CONCERNING NON-PLANAR CIRCLE-LIKE CONTINUA

W. T. INGRAM

1. Introduction. In this paper it is proved that if a circle-like continuum M cannot be embedded in the plane, then M is not a continuous image of any plane continuum (Theorem 5).
Suppose that (S, ρ) is a metric space. A finite sequence of domains $L_{1}, L_{2}, \ldots, L_{n}$ is called a linear chain provided L_{i} intersects L_{j} if and only if $|i-j| \leqslant 1$. If, in addition, there is a positive number ϵ such that, for each i, the diameter of L_{i} is less than ϵ, then the linear chain is called a linear ϵ-chain. If for each positive number ϵ the continuum M can be covered by a linear ϵ-chain, then M is said to be chainable (or snake-like) (2).
The definition of a circular chain (circular ϵ-chain) differs from that of a linear chain (linear ϵ-chain) only in that L_{n} intersects L_{1}. The continuum M is said to be a circle-like if for each positive number ϵ, M can be irreducibly covered by a circular ϵ-chain.

If the finite sequence of domains $c_{1}, c_{2}, \ldots, c_{n}$ forms a circular chain (similarly, a linear chain) it will be denoted by $C\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ and it will be referred to as the circular (linear) chain C, and the domains $c_{1}, c_{2}, \ldots, c_{n}$ will be called links of C.

If C and D are circular chains (linear chains), C is said to be a refinement of D if and only if each link of C is contained in some link of D. Further, C is said to be a strong refinement of D if and only if the closure of each link of C is contained in some link of D.

If D is a finite collection of point sets, then $\mu(D)$ denotes the largest number which is the diameter of an element of $D ; \mu(D)$ is called the mesh of D.

If G is a collection of point sets, the sum of the elements of G is denoted by G^{*}.
With Bing, we adopt the following convention. If $D\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ is a circular chain, then we consider d_{i-1} as the link preceding d_{i}, and in case $i=1$ we interpret d_{i-1} to mean d_{m}. Further, we consider d_{i+1} as the link following d_{i}, so if $i=m$ we interpret d_{i+1} to mean d_{1}. Thus, it will be convenient to understand d_{0} to be another name of d_{m}.

In view of the above definitions and the Lebesgue covering lemma (10, p. 154), if M is a circle-like continuum, then there exists a simple infinite sequence of circular chains $C_{1}, C_{2}, C_{3}, \ldots$ covering M such that, for each integer n, (1) $\mu\left(C_{n}\right)<1 / n$ and (2) C_{n+1} is a refinement of C_{n}. Such a sequence of

[^0]circular chains $C_{1}, C_{2}, C_{3}, \ldots$ is said to be a sequence of circular chains defining M.

If C is either a circular or linear chain and D is either a circular or linear chain, then C is a consolidation of D if (1) each link of C is the sum of a subcollection of links of D and (2) D is a refinement of C.

The continuum M is said to be indecomposable if and only if it is non-degenerate and is not the sum of two continua both distinct from it (14). Further, the continuum M is said to be hereditarily indecomposable if and only if each if its non-degenerate subcontinua is indecomposable.

A pseudo-arc is a hereditarily indecomposable chainable continuum $(3,13)$.
2. Definition and some properties of the function of Bing (5) which determines circling. Let the circular chain $C\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be a refinement of the circular chain $D\left(d_{1}, d_{2}, \ldots, d_{m}\right), m \geqslant 3$. Let k be an integer, $1 \leqslant k \leqslant n$, and let $f^{\prime}\left(c_{k}\right)$ be a subscript of one of the links of D which contains c_{k}. Whenever there is a choice, if possible, $f^{\prime}\left(c_{k}\right)$ is chosen so that \bar{c}_{k} is contained in the $f^{\prime}\left(c_{k}\right)$ th link of D.

Let f be a map of the set of integers $\{0,1,2, \ldots, n\}$ into a set of integers defined as follows:

$$
\begin{aligned}
f(0) & =f^{\prime}\left(c_{n}\right), \\
f(i+1) & = \begin{cases}f(i)-1 & \text { if } f^{\prime}\left(c_{i+1}\right) \text { precedes } f^{\prime}\left(c_{i}\right), \\
f(i) & \text { if } f^{\prime}\left(c_{i+1}\right)=f^{\prime}\left(c_{i}\right), \\
f(i)+1 & \text { if } f^{\prime}\left(c_{i+1}\right) \text { follows } f^{\prime}\left(c_{i}\right)\end{cases}
\end{aligned}
$$

Property 1. If i is an integer, $1 \leqslant i \leqslant n, f(i) \equiv f^{\prime}\left(c_{i}\right) \bmod m$, and $f(0)=f^{\prime}\left(c_{n}\right) \equiv f(n) \bmod m(5)$.

Definition. The number of times that C circles in D is $|f(n)-f(0)| / m$ (5). (As Bing has noted (5) this number is invariant under taking different links of C or D as the first link or in ordering the links in a counter fashion. Nor does it matter which of the two choices for $f^{\prime}\left(c_{k}\right)$ was made when there was a choice.)

Property 2. If x and y are integers, $1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n$, such that $f(x) \equiv f(y) \bmod m$, then c_{x} and c_{y} are contained in the same link of D.

Property 3. If x and y are integers, $1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n$, such that $f(x)+1=f(y)$, then either $f^{\prime}\left(c_{x}\right)+1=f^{\prime}\left(c_{y}\right)$ or $f^{\prime}\left(c_{x}\right)=m$ and $f^{\prime}\left(c_{y}\right)=1$.

Property 4. If x and y are integers, $1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n$, such that $f(x)+1=f(y)$, then there is an integer z such that (1) either z is x or z is between x and y and (2) if z^{\prime} is its immediate successor in the order from x to y, then $f(z)=f(x)$ and $f\left(z^{\prime}\right)=f(y)$.

Property 5. If x and y are integers $1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n$, such that $f(x)<f(y)-1$ and if j is an integer such that $f(x)<j<f(y)$, then there is an integer z between x and y such that $f(z)=j$.

3. Circle-like continua.

Theorem 1. Let C and D be circular chains such that C is a refinement of D. If C circles in D zero times, then there is a linear chain E such that (1) E is a consolidation of C and (2) E is a refinement of D, and, hence, $\mu(E) \leqslant \mu(D)$.

Proof. Let f be a function which determines the circling of C in D. Since f is bounded, there exist integers M and N each of which is the image under f of an integer between 0 and n (where n is the number of links of C), such that if c_{x} is a link of $C, M \leqslant f(x) \leqslant N$. If i is an integer, $M \leqslant i \leqslant N$, then denote by L_{i} the collection to which the link c_{x} of C belongs if and only if $f(x)=i$. By Property $5, L_{i}$ exists for each i. Moreover, by Property 2 , for each i, there exists a link of D which contains $L_{i}{ }^{*}$, so the diameter of $L_{i}{ }^{*}$ is less than or equal to $\mu(D)$.

Now, $L_{i}{ }^{*}$ intersects $L_{j}{ }^{*}$ if and only if $|i-j| \leqslant 1$. First, suppose that $|i-j| \leqslant 1$. For convenience assume that $i+1=j$ and that c_{x} belongs to L_{i} and c_{y} belongs to L_{j}. Then $f(x)=i$ and $f(y)=i+1$; so by Property 4, there exist consecutive integers z and z^{\prime} such that $f(z)=f(x)$ and $f\left(z^{\prime}\right)=f(y)$. Therefore, c_{z} belongs to $L_{i}, c_{z^{\prime}}$ belongs to L_{j}, and, since c_{z} intersects $c_{z^{\prime}}, L_{i}{ }^{*}$ intersects $L_{j}{ }^{*}$. On the other hand, suppose $L_{i}{ }^{*}$ intersects $L_{j}{ }^{*}, i \neq j$; then there are links c_{x} of L_{i} and c_{y} of L_{j} which intersect. Thus, $|x-y| \leqslant 1$; so, by definition of $f,|f(x)-f(y)| \leqslant 1$. However, $f(x)=i$ and $f(y)=j$; consequently, $|i-j| \leqslant 1$. Thus, $E\left(L_{M}{ }^{*}, L_{M+1}{ }^{*}, \ldots, L_{N}{ }^{*}\right)$ is a linear chain which is a refinement of D, so $\mu(E) \leqslant \mu(D)$.

An immediate corollary to Theorem 1 is the following theorem. Theorem 2 also follows from (12, Theorem 4, p. 46).

Theorem 2. If M is a circle-like continuum and there is a sequence of circular chains $D_{1}, D_{2}, D_{3}, \ldots$ defining M such that, for each positive integer n, D_{n+1} circles in D_{n} zero times, then M is chainable.

Definition. Let δ be a positive real number. A circular or linear chain is δ-regular if the distance between any two non-intersecting links of it is greater than or equal to δ.

A proof of a theorem for linear chains similar to the following theorem for circular chains is given by H. Cook in (6). Essentially the same proof can be applied to the following theorem.

Theorem 3. If C is a circular chain irreducibly covering the continuum M, then there is a positive number δ and a finite sequence $d_{1}, d_{2}, \ldots, d_{n}$ of domains with respect to M such that (1) $D\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a strong refinement of C and (2) either D is a δ-regular circular chain or D is a δ-regular linear chain.

From Theorems 1, 2, and 4 of (5) it follows that if M is a circle-like continuum which cannot be embedded in the plane and if $C_{1}, C_{2}, C_{3}, \ldots$ is a sequence of circular chains defining M, then there is a subsequence
$D_{1}, D_{2}, D_{3}, \ldots$ of the sequence $C_{1}, C_{2}, C_{3}, \ldots$ defining M such that D_{n+1} circles at least twice in D_{n}.

Definitions. Let $X_{1}, X_{2}, X_{3}, \ldots$ be a sequence of topological spaces and $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of continuous transformations such that f_{k} throws X_{k+1} onto X_{k}. Then, if X denotes the sequence X_{1}, X_{2}, \ldots and f denotes the sequence f_{1}, f_{2}, \ldots, the ordered pair (X, f) is said to be an inverse limit sequence. Let M denote the subset of the Cartesian product of X_{1}, X_{2}, \ldots to which the point ($x_{1}, x_{2}, x_{3}, \ldots$) belongs if and only if $f_{k}\left(x_{k+1}\right)=x_{k}$. The space M is the inverse limit space of the sequence (X, f).

Denote by f_{k}^{k} the identity transformation on X_{k}. Define $f_{n}{ }^{m}, m>n$, by $f_{n}{ }^{m}=f_{n} f_{n+1} \ldots f_{m-1}$ and note that $f_{n}{ }^{m}$ throws X_{m} onto X_{n}. Further, denote by p_{k} the projection of M onto X_{k}.

Definition. Let $n_{1}, n_{2}, n_{3}, \ldots$ be a sequence of positive integers. For each positive integer, k, let C_{k} denote the unit circle in the plane with centre at the origin, and f_{k} the transformation throwing C_{k+1} onto C_{k}, defined by

$$
f_{k}(1, t)=\left(1, n_{k} t\right)
$$

(in polar coordinates). If C denotes the sequence $C_{1}, C_{2}, C_{3}, \ldots$ and f denotes the sequence $f_{1}, f_{2}, f_{3}, \ldots$, the inverse limit space of the sequence (C, f) is a solenoid (4).

The author wishes to thank the referee for suggestions which shortened the proof of the following theorem.

Theorem 4. If M is a circle-like continuum which cannot be embedded in the plane, then there is a continuous transformation throwing M onto a solenoid which cannot be embedded in the plane.

Proof. Since M cannot be embedded in the plane, there is a positive number ϵ such that M cannot be covered by a linear ϵ-chain and a sequence $D_{1}, D_{2}, D_{3}, \ldots$ of circular chains defining M such that (i) $\mu\left(D_{1}\right)<\epsilon$, (ii) for each n there is a positive number δ_{n} such that D_{n} is δ_{n}-regular, (iii)

$$
\mu\left(D_{n+1}\right)<1 / 4 \delta_{n},
$$

and (iv) D_{n+1} is a strong refinement of D_{n} which circles in D_{n} at least twice.
Now, we shall define a sequence $E_{1}, E_{2}, E_{3}, \ldots$ of circular chains such that, for each positive integer n, (1) E_{n} is a consolidation of $D_{j_{n}}$, where $j_{1}=1$ and $j_{n}>j_{n-1}$, (2) E_{n+1} is a strong refinement of E_{n} such that no link of E_{n+1} intersects more than two links of E_{n}, and (3) E_{n+1} circles at least twice in E_{n} and a function which determines the circling is non-decreasing.

Let $E_{1}=D_{1}$ and suppose E_{k} has been defined. From (iii) it follows that $\mu\left(E_{k}\right)<\epsilon$ since $\mu\left(E_{k}\right) \leqslant \mu\left(E_{1}\right)<\epsilon$. Thus, the circular chain $D_{j_{k+1}}$ circles at least once in E_{k}, for, if it does not, then, by Theorem 1, there is a linear chain E which is a consolidation of $D_{j_{k+1}}$ such that $\mu(E)<\epsilon$, a contradiction to
the choice of ϵ. If $D_{j_{k+1}}$ circles in E_{k} at least twice, then choose j_{k+1} to be $j_{k}+1$; but, if $D_{j_{k+1}}$ circles in E_{k} only once, choose j_{k+1} to be $j_{k}+2$. In the latter case $D_{j_{k+1}}$ circles in E_{k} at least twice because of Bing's product theorem (5, Theorem 1) since $D_{j k+1}$ circles $D_{j k+1}$ at least twice and $D_{j k+1}$ circles E_{k} only once.

For convenience, let D be $D_{j_{k+1}}$ and f be a function which determines the circling of D in E. Suppose D has n links, E has m links, D circles in $E p$ times, and $f(n)>f(0)$. Note that $f(n)-f(0)=m p$. Since E is a consolidation of $D_{j k}, E$ is $\delta_{j_{k}}$-regular. Let $\delta=\delta_{j k}$.

For each positive integer $i, 1 \leqslant i \leqslant m p$, denote by $g(i)$ the collection to which the link d_{x} of D belongs if and only if $f(x) \equiv i \bmod (m p)$. Note that $g(i)^{*}$ is a subset of e_{j}, where $i \equiv j \bmod p$. Using properties (1)-(5) of f, each $g(i)$ exists and only adjacent sets $g(i)^{*}$ intersect. So $G\left(g(1)^{*}, \ldots, g(m p)^{*}\right)$ is a circular chain consolidating D, strongly refining E, and circling $E p$ times.

Denote by $g(i)_{+}$the subcollection of $g(i)$ to which the set d_{x} belongs if and only if d_{x} intersects e_{j+1}, and let $g(i)_{-}=g(i)-g(i)_{+}$. Since E is δ-regular and $\mu(D) \leqslant \frac{1}{4} \delta$, each $g(i)$ contains links of D which do not intersect e_{j+1}; therefore, the collections of $g(i)_{+}$and $g(i)_{-}$exist.

Then $G\left(g(1)_{-}^{*}, g(1)_{+}^{*}, \ldots, g(m p)_{-}^{*}, g(m p)_{+}^{*}\right)$ is the required circular chain E_{k+1}.

Suppose that E_{k} has m_{k} links and E_{k+1} circles in $E_{k} n_{k}$ times, $n_{k}>1$. Then, $m_{k}=2^{k-1} n_{k-1} \cdot n_{k-2} \ldots n_{1} m_{1}$.

For convenience, denote the i th link of E_{n} by $L\left(i, E_{n}\right)$. We note that the closure of $L\left(j, E_{k+1}\right)$ is a subset of $L\left(i, E_{k}\right)$ if and only if it is true that, if $j=2(r-1) m_{k}+s$, where $1 \leqslant r \leqslant n_{k}$ and $1 \leqslant s \leqslant 2 m_{k}$, then $i=s / 2$ if s is even and $i=(s+1) / 2$ if s is odd.

For each positive integer k denote by C_{k} the unit circle in the plane with centre at the origin. Denote by f_{k} the transformation throwing C_{k+1} onto C_{k} defined by $f_{k}(1, t)=\left(1, n_{k} t\right)$ (using polar coordinates). Denote by M^{\prime} the solenoid which is the inverse limit space of the sequence (C, f) (4), and let p_{k} denote the projection of M^{\prime} onto C_{k}.

Denote by U_{k} the collection to which the arc X of C_{k} belongs if and only if there exists an integer $j, 1 \leqslant j \leqslant m_{k}$, such that, if $(1, t)$ belongs to X, then for some integer $h, 2 \pi(j-1) / m_{k} \leqslant t-2 \pi h \leqslant 2 \pi j / m_{k}$. In this case X will be denoted by $X(j, k)$. Then for each $k, X(i, k)$ intersects $X(j, k)$ if and only if $|i-j| \leqslant 1$ or one of i and j is 1 and the other is m_{k}.

Denote by V_{k} the collection to which the subset Y of M^{\prime} belongs if and only if there is an arc X of U_{k} such that $Y=p_{k}^{-1}(X)$. Each element of V_{k}, for each k, is said to be a section of M^{\prime}. Moreover, if $X=X(j, k)$ and $Y=p_{k}{ }^{-1}(X)$, then Y is denoted by $Y(j, k)$. Thus, $Y(i, k)$ intersects $Y(j, k)$ if and only if $|i-j| \leqslant 1$ or one of i and j is 1 and the other is m_{k}.

We wish to show that $V_{1}, V_{2}, V_{3}, \ldots$ is a sequence of sections of M^{\prime} such that for each $k:\left(1^{\prime}\right) V_{k}$ has m_{k} elements; $\left(2^{\prime}\right) Y(i, k)$ intersects $Y(j, k)$ if and only if $|i-j| \leqslant 1$ or one of i and j is 1 and the other is $m_{k} ;\left(3^{\prime}\right) Y(i, k)$ contains
$Y(j, k+1)$ if and only if $L\left(i, E_{k}\right)$ contains $\bar{L}\left(j, E_{k+1}\right) ;\left(4^{\prime}\right)$ if ϵ is a positive number, there is an integer N such that if k is an integer, $k \geqslant N$, and i is an integer, $1 \leqslant i \leqslant m_{k}$, then the diameter of $Y(i, k)$ is less than ϵ; and (5^{\prime}) each section in V_{k+1} is a subset of some section in V_{k}.

To prove (3^{\prime}) let $[a, b]$ denote the interval on the unit circle going counterclockwise from ($1, a$) to ($1, b$) (polar coordinates).

Since $m_{k+1}=2 n_{k} m_{k}$ and $1 \leqslant j \leqslant m_{k+1}$, there exist integers r and s, $1 \leqslant r \leqslant n_{k}, 1 \leqslant s \leqslant 2 m_{k}$, such that $j=2(r-1) m_{k}+s$. Now, $Y(i, k)$ contains $Y(j, k+1)$ if and only if $\left[2 \pi(i-1) / m_{k}, 2 \pi i / m_{k}\right]$ contains

$$
f_{k}\left(\left[2 \pi(j-1) / m_{k+1}, 2 \pi j / m_{k+1}\right]\right) ;
$$

thus if and only if $\left[2 \pi(i-1) / m_{k}, 2 \pi i / m_{k}\right.$] contains $\left[2 \pi(s-1) / 2 m_{k}, 2 \pi s / 2 m_{k}\right]$, and thence if and only if

$$
i= \begin{cases}s / 2 & \text { if } s \text { is even, } \\ (s+1) / 2 & \text { if } s \text { is odd }\end{cases}
$$

But this is precisely the condition for $L\left(i, E_{k}\right)$ to contain the closure of $L\left(j, E_{k+1}\right)$.

To prove (4') let d denote the usual metric on the unit circle. Then an equivalent metric for M^{\prime} is given by

$$
d_{1}(x, y)=\sum_{k=1}^{\infty} \frac{d\left(p_{k}(x), p_{k}(y)\right)}{2^{k}}
$$

(p_{k} is the projection of M^{\prime} onto C_{k}). There is then a positive integer Q such that

$$
\sum_{k=Q+1}^{\infty} \frac{d\left(p_{k}(x), p_{k}(y)\right)}{2^{k}}<\epsilon / 2, \quad \text { for any } x, y \text { in } M^{\prime}
$$

Let x be a point of $Y(i, k)=p_{k}{ }^{-1}\left(\left[2 \pi(i-1) / m_{k}, 2 \pi i / m_{k}\right]\right)$. If n is a positive integer, $n \leqslant k$, then $p_{n}(x)$ is a point of

$$
f_{n}^{k}(X(i, k))=\left[\frac{2 \pi(i-1)}{m_{n}} \cdot \frac{1}{2^{k-n}}, \frac{2 \pi i}{m_{n}} \cdot \frac{1}{2^{k-n}}\right]
$$

where $f_{n}^{k}=f_{n} f_{n+1} \ldots f_{k-1}: C_{k} \rightarrow C_{n}$.
For fixed n, the diameter of $f_{n}{ }^{k}(X(i, k)) \rightarrow 0$ as $k \rightarrow \infty$. Hence, there exists an integer N_{Q} such that if x and y are points of $Y(i, k), k>N_{Q}$, then $d\left(p_{n}(x), p_{n}(y)\right)<\epsilon / 2$ for $n=1,2, \ldots, Q$. So

$$
d_{1}(x, y)=\sum_{k=1}^{Q} \frac{d\left(p_{k}(x), p_{k}(y)\right)}{2^{k}}+\sum_{k=Q+1}^{\infty} \frac{d\left(p_{k}(x), p_{k}(y)\right)}{2^{k}}<\epsilon .
$$

Hence the diameter of $Y(i, k)$ is less than ϵ.
Now, (5^{\prime}) follows from the fact that if X^{\prime} belongs to $U_{k+1}, f_{k}\left(X^{\prime}\right)$ is a subset of an element X of U_{k}, so that $p_{k}^{-1}(X)$ contains $p_{k+1}{ }^{-1}\left(X^{\prime}\right)$.

Suppose that x is a point of M. Denote by $J_{n}(x), n=1,2,3, \ldots$, the sum of the collection to which the section in V_{n} belongs if and only if its subscript
is the same as that of a link of E_{n} which contains x. Since x belongs to no more than two links of $E_{n}, J_{n}(x)$ is the sum of at most two elements of V_{n}. Moreover, if a link of E_{n+1} contains x, its closure is contained in one of the links of E_{n} which contains x. Therefore, by $\left(3^{\prime}\right), J_{n}(x)$ contains $J_{n+1}(x)$. By (4^{\prime}), there is only one point common to the terms of the sequence $J_{1}(x), J_{2}(x), J_{3}(x), \ldots$; denote it by $T(x)$. We shall show that the set T of ordered pairs $(x, T(x))$ is a continuous transformation throwing M onto M^{\prime}.

If y is a point of M^{\prime}, there is a sequence $Y_{1}, Y_{2}, Y_{3}, \ldots$ of sections of M^{\prime} such that Y_{k} belongs to V_{k} and contains y, and Y_{k+1}^{\prime} is a subset of Y_{k}. Thus, y is the point common to $Y_{1}, Y_{2}, Y_{3}, \ldots$ Correspondingly, there exist links $L_{1}, L_{2}, L_{3}, \ldots$ of $E_{1}, E_{2}, E_{3}, \ldots$, respectively, such that the subscript of L_{k} (in E_{k}) is the same as the subscript of Y_{k} (in V_{k}); thus \bar{L}_{k+1} is contained in L_{k}. Therefore, there is a point common to $L_{1}, L_{2}, L_{3}, \ldots$, and, if x is a point of the common part, y belongs to $J_{n}(x)$ for each n. Thus, $T(x)=y$, so T is a transformation throwing M onto M^{\prime}.

Furthermore, T is continuous, for suppose that x is a point of M and $T(x)=y$ and R is a region containing y. There is an integer n such that if Y is a section of V_{n} containing y and Y^{\prime} intersects Y, then $Y+Y^{\prime}$ is a subset of R. That such an integer exists follows from (4'). Suppose L is the link of E_{n} with the same subscript as that of Y. If z belongs to L, either $J_{n}(z)$ is Y or $J_{n}(z)$ is the sum of Y and only one other section Y^{\prime} in V_{n} which intersects Y. Thus, $J_{n}(z)$ is a subset of R. However, if $m \geqslant n, J_{n}(z)$ contains $J_{m}(z)$, so $T(z)$ belongs to R. But L is a domain containing x such that R contains $T(L)$ so T is continuous.
4. Circle-like continua and weakly chainable continua. In (12) M. C. McCord generalized the theorem of M. K. Fort (9) that the dyadic solenoid is not a continuous image of any plane continuum. McCord proved that each solenoidal continuum is not a continuous image of any plane continuum. Theorem 5 of this paper depends heavily on this result.

Definition. A finite sequence of domains $X_{1}, X_{2}, \ldots, X_{n}$ is said to be a weak chain provided that X_{i} intersects X_{j} if $|i-j| \leqslant 1$.

Definition. A weak chain $X\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a refinement of a weak chain $X^{\prime}\left(X^{\prime}{ }_{1}, X^{\prime}{ }_{2}, \ldots, X^{\prime}{ }_{m}\right)$ if and only if each link X_{i} of X is contained in a link $X^{\prime}{ }_{k_{i}}$ of X^{\prime} such that $\left|k_{i}-k_{j}\right| \leqslant 1$ if $|i-j| \leqslant 1$.

Definition. A continuum M is said to be weakly chainable if there exists a sequence $G_{1}, G_{2}, G_{3}, \ldots$ of finite collections of domains covering M such that, for each n, (1) G_{n} is a weak chain, (2) each link of G_{n} has diameter less than $1 / n$, and (3) G_{n+1} is a refinement of G_{n}.

Theorem. The continuum M is weakly chainable if and only if it is a continuous image of the pseudo-arc.

Remark. The preceding three definitions and theorem are due to A. Lelek (11). Essentially the same definitions and theorem are presented in an earlier work by Lawrence Fearnley (7); see also (8).

Theorem 5. If M is a circle-like continuum which cannot be embedded in the plane, then M is not a continuous image of any plane continuum and is, therefore, not weakly chainable.

Proof. Let M be a non-planar circle-like continuum and f a continuous transformation throwing the plane continuum K onto M. Then since there is a continuous transformation g throwing M onto a solenoid M^{\prime}, which cannot be embedded in the plane, the continuous transformation $g f$ throws K onto M^{\prime}. But each solenoid which cannot be embedded in the plane is a solenoidal continuum and, therefore, is not a continuous image of any plane continuum (12, Theorem 25).

The following theorem was proved in another way by Fearnley (7).
Theorem 6. If H and K are weakly chainable continua with a point in common, then $H+K$ is weakly chainable.

Proof. Suppose that M_{1} and M_{2} are pseudo-arcs such that a is the only point of $M_{1} \cdot M_{2}$.

Since H and K are weakly chainable, there exist continuous transformations f and g such that $f\left(M_{1}\right)=H$ and $g\left(M_{2}\right)=K$.

Let x be a point of $H \cdot K$, and suppose that y and z are points of M_{1} and M_{2}, respectively, such that $f(y)=x$ and $g(z)=x$.

Since M_{i} is homogeneous (1), for $i=1,2$, there is a topological transformation T_{i} such that $T_{i}\left(M_{i}\right)=M_{i}, i=1,2$, and $T_{1}(a)=y$ and $T_{2}(a)=z$. So, $f T_{1}(a)=x, g T_{2}(a)=x$.

Denote by h the transformation throwing $M_{1}+M_{2}$ onto $H+K$ defined by

$$
h(t)= \begin{cases}f T_{1}(t) & \text { if } t \text { belongs to } M_{1} \\ g T_{2}(t) & \text { if } t \text { belongs to } M_{2}\end{cases}
$$

Then h is a continuous transformation such that $h\left(M_{1}+M_{2}\right)=H+K$. But $M_{1}+M_{2}$ is chainable, so if M is a pseudo-arc, there is a continuous transformation F such that $F(M)=M_{1}+M_{2}$. Thus $h F(M)=H+K$, and $H+K$ is weakly chainable.

Theorem 7. If M is a decomposable circle-like continuum, then M is weakly chainable.

Proof. There exist proper subcontinua H and K such that $M=H+K$. Since H and K are chainable continua and $H \cdot K$ exists, $H+K$ is weakly chainable.

Theorem 8. If M is a circle-like continuum which cannot be embedded in the plane, then M is indecomposable.

References

1. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742.
2. -Snake-like continua, Duke Math. J., 18 (1951), 653-663.
3. Concerning hereditarily indecomposable continua, Pacific J. Math., 1 (1951), 43-51.
4. A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Can. J. Math., 12 (1960), 209-230.
5. - Embedding circle-like continua in the plane, Can. J. Math., 14 (1962), 113-128.
6. H. Cook, On the most general plane closed point set through which it is possible to pass a pseudo-arc, Fund. Math., 55 (1964), 31-42.
7. Lawrence Fearnley, Continuous mappings of the pseudo-arc, doctoral dissertation, University of Utah, Salt Lake City, 1959.
8. -_Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc., 111 (1964), 380-399.
9. M. K. Fort, Images of plane continua, Amer. J. Math., 81 (1959), 541-546.
10. J. L. Kelley, General topology (Princeton, 1955).
11. A. Lelek, On weakly chainable continua, Fund. Math., 50 (1962), 271-282.
12. Michael McCord, Inverse limit systems, doctoral dissertation, Yale University, New Haven, 1963.
13. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc., 63 (1948), 581-594.
14. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Pub., 13 (1962).

Auburn University and The University of Houston

[^0]: Received March 1, 1965, and in revised form, September 9, 1966. Presented to the Graduate Faculty of Auburn University in partial fulfilment of the requirements for the Ph.D. degree, August 1964, and to the American Mathematical Society in Athens, Georgia, November 21, 1964.

