
CONCERNING NON-PLANAR CIRCLE-LIKE CONTINUA 

W. T. INGRAM 

1. Introduction. In this paper it is proved that if a circle-like continuum 
M cannot be embedded in the plane, then M is not a continuous image of any 
plane continuum (Theorem 5). 

Suppose that (5, p) is a metric space. A finite sequence of domains 
Li, L2y . . . , Ln is called a linear chain provided Lt intersects Lj if and only if 
\i — j \ < 1. If, in addition, there is a positive number e such that, for each i, 
the diameter of Lt is less than e, then the linear chain is called a linear e-chain. 
If for each positive number e the continuum M can be covered by a linear 
e-chain, then M is said to be chainable (or snake-like) (2). 

The definition of a circular chain (circular e-chain) differs from that of a 
linear chain (linear e-chain) only in that Ln intersects L\. The continuum M 
is said to be a circle-like if for each positive number e, M can be irreducibly 
covered by a circular e-chain. 

If the finite sequence of domains ci, c2, . . . , cn forms a circular chain (simi
larly, a linear chain) it will be denoted by C(ch c2, . . . , cn) and it will be referred 
to as the circular (linear) chain C, and the domains c\y c2} . . . , cn will be called 
links of C. 

If C and D are circular chains (linear chains), C is said to be a refinement 
of D if and only if each link of C is contained in some link of D. Further, C is 
said to be a strong refinement of D if and only if the closure of each link of C 
is contained in some link of D. 

If D is a finite collection of point sets, then fx(D) denotes the largest number 
which is the diameter of an element of D\ ix(JD) is called the mesh of D. 

If G is a collection of point sets, the sum of the elements of G is denoted by G*. 
With Bing, we adopt the following convention. If D(dï} d2} . . . , dm) is a 

circular chain, then we consider d^\ as the link preceding du and in case 
i = 1 we interpret d^i to mean dm. Further, wre consider di+i as the link 
following diy so if i = m we interpret di+i to mean di. Thus, it will be con
venient to understand d0 to be another name of dm. 

In view of the above definitions and the Lebesgue covering lemma (10, 
p. 154), if M is a circle-like continuum, then there exists a simple infinite 
sequence of circular chains C\, C2, C3, . . . covering M such that, for each 
integers, (1) /x(Cw) < \/n and (2) Cn+i is a refinement of Cn. Such a sequence of 
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circular chains G, Ci, C3, . . . is said to be a sequence of circular chains 
defining M. 

If C is either a circular or linear chain and D is either a circular or linear 
chain, then C is a consolidation of D if (1) each link of C is the sum of a sub-
collection of links of D and (2) D is a refinement of C 

The continuum M is said to be indecomposable if and only if it is non-degen
erate and is not the sum of two continua both distinct from it (14). Further, 
the continuum M is said to be hereditarily indecomposable if and only if each 
if its non-degenerate subcontinua is indecomposable. 

A pseudo-arc is a hereditarily indecomposable chainable continuum (3, 13). 

2. Definition and some properties of the function of Bing (5) which 
determines circling. Let the circular chain C(c\, c2, . . . , cn) be a refinement 
of the circular chain D(di, d2, . . . , dm), m > 3. Let k be an integer, 1 < k < n, 
and le t / ' (ck) be a subscript of one of the links of D which contains ck. Whenever 
there is a choice, if possible, f(ck) is chosen so that ck is contained in the 
jPfeOthlinkof D. 

Let / b e a map of the set of integers {0, 1,2, . . . , n\ into a set of integers 
defined as follows: 

/(0) =f'(cn), 

{f{i) - 1 if/'fci+i) precedes/'(c,), 
f(i + l) ={m if/'fo+i) = / ' (* ,) , 

[/(*') + 1 if/ '(c+i) follows/'(Ci). 

Property 1. If i is an integer, 1 < i < w, / ( i ) =f(ci) mod m, and 
/(0) = / , ( c n ) = / ( n ) m o d m ( 5 ) . 

Definition. The number of times that C circles in D is \f(n) — f(0)\/m (5). 
(As Bing has noted (5) this number is invariant under taking different links 
of C or D as the first link or in ordering the links in a counter fashion. Nor does 
it matter which of the two choices for/' (ck) was made when there was a choice.) 

Property 2. If x and y are integers, l < x < ^ , 1 < ^ < W , such that 
f(x) = f(y) mod m, then cx and cy are contained in the same link of D. 

Property 3. If x and y are integers, l < x < w , 1 < 3/ < w, such that 
f(x) + 1 = / 0 0 , then eitherf'(cx) + 1 = / / (c y ) orf'(cx) = w a n d / ' f e ) = 1. 

Property 4. If x and y are integers, l < x < w , 1 < ^ < W , such that 
f(x) + 1 = f(y), then there is an integer z such that (1) either 2 is x or 2 is 
between x and y and (2) if z' is its immediate successor in the order from x 
to y, then/(s) = /(*) and /(Z ' ) = f(y). 

Property 5. If x and 3; are integers l < x < n , 1 < 3; < w, such that 
/ (x) < f(y) — 1 and if j is an integer such that / (x) < j < /(3O, then there is 
an integer z between x and y such that/(js) = 7. 
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3. Circle-like continua. 

THEOREM 1. Let C and D be circular chains such that C is a refinement of D. 
If C circles in D zero times, then there is a linear chain E such that (1) E is a 
consolidation of C and (2) E is a refinement of D, and, hence, /x(£) < y.(D). 

Proof. L e t / be a function which determines the circling of C in D. Since/ is 
bounded, there exist integers M and N each of which is the image under / of 
an integer between 0 and n (where n is the number of links of C), such that 
if cx is a link of C, M < /(x) < N. If i is an integer, M < i < N, then denote 
by Li the collection to which the link cx of C belongs if and only if / (x) = i. 
By Property 5, Lt exists for each i. Moreover, by Property 2, for each i, there 
exists a link of D which contains L*, so the diameter of L* is less than or 
equal to n(D). 

Now, L* intersects L* if and only if \i — j \ < 1. First, suppose that 
\i — j \ < 1. For convenience assume that i + 1 = j and that cx belongs to Lt 

and cy belongs to Ljt Then/(x) = i and/(3/) = i + 1 ; so by Property 4, there 
exist consecutive integers z and z' such that f(z) = / (x) and f{z') = f(y). 
Therefore, cz belongs to Lu cz> belongs to Ljt and, since cz intersects cz>, L* 
intersects L / . On the other hand, suppose L* intersects L / , i ^ j ; then there 
are links cx of Lt and cy of Lô which intersect. Thus, \x — y\ < 1 ; so, by defini
tion of/, |/(x) — f(y)\ < 1. However, / (x) = i and f(y) = j ; consequently, 
\i — j \ < 1. Thus, E(LM*, LM+i*, . . . , LN*) is a linear chain which is a 
refinement of D, so n(E) < y.(D). 

An immediate corollary to Theorem 1 is the following theorem. Theorem 2 
also follows from (12, Theorem 4, p. 46). 

THEOREM 2. If M is a circle-like continuum and there is a sequence of circular 
chains D\, D2, Dz, . . . defining M such that, for each positive integer n, Dn+i 
circles in Dn zero times, then M is chainable. 

Definition. Let h be a positive real number. A circular or linear chain is 
d-regular if the distance between any two non-intersecting links of it is greater 
than or equal to <5. 

A proof of a theorem for linear chains similar to the following theorem for 
circular chains is given by H. Cook in (6). Essentially the same proof can be 
applied to the following theorem. 

THEOREM 3. If C is a circular chain irreducibly covering the continuum M, 
then there is a positive number ô and a finite sequence d\, d2, . . . , dn of domains 
with respect to M such that (1) D(d\, d2, . . . , dn) is a strong refinement of C and 
(2) either D is a 5-regular circular chain or D is a 8-regular linear chain. 

From Theorems 1, 2, and 4 of (5) it follows that if M is a circle-like 
continuum which cannot be embedded in the plane and if 6\, C2, C3, . . . 
is a sequence of circular chains defining M, then there is a subsequence 
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Dh D2j Dh . . . of the sequence Ch C2, C3, . . . defining M such that Dn+i 
circles at least twice in Dn. 

Definitions. Let Xh X2j X3, . . . be a sequence of topological spaces and 
fh fi, /s, . . . be a sequence of continuous transformations such that fk throws 
Xk+i onto Xk. Then, if X denotes the sequence Xi, X2, . . . and / denotes the 
sequence/i, f2, . . . , the ordered pair (X, / ) is said to be an inverse limit sequence. 
Let M denote the subset of the Cartesian product of Xu X2, . . . to which the 
point (xi, x2, #3, . . .) belongs if and only if fk(xk+i) = xk. The space M is the 
inverse limit space of the sequence (X,f). 

Denote by fk
k the identity transformation on Xk. Define fn

m, m > n, by 
fnm = fnfn+i • • • fm-i and note t h a t / / 1 throws Xm onto Xn. Further, denote by 
pk the projection of M onto Xk. 

Definition. Let wi, n2l «3, . . . be a sequence of positive integers. For each 
positive integer, k, let Ck denote the unit circle in the plane with centre at the 
origin, and fk the transformation throwing Ck+i onto Ck, defined by 

(in polar coordinates). If C denotes the sequence Ci, C2, C3, . . . and/denotes 
the sequence fi,f2,fz, . . . , the inverse limit space of the sequence (C,/) is a 
solenoid (4). 

The author wishes to thank the referee for suggestions which shortened the 
proof of the following theorem. 

THEOREM 4. If M is a circle-like continuum which cannot be embedded in the 
plane, then there is a continuous transformation throwing M onto a solenoid which 
cannot be embedded in the plane. 

Proof. Since M cannot be embedded in the plane, there is a positive number 
e such that M cannot be covered by a linear e-chain and a sequence 
Di, D2, Dz, . . . of circular chains defining M such that (i) n(Di) < e, (ii) for 
each n there is a positive number bn such that Dn is ^-regular, (iii) 

M(A.+I) < 1/4 ô„, 

and (iv) Dn+\ is a strong refinement of Dn which circles in Dn at least twice. 
Now, we shall define a sequence Eh E2y E3, . . . of circular chains such that, 

for each positive integer n, (1) En is a consolidation of Djn ,where 71 = 1 and 
j n > jw_i, (2) En+i is a strong refinement of En such that no link of En+i inter
sects more than two links of En, and (3) En+i circles at least twice in En and a 
function which determines the circling is non-decreasing. 

Let £1 = Di and suppose Ek has been defined. From (iii) it follows that 
jjL(Ek) < e since n(Ek) < MC^I) < e. Thus, the circular chain Djk+i circles at 
least once in Ek, for, if it does not, then, by Theorem 1, there is a linear chain 
E which is a consolidation of Djk+i such that /x(£) < e, a contradiction to 
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the choice of e. If D jk+\ circles in Ek at least twice, then choose jk+i to be 
j k + 1; but, if Djk+i circles in Ek only once, choose jk+i to be j k + 2. In the 
latter case Djk+1 circles in Ek at least twice because of Bing's product theorem 
(5, Theorem 1) since Djk+1 circles Djk+i at least twice and Djk+i circles Ek 

only once. 
For convenience, let D be Djk+l and / b e a function which determines the 

circling of D in E. Suppose D has n links, E has m links, D circles in E p times, 
and f(n) > / ( 0 ) . Note that / (w) — /(0) = mp. Since E is a consolidation of 
DjkJ E is ^-regular. Let <5 = 8jk. 

For each positive integer i, 1 < i < ra£, denote by g(i) the collection to 
which the link dx of D belongs if and only if f(x) = i mod (mp). Note that 
g(i)* is a subset of ej} wThere i = j mod £. Using properties ( l )-(5) of/, each 
g (2) exists and only adjacent sets g(i)* intersect. So G(g(l)*, . . . , gimp)*) is a 
circular chain consolidating D, strongly refining E, and circling E p times. 

Denote by g(i)+ the subcollection of g(i) to which the set dx belongs if and 
only if dx intersects ej+i, and let git)- = g(i) — g(i)+. Since E is <5-regular and 
fi(D) < J<5, each g(i) contains links of D which do not intersect ej+i; therefore, 
the collections of g(i)+ and g(i)~ exist. 

Then G(g(l)_*, g(l)+*, . . . , g(mp)J*} g(mp)+*) is the required circular 
chain Ek+1. 

Suppose that Ek has mk links and Ek+i circles in Ek nk times, nk > 1. Then, 
mk = 2k~1 nk„i.nk-2 . . . rii mx. 

For convenience, denote the ith link of En by L(i, En). We note that the 
closure of L(j, Ek+i) is a subset of L(i, Ek) if and only if it is true that, if 
j = 2(r — \)mk + 5, w^here 1 < r < ^ and 1 < 5 < 2mkj then i = s/2 if 5 is 
even and i = (s + l ) / 2 if 5 is odd. 

For each positive integer k denote by Ck the unit circle in the plane with 
centre at the origin. Denote by fk the transformation throwing Ck+i onto Ck 

defined by fk(l, t) = (l,nkt) (using polar coordinates). Denote by M' the 
solenoid which is the inverse limit space of the sequence (C,f) (4), and let 
pk denote the projection of M' onto Ck. 

Denote by Uk the collection to which the arc X of Ck belongs if and only 
if there exists an integer j , 1 < j < mk, such that, if (1, /) belongs to X, then 
for some integer h, 2ir(j — l)/mk < t — 2wh < 2irj/?nk. In this case X will be 
denoted by X(j, k). Then for each k, X(i,k) intersects X(j, k) if and only if 
\i — j \ < 1 or one of i and j is 1 and the other is mk. 

Denote by Vk the collection to which the subset Y of Mf belongs if and only 
if there is an arc X of Uk such that Y = pk~

l(X). Each element of Vk, for 
each ky is said to be a section of Ml'. Moreover, if X = X(J, k) and Y = pk~

l(X), 
then Y is denoted by Y(j, k). Thus, Y(i, k) intersects Y(j, k) if and only if 
\i — j \ < 1 or one of i and j is 1 and the other is mk. 

We wish to show that Vi, F2, V%y . . . is a sequence of sections of M' such 
that for each k: (V) Vk has mk elements; (2f) Y(i, k) intersects Y(j, k) if and 
only if \i — j \ < 1 or one of i and j is 1 and the other is mk\ (30 Y(i, k) contains 
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Y(J, k + 1) if and only if L(i, Ek) contains L(j, E*+i) î (40 if e is a positive 
number, there is an integer N such that if k is an integer, k > TV, and i is an 
integer, 1 < i < mk, then the diameter of F(i, k) is less than e; and (50 each 
section in Vk+i is a subset of some section in Vk. 

To prove (30 let [a, b] denote the interval on the unit circle going counter
clockwise from (1, a) to (1, b) (polar coordinates). 

Since mk+i = 2nk mk and 1 < j < mk+h there exist integers r and s, 
1 < r < ?z*, 1 < s < 2mkj such that j = 2(r — \)mk + 5. Now, Y(i, k) con
tains Y(j, k + 1) if and only if [2ir(i — l)/mkl 2iri/mk] contains 

fk([2ir(j ~ l)/mk+i, 2TJ/mk+i]) ; 

thus if and only if [2w(i — l)/mkl 2wi/mk] contains [2ir(s — l)/2mk, 2irs/2mk], 
and thence if and only if 

s/2 if s is even, 
(s + l ) / 2 if 5 is odd. 

But this is precisely the condition for L(i, Ek) to contain the closure of 
L(j,Ek+1). 

To prove (40 let d denote the usual metric on the unit circle. Then an 
equivalent metric for M' is given by 

2 k 

(pk is the projection of M' onto Ck). There is then a positive integer Q such that 

d(P*(x),pk(y)) 
k=Q+l 

Let x be a point of Y(i,k) = pk~
l(&Tr(i — \)/rnk,2iri/mk]). If » is a 

positive integer, n < k, then pn(x) is a point of 

di(x,y) = X) Tvr 

I ^ y J i < c / 2 , for any *, y in M'. 

fn*(X(i,k)) = 
2ir(i - 1) 1 2W 1 
. mn ' 2k~n ' m„ ' 2k~\ 

w h e r e / / = /n/„+i • • - fk-i- Ck —> Cn. 
For fixed n, the diameter of fn

k(X(i, k)) —> 0 as k —•» oo. Hence, there exists 
an integer iVQ such that if x and 3/ are points of Y(i, k), k > NQ, then 
d(pn(x), pn(y)) < e/2 for n = 1, 2, . . . , Q. So 

di{x, y)=2Lj 9* + 2^ 9* < e-
k=l A k=Q+l * 

Hence the diameter of F(i, k) is less than e. 
Now, (50 follows from the fact that if X' belongs to Ufc+i, fk(X') is a subset 

of an element X of Uk, so that pk~
x{X) contains pk+rl(X'). 

Suppose that x is a point of M. Denote by Jn(x), n = 1, 2, 3, . . . , the sum 
of the collection to which the section in Vn belongs if and only if its subscript 
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is the same as that of a link of En which contains x. Since x belongs to no more 
than two links of En, Jn(x) is the sum of at most two elements of Vn. Moreover, 
if a link of En+i contains x, its closure is contained in one of the links of En 

which contains x. Therefore, by (3'), Jn(%) contains Jn+i(x). By (4'), there is 
only one point common to the terms of the sequence Ji(x), / 2 (x ) , / 3 (x) , . . . ; 
denote it by T(x). We shall show that the set T of ordered pairs (x, T(x)) is 
a continuous transformation throwing M onto M'. 

If y is a point of M', there is a sequence Fi, F2, F3, . . . of sections of M' 
such that Yk belongs to Vk and contains y, and F^+i is a subset of Yk. Thus, 
y is the point common to Fi, F2, F3, . . . . Correspondingly, there exist links 
Li, L2, Lz, . . . of Ei, E2, JE3, . . . , respectively, such that the subscript of Lk 

(in Ek) is the same as the subscript of Yk (in Vk) ; thus Lk+± is contained in 
Lk. Therefore, there is a point common to Li, L2, £3, • • . , and, if x is a point 
of the common part, y belongs to Jn(x) for each n. Thus, T(x) = 3/, so T is a 
transformation throwing ilf onto Mf. 

Furthermore, T is continuous, for suppose that x is a point of Jlf and 
T(x) = y and i^ is a region containing y. There is an integer n such that if F 
is a section of Vn containing y and Y' intersects F, then F + F ' is a subset 
of R. That such an integer exists follows from (4'). Suppose L is the link of En 

with the same subscript as that of F. If z belongs to L, either Jn(z) is F or 
Jn{z) is the sum of F and only one other section Y' in Vn which intersects F. 
Thus, Jn(z) is a subset of R. However, if m > n, Jn(z) contains Jm(z), so 
T(z) belongs to R. But L is a domain containing x such that 7? contains T(L) 
so 7̂  is continuous. 

4. Circle-like continua and weakly chainable continua. In (12) M. C. 
McCord generalized the theorem of M. K. Fort (9) that the dyadic solenoid 
is not a continuous image of any plane continuum. McCord proved that each 
solenoidal continuum is not a continuous image of any plane continuum. 
Theorem 5 of this paper depends heavily on this result. 

Definition. A finite sequence of domains Xi, X2, . . . , Xn is said to be a 
weak chain provided that Xt intersects Xj if \i — j \ < 1. 

Definition. A wreak chain X(Xi, X2} . . . , Xn) is a refinement of a weak chain 
X' (X\, Xf2, • . • , X'm) if and only if each link Xt of X is contained in a link 
X'ki of X r such that \kt ~ kj\ < 1 if \i - j \ < 1. 

Definition. A continuum M is said to be weakly chainable if there exists a 
sequence C7i, G2, G3, . . . of finite collections of domains covering M such that, 
for each n, (1) Gw is a weak chain, (2) each link of Gn has diameter less than 
1/n, and (3) Gn+i is a refinement of Gn. 

THEOREM. The continuum M is weakly chainable if and only if it is a con
tinuous image of the pseudo-arc. 
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Remark. The preceding three definitions and theorem are due to A. Lelek 
(11). Essentially the same definitions and theorem are presented in an earlier 
work by Lawrence Fearnley (7); see also (8). 

THEOREM 5. If M is a circle-like continuum which cannot be embedded in the 
plane, then M is not a continuous image of any plane continuum and is, therefore, 
not weakly chainable. 

Proof. Let M be a non-planar circle-like continuum and / a continuous 
transformation throwing the plane continuum K onto M. Then since there is 
a continuous transformation g throwing M onto a solenoid M', which cannot 
be embedded in the plane, the continuous transformation gf throws K onto 
Mf. But each solenoid which cannot be embedded in the plane is a solenoidal 
continuum and, therefore, is not a continuous image of any plane continuum 
(12, Theorem 25). 

The following theorem was proved in another way by Fearnley (7). 

THEOREM 6. If H and K are weakly chainable continua with a point in common, 
then H + K is weakly chainable. 

Proof. Suppose that M\ and M2 are pseudo-arcs such that a is the only 
point of Mi • M2. 

Since H and K are weakly chainable, there exist continuous transformations 
/ and g such tha t / (Mi) = H and g(M2) = K. 

Let x be a point of H -K, and suppose that y and z are points of Mi and M2, 
respectively, such that f(y) — x and g (z) = x. 

Since Mt is homogeneous (1), for i = 1,2, there is a topological transforma
tion Ti such that Ti(Mi) = Miy i = 1,2, and T\(a) = y and T2(a) = z. So, 
fTi{a) = x, gT2(a) = x. 

Denote by h the transformation throwing Mi + M2 onto H + K defined by 

h(f\ = | / T i ( 0 « t belongs to Mlt 

\gT2(t) if t belongs to M2. 

Then h is a continuous transformation such that h(Mi + M2) = H + K. But 
Mi + M2 is chainable, so if M is a pseudo-arc, there is a continuous trans
formation F such that F(M) = Mi + M2. Thus hF(M) = H + K, and 
H + K is weakly chainable. 

THEOREM 7. If M is a decomposable circle-like continuum, then M is weakly 
chainable. 

Proof. There exist proper subcontinua H and K such that M = H + K. 
Since H and K are chainable continua and H-K exists, H + K is weakly 
chainable. 

THEOREM 8. If M is a circle-like continuum which cannot be embedded in the 
plane, then M is indecomposable. 
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