of genus 3:

C1 : v2
= 324t8 + 648t7 − 4428t6 − 21384t5 − 34884t4+

− 17388t3 + 12828t2 + 12804t − 791,

C2 : v2
= 324t8 + 7128t7 + 63612t6 + 309096t5 + 912816t4

+ 1704132t3 + 1985988t2 + 1332624t + 397009.

Unfortunately, we are unable to find a rational point on any of these curves giving a

nonzero value of k(t).
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3 Rational Points in Arithmetic Progressions on y2
= xn + k for n ≥ 4

In this section we consider a natural generalization of the problem we have consid-

ered in Section 1. To be more precise we consider the following question.

Question 3.1 Let n ∈ N be fixed and suppose that n ≥ 4. Is it possible to find an

integer k with the property that there are at least four rational points in arithmetic

progression on the hyperelliptic curve y2
= xn + k?

We show that if n is odd then the answer to the above question is affirmative, and

it is possible to find infinitely many such k’s.

For even n we will show that it is possible to construct infinitely many k’s with the

property that on the curve y2
= xn +k there exists three a term arithmetic progression

of rational points with x-coordinates belonging to the set {a, 3a, 5a}, where a ∈ Q .

Using the involution (x, y) 7→ (−x, y) we can see that on these curves we will have

six rational points in arithmetic progression with x-coordinates belonging to the set

{−5a,−3a,−a, a, 3a, 5a}.

We start with the following theorem.

Theorem 3.2 Let us fix an n ≥ 2. Then there are infinitely many integers k with the

property that there are four points in arithmetic progression on the hyperelliptic curve

H : y2
= x2n+1 + k.

Proof In order to prove our theorem let us consider a hyperelliptic curve with the

equation y2
= ax2n+1 + bx2 + cx + d =: f (x), where

a =

−p2 + 3q2 − 3r2 + s2

22n+1 − 2
, b =

p2 − 2q2 + r2

2
,(3.1)

c =

−(22n − 2)p2 − 3q2 + (22n + 2)r2 − s2

22n+1 − 2
, d = q2.

For a, b, c, d defined above, the points (−1, p), (0, q), (1, r), (2, s) are on the curve

and are in arithmetic progression. If the system of equations in the variables p, q, r, s

given by

(3.2)

{

p2 − 2q2 + r2
= 0,

−(22n − 2)p2 − 3q2 + (22n + 2)r2 − s2
= 0,

has infinitely many rational solutions, then the points

(−a, pan), (0, qan), (a, ran), (2a, san)

are in arithmetic progression on the curve y2
= x2n+1 + da2n, where a, b are given

by (3.1).

Now, we show that system (3.2) has infinitely many solutions in rational numbers.

In order to do this let us parametrize all solutions of the first equation in system (3.2).

Using the standard method we find parametrization given by

p = 2u2 − 4uv + v2, q = 2u2 − 2uv + v2, r = −2u2 + v2.
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Putting the calculated values of p, q, r into the second equation of the system (3.2)

and taking u = 1, we define

C
o
n : s2

= v4 + 4(22n+1 − 1)v3 − 8(3 · 22n − 1)v2 + 8(22n+1 − 1)v + 4.

The curve Co
n is a quartic curve with rational point Qo

= (0,−2), and the “o” in

the notation Co
n refers to the fact that 2n + 1 is odd. If we treat Qo as a point at

infinity on the curve Co
n and use the method described in [7, page 77] one more time,

we conclude that Co
n is birationally equivalent over Q to the elliptic curve with the

Weierstrass equation

E
o
n : Y 2

= X3 − 27(3 · 24n+2 + 1)X + 54(9 · 24n+2 − 1).

The mapping ϕ : Eo
n ∋ (X,Y ) 7→ (v, s) ∈ Co

n is given by

v =

2Y − 27 · 22n+2(24n+2 − 1)

6(X − 3(3 · 24n+2 − 1))
− (22n+1 − 1),

s = −(v + 22n+1 − 1)2 +
2X + 3(3 · 24n+2 − 1)

9
.

Inverse mapping ψ : Co
n ∋ (v, s) 7→ (X,Y ) ∈ Eo

n has the form

X =
3
2

(

3v2 + 6(22n+1 − 1)v + 3s − 4(3 · 22n − 1)
)

,

Y =
27
2

(v3 + 3(22n+1 − 1)v2 − 4
(

3 · 22n − 1)v + (22n+1 − 1)s + 2(22n+1 − 1)
)

.

Let us note that the curve Eo
n has three points of order two

T1 = (6, 0), T2 = (3(3 · 22n+1 − 1), 0), T3 = (−3(3 · 22n+1 + 1), 0).

On the curve Eo
n we also have the point Po

n given by

Po
n =

(

−3(3 · 22n+1 − 5), 54(22n+1 − 1)
)

.

It is easy to see that the point Po
n is of infinite order on the curve Eo

n. In order to prove

this we compute 4Po
n = (X,Y ), where

X =

3 · 2−4n−2(3 + 3 · 216n − 24n+4 + 13 · 28n+1 + 212n+5)

(24n − 1)2
,

Y =

3 · 2−2n−1(3 · 28n + 1)

24n − 1
X + 27 · 22n(24n − 1).

It is easy to see that under our assumption (n ≥ 2) the X-coordinate of the point 4Po
n

is not an integer. Thus, a theorem of Nagell and Lutz ([9, p. 177]) implies that the

point Po
n is of infinite order. This implies that the set of rational solutions of system

(3.2) is infinite, and thus our theorem is proved.
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Remark 3.3 Using the APECS program we calculated the rank rn of elliptic curve

Eo
n and generators for the free part of the group Eo

n(Q) for 2 ≤ n ≤ 8. The results of

our computations are given below.

n rn Generators for the free part of the groupEo
n(Q)

2 1 (303, 17820)

3 1 (1167, 6966)

4 2 (4623, 27702), (11773, 1175552)

5 2 (18447, 110646), (350011167/6241, 6184493104374/493039)

6 1 (73743, 442422)

7 3 (294927, 1769526), (153394089/400, 1214402001813/800),
(124356529/256, 1101957449705/4096)

8 1 (1179663, 7077942)

From the above theorem we get an interesting corollary.

Corollary 3.4 Let n ≥ 2 and consider the family of hyperelliptic curves given by the

equation Ck : y2
= x2n+1 + k. Then the set A of integers k with the property that there

exist at least 8 rational points on the curve Ck, is infinite. Moreover, we can construct the

set A such that for each pair k1, k2 ∈ A the curves Ck1
,Ck2

are not isomorphic over Q .

Proof The first part of our corollary is an immediate consequence of the previous

theorem. The second part of our corollary is a simple consequence of the following

reasoning. Curves Ck1
and Ck2

are isomorphic over Q if and only if k1/k2 ∈ Q4n+2.

From the previous theorem we can take k = q2
= (v2 − 2v + 2)2 for some v ∈ Q

that is calculated from the point that lies on the elliptic curve Co
n. Let us suppose that

we have constructed the integers k1, k2, . . . , km such that the curves Cki
are pairwise

non-isomorphic over Q . We have that ki = q2
i = (v2

i − 2vi + 2)2 for i = 1, 2, . . . , m.

Then curves (2v2 − 2v + 2)2
= (v2

i − 2vi + 2)2w4n+2 for i = 1, 2 . . . , m are all of genus

≥ 2, thus the set of C1(Q) ∪ · · · ∪ Cm(Q) is finite (Faltings Theorem [4]). Because

the elliptic curve Co
n has infinitely many rational points, we can find vm+1 such that

the curve Ckm+1
with km+1 = (v2

m+1 − 2vm+1 + 2)2 is not isomorphic over Q to any of

the curves Ci for i = 1, 2 . . . , m. By induction we can construct an infinite set A with

the demanded property.

The above corollary and Corollary 3.10 give a generalization of A. Bremner’s result

from [1, Theorem 2.1 and Theorem 3.1].

Theorem 3.2 suggests the following question.

Question 3.5 Let us fix an integer n ≥ 1. What is the least value |k2n+1| ∈ N, say

M2n+1, with the property that on the curve y2
= x2n+1 + k2n+1 there are at least four

rational points in arithmetic progression?

Example 3.6 Taking n = 2, by the existence of rational point of infinite order on

the curve Eo
2 we get that

M5 ≤ 33915413951707083686881699804 · 26092 · 1271656890412.
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Moreover, by Corollary 3.4 it is natural to ask the following question.

Question 3.7 Let us fix an integer n ≥ 2 and consider the hyperelliptic curve

H2n+1 : y2
= x2n+1 + k2n+1, where k2n+1 is constructed with the method presented

in the proof of the Theorem 3.2. In particular, we have four points in arithmetic

progression on the curve H2n+1, say Pi for i = 1, 2, 3, 4. Are the classes of divisors

(Pi) − (∞) independent in the jacobian variety associated with the curve H2n+1?

Now, we prove the following theorem.

Theorem 3.8 Let us fix an n ≥ 2. Then there are infinitely many integers k with

the property that there are six points in arithmetic progression on the hyperelliptic curve

H : y2
= x2n + k.

Proof In order to prove our theorem let us consider a hyperelliptic curve with the

equation y2
= x2n + ax2 + bx + c =: f (x), where

a =

p2 − 2q2 + r2 − 52n + 2 · 32n − 1

8
,

b =

−2p2 + 3q2 − r2 + 52n − 32n+1 + 2

2
,

c =

15p2 − 10q2 + 3r2 − 3 · 52n + 10 · 32n − 15

8
.

We have that f (1) = p2, f (3) = q2, f (5) = r2. It is easy to see that in order to prove

our theorem it is enough to find infinitely many solutions of the system of equations

a = b = 0 in rational numbers p, q, r. Indeed, if a = b = 0, then on the curve

y2
= x2n + c we will have six points in arithmetic progression that x-coordinates

belonging to the set {−5,−3,−1, 1, 3, 5}.

System a = b = 0 is equivalent to the system of equations

(3.3)

{

q2
= p2 + 32n − 1,

r2
= p2 + 52n − 1.

Putting p = u + 1, q = tu + 3n we find that all rational solutions of the equation

q2
= p2 + 32n − 1 are contained in the formulas

p =

t2 − 2 · 3nt + 1

t2 − 1
, q = −

3nt2 − 2t + 3n

t2 − 1
.

Putting the calculated value of p into the second equation of the system (3.3) we get

the equation of the quartic curve

C
e
n : s2

= 52nt4 − 4 · 3nt3 − 2(52n − 2 · 32n − 2)t2 − 4 · 3nt + 52n
=: g(t),

where s = (t2 − 1)r and the “e” in the notation Ce
n refers to the fact that 2n is even.

For convenience let us put u = 3n and v = 5n. Then, the polynomial g takes the form

gu,v(t) = v2t4 − 4ut3 − 2(v2 − 2u2 − 2)t2 − 4u + v2.
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The curve Ce
n : s2

= gu,v(t) is a quartic curve with rational point Qe
= (0, v).

Regarding Qe as a point at infinity on the curve Ce
n and using the method described

in [7, p. 77] one more time, we conclude that Ce
n is birationally equivalent over Q to

the elliptic curve with the Weierstrass equation

E
e
n : Y 2

= X3 − 27(v4−(u2 + 1)v2 + u4 − u2 + 1)X

+ 27(1 + u2 − 2v2)(2u2 − v2 − 1)(u2 + v2 − 2).

The mapping ϕ : Ee
n ∋ (X,Y ) 7→ (t, s) ∈ Ce

n is given by

t =

v3Y − 27u(u2 − v2)(v2 − 1)

3v2(v2X − 3(3u2 − 2v2 + v4 − 2u2v2)
+

u

v2
,

s = −
1

v3

(

v2t −
u

v2

)2

+
v2X + 9u2 − 6(u2 + 1)v2 + 3v4

9v3
.

Inverse mapping ψ : Ce
n ∋ (t, s) 7→ (X,Y ) ∈ Ee

n has the form

X =

2 − 6tu + 2u2 + 3sv + (3t2 − 1)v2

2
,

Y = −
27

2

(

su +
(

(3t2 + 1)u − 2t(u2 + 1)
)

v − stv2 − (t3 − t)v3
)

.

Let us note that the curve Ee
n has three points of order two

T1 =

(

3(1+u2−2v2), 0
)

, T2 =

(

3(u2 +v2−2), 0
)

, T3 =

(

−3(1−2u2 +v2), 0
)

.

On the curve Ee
n we also have the point Pe

n given by

Pe
n =

(

3(u2 + v2 + 1),−27uv
)

.

It is easy to see that the point Pe
n is of infinite order on the curve Ee

n. Indeed, 2Pn =

(X2,Y2), where

X2 =

3(3u4 − 2(u2 + 1)u2v2 + (3 − 2u2 + 3u4)v4)

4u2v2
.

Due to the fact that u = 3n and v = 5n it is easy to see that for any choice of n ≥ 2

the above fraction is not an integer. From the Nagell–Lutz theorem we get that the

point Pe
n is not of finite order on the curve Ee

n. This implies that the set of rational

solutions of system (3.3) is infinite. As a consequence we get that for any n ≥ 2 we

can construct infinitely many k’s with the property that on the curve y2
= x2n + k we

have three points in arithmetic progression with x-coordinates belonging to the set

{m, 3m, 5m} with m > 0. Note that on this curve we also have rational points with

x-coordinates belonging to the set {−m,−3m,−5m}. This observation finishes the

proof of our theorem.
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Remark 3.9 Using the program APECS we calculated the rank rn of elliptic curve

Ee
n and generators for the free part of the group Ee

n(Q) for 2 ≤ n ≤ 8. The results of

our computations are given below.

n rn Generators for the free part of the groupEe
n(Q)

2 1 (3840, 176256)

3 2 (80808, 14478912), (130704, 40007520)

4 2 (1230432, 116328960), (31769376/25, 24804389376/125)

5 1 (36278088, 68748343488)

6 1 (836384640, 5022400795776)

7 1 (19863352968, 370669722011712)

8 1 (480955252992, 27480236025415680)

Using a similar argument as in the proof of the Corollary 3.4 we can prove the

following corollary.

Corollary 3.10 Let n ≥ 2, and consider the family of hyperelliptic curves given by the

equation Ck : y2
= x2n + k. Then the set A of integers k with the property that there are

at least 12 rational points on the curve Ck, is infinite. Moreover, we can construct the set

A such that for each pair k1, k2 ∈ A the curves Ck1
,Ck2

are not isomorphic over Q .

As in the case of odd exponents we can ask the following questions.

Question 3.11 Let us fix an integer n ≥ 2. What is the least value |k2n| ∈ N,

say M2n, with the property that there are at least three rational points in arithmetic

progression on the curve y2
= x2n + k2n?

Question 3.12 Let us fix an integer n ≥ 2 and consider the hyperelliptic curve H2n :

y2
= x2n + k2n, where k2n is constructed using the method we presented in the proof

of the Theorem 3.8. In particular, we have three points in arithmetic progression on

the curve H2n, say Pi for i = 1, 2, 3. Are the classes of divisors (Pi)−(∞) independent

in the jacobian variety associated with the curve H2n?

4 Sextic Threefold Related to Five Rational Points in
Arithmetic Progression on y2

= x3 + k

In the Section 2 we used very natural reasoning in order to construct quartic sur-

face closely related to the problem of existence of numbers of AP4 type. A natural

question arises as to whether we can construct an algebraic variety, say T, with the

property that each (nontrivial) rational point on T gives a number k of AP5 type, so

an integer k such that we have five rational points in arithmetic progression on the

curve y2
= x3 + k. In order to construct the demanded hypersurface we will use a

method similar to the one used in Section 2.

Let f (x, y) = y2 + ay − (bx3 + cx2 + dx + e) ∈ Q[a, b, c, d, e][x], and consider the

curve C : f (x, y) = 0. By the change of coordinates

(x, y) =

( X − 12c

36b
,

Y − 108ab

216b

)

with inverse (X,Y ) =

(

12(c+3bx), 108b(a+2y)
)

,
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we can see that the curve C is birationally equivalent to the curve

E : Y 2
= X3 − 432(c2 − 3bd)X + 432(27a2b2 + 8c3 − 36bcd + 108b2e).

Let p, q, r, s, t be free parameters, and consider the system of equations

f (−2, p) = f (−1, q) = f (0, r) = f (1, s) = f (2, t) = 0.

This system has exactly one solution with respect to a, b, c, d, e. This solution belongs

to the field Q(p, q, r, s, t) and has the form

a =

A

6H
, b =

B

6H
, c =

C

6H
, D =

D

6H
, e =

E

6H
,

where A, . . . , E ∈ Z[p, q, r, s, t] are homogeneous, A is of degree two, and B, . . . , E

are of degree three. Moreover, we have H = p − 4q + 6r − 4s + t . From these

computations we can see that in order to find an integer k with the property that

there are five points in arithmetic progression on the curve y2
= x3 + k, it is enough

to find rational points on the sextic threefold given by the equation

T : C(p, q, r, s, t)2
= 3B(p, q, r, s, t)D(p, q, r, s, t),

where

B = (p − 3q + 3r − s)t2 − (p2 − 3q2 + 3r2 − s2)t + (q − 3r + 3s)p2

− (q2 − 3r2 + 3s2)p + 2(q − s)(3qr − 3r2 − 4qs + 3rs),

C = −3((t2 + p2)(q − 2r + s) − (t + p)(q2 − 2r2 + s2) + 2r(q2 − qr − rs + s2)),

D = −(p − 6q + 3r + 2s)t2 + (p2 − 6q2 + 3r2 + 2s2)t + (2q + 3r − 6s)p2

− (2q2 + 3r2 − 6s2)p − 8(q − s)(3qr − 3r2 − 4qs + 3rs).

There are obvious automorphisms of order two acting on T by

(p, q, r, s, t) 7→ (t, s, r, q, p), (p, q, r, s, t) 7→ (−p,−q,−r,−s,−t).

By a trivial rational point on the hypersurface T we will understand the point

(p, q, r, s, t) that lies on one of the lines

L1 : p = q = r, s = t, L2 : p = q = s, r = t, . . . , L10 : r = s = t, p = q,

or on the hyperplane H : p − 4q + 6r − 4s + t = 0.

We performed numerical calculations in order to find a non-trivial rational point

on T. We computed all integer solutions of the equation defining the hypersurface T

under the assumption that max{|p|, |q|, |r|, |s|, |t|} ≤ 102. Unfortunately within this

range all solutions are trivial. This suggests the following question.

Question 4.1 Is the set of non-trivial rational points on the hypersurface T non-

empty?
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