
Mathematical Structures in Computer Science (2022), 32, pp. 1015–1027
doi:10.1017/S0960129522000408

PAPER

Z property for the shuffling calculus
Koji Nakazawa1∗ , Ken-etsu Fujita2 and Yuta Imagawa3

1Nagoya University, Nagoya, Japan 2Gunma University, Maebashi, Japan and 3Mitsubishi UFJ Research and Consulting Co.,
Ltd., Tokyo, Japan
∗Corresponding author. Email: knak@i.nagoya-u.ac.jp

(Received 24 February 2021; revised 15 November 2022; accepted 29 November 2022; first published online 10 January 2023)

Abstract
This paper gives a new proof of confluence for Carraro and Guerrieri’s call-by-value lambda calculus λσ

v

with permutation rules. We adapt the compositional Z theorem to λσ

v .

Keywords: Confluence; Z theorem; call-by-value lambda calculus

1. Introduction
Confluence is one of the most important properties of rewriting systems. It means that the result
of computation does not depend on the order of the computation. In general, it is hard to prove
confluence for higher-order rewriting such as (extensions of) the lambda calculus. There is a long
history of how to give simple and elegant proofs for confluence of lambda calculi: Church and
Rosser’s proof with the notion of residuals of redexes, Tait and Martin-Löf ’s proofs with paral-
lel reduction, and Takahashi’s proof with complete developments. Hindley-Rosen’s method with
commutation of several kinds of reductions is widely applicable for the lambda calculi extended
by some reduction rules.

The Z theorem by Dehornoy and van Oostrom (2008), van Oostrom (2021) is one of such
elegant techniques, and it is widely applicable to confluence proofs in abstract settings. The Z the-
orem says that confluence of an abstract rewriting system follows from the existence of a mapping
f satisfying the following Z property: any one-step reduction a→ b implies b→∗ f (a)→∗ f (b),
where →∗ is the reflexive transitive closure of →. It becomes clear why they call it the Z property
when one draws the condition as the following diagram.

The mapping f that satisfies the Z property gives an abstract essence of developments without

relying on the syntax of terms. If we define a
f→ b by a→∗ b→∗ f (a), then the Z property is

equivalent to Takahashi’s angle property: a
f→ b implies b

f→ f (a). The Z theorem has been applied
to some variants of the lambda calculus in Dehornoy and van Oostrom (2008), Komori et al.
(2013), Accattoli and Kesner (2012), Nakazawa and Nagai (2014).

© The Author(s), 2023. Published by Cambridge University Press

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408
https://orcid.org/0000-0001-6347-4383
mailto:knak@i.nagoya-u.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000408&domain=pdf
https://doi.org/10.1017/S0960129522000408

1016 K. Nakazawa et al.

The Z property is not only a tool to prove confluence but it is also useful for quantitative analy-
ses of the Church-Rosser property as Fujita (2020) shows. The Z property is strictly stronger than
confluence; that is, there are confluent rewrite systems for which no mapping satisfies the Z prop-
erty. The following example is introduced by Dehornoy and van Oostrom (2008). Let A be the
set of integers and n→mmean either (m= n+ 1) or (n< 0 andm= −n), and then, the abstract
rewriting system (A,→) is confluent but there is no mapping that satisfies the Z property. Hence,
it is an interesting problem whether rewriting systems satisfy not only confluence but also the Z
property.

Nakazawa and Fujita (2016) have proposed a variant of the Z theorem, called the compositional
Z theorem. The compositional Z theorem enables us to apply the Z theorem by dividing rewriting
systems into two or more subsystems. Compositional Z gives a simple proof of confluence of
the lambda-mu calculus with permutation rules for direct sums. The original confluence proof
by Ando (2003) for that system is more complex, and one cannot naively apply the original Z
theorem because it is hard to directly define a mapping satisfying the Z property for both beta and
permutation reductions. Moreover, Honda et al. (2021) adapted the compositional Z theorem to
several variants of the lambda-mu calculus with simplification rules.

Carraro and Guerrieri (2014) introduced λσ
v , a call-by-value variant of the lambda calculus

with strong reduction (reductions under lambda abstractions are allowed) for open terms. If
we naively consider call-by-value computations for open terms, there exist terms that are nei-
ther a normal form nor a value such as xx, and then, the term (λy.λz.zz)(xx)(λz.zz) cannot be
reduced while it morally contains the redex (λz.zz)(λz.zz), which diverges. To avoid such unex-
pected stucks of computation, they adopted some permutation rules. In Accattoli and Guerrieri
(2016), this calculus is also called the shuffling calculus λshuf and further discussed as one of
the call-by-value variants of the lambda calculus for open terms. As with the permutation rules
for the direct sums, the permutation rules of λσ

v make the proof of confluence harder, and one
cannot straightforwardly adapt the ordinary proof techniques resting on parallel reduction or
complete developments. Carraro and Guerrieri proved confluence of λσ

v using Hindley-Rosen’s
method, in which they proved that βv reduction and the permutation rules commute and that the
permutation rules are strongly normalizing.

In this paper, we give another proof of confluence for the shuffling calculus λσ
v using the com-

positional Z theorem. This proof provides a case study of applications of the (compositional) Z
theorem to extensions of the lambda calculi with some additional reduction rules. Our proof does
not depend on any normalization property of the reduction relation, and it differs from the exist-
ing proof by Carraro and Guerrieri (2014), where the strong normalization of the permutation
reduction is used. As with Nakazawa and Fujita (2016), we cannot naively apply the original Z
theorem for λσ

v , and the problem can be avoided by the compositional Z. Although the outline of
our proof follows the proof of Nakazawa and Fujita (2016), themain difference is that themapping
we consider here may leave redexes of permutation reductions since the calculus has two kinds
of permutation rules σ1 and σ3 for the call-by-value evaluation context []M and V[], respectively,
for a termM and a value V . Hence, we cannot apply the simplified variant of the compositional Z
(Corollary 2.4 in Nakazawa and Fujita 2016).

This paper is the extended version of the conference proceeding, Nakazawa et al. (2017).

2. The Shuffling Calculus λσ
v

In this section, we recall the call-by-value lambda calculus λσ
v introduced by Carraro andGuerrieri

(2014).
We use the following notation throughout this paper: syntactic equality is denoted by =. For

a binary relation R, we use R+ and R∗ for the transitive closure of R and the reflexive transitive
closure of R, respectively.

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

Mathematical Structures in Computer Science 1017

Definition 1. Values and terms of λσ
v are given as follows.

V ::= x | λx.M (values)
M ::=V |MM (terms)

We define the size of M as the number of occurrences of the symbols in M. We define the free
variables of M as usual, and the set of the free variables of M is denoted by FV(M). A relation R on
the terms is compatible if M RM′ implies (λx.M) R (λx.M′), (MN) R (M′N), and (NM) R (NM′).

The reduction rules of λσ
v are given as follows.

(λx.M)V →βv M[x :=V]
(λx.M)NL→σ1 (λx.ML)N (x �∈ FV(L))

V((λx.M)N)→σ3 (λx.VM)N (x �∈ FV(V))

Here, V is a value, M, N, and L are terms, andM[x :=V] is the usual capture-avoiding substitution.
The relations →βv , →σ1 , and →σ3 are the compatible closure of the reduction relation defined by
the corresponding reduction rules, respectively. We define →σ as the union of →σ1 and →σ3 . We
define → as the union of →βv and →σ .

This calculus is introduced in Carraro and Guerrieri (2014) to study operational character-
ization of solvability in call-by-value lambda calculi in particular for open terms. In the original
call-by-value lambda calculus λv of Plotkin (1975), the termM = (λyx.xx)(zz)(λx.xx) is stuck since
zz is not a value, whereas semantically it is equivalent to (λx.xx)(λx.xx) and hence unsolvable. In
λσ
v , M is reduced to (λy.(λx.xx)(λx.xx))(zz) by the σ -rules, where the redex (λx.xx)(λx.xx) is no

longer blocked.

3. Compositional Z
We summarize the Z theorem of Dehornoy and van Oostrom (2008) and then extend it for
compositional functions, called the compositional Z of Nakazawa and Fujita (2016).

Definition 2 ((Weak) Z property). Let (A, →) be an abstract rewriting system and →x be another
relation on A.

1. A mapping f satisfies the weak Z property for → by →x if and only if a→ b implies
b→∗

x f (a)→∗
x f (b) for any a, b ∈A.

2. A mapping f satisfies the Z property for → if and only if it satisfies the weak Z property for
→ by → .

When f satisfies the (weak) Z property, we also say that f is (weakly) Z.

Theorem 3 (Z theorem by Dehornoy and van Oostrom 2008). If there exists a mapping satisfying
the Z property for an abstract rewriting system, then it is confluent.

We can often prove that usual complete developments have the Z property.

Theorem 4 (Compositional Z by Nakazawa and Fujita 2016). Let (A, →) be an abstract rewriting
system, and → be →1 ∪ →2 . If there exist mappings f1, f2 :A→A such that

(1) f1 is Z for →1
(2) a→1 b implies f2(a)→∗ f2(b)

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

1018 K. Nakazawa et al.

(3) a→∗ f2(a) holds for any a ∈ Im(f1)
(4) f2 ◦ f1 is weakly Z for →2 by → ,

then f2 ◦ f1 is Z for (A, →), and hence (A, →) is confluent.

One of the simplest applications of the compositional Z is for the βη-reduction on the untyped
lambda calculus (although it can be directly proved by the original Z theorem, as Komori et al.
(2013) showed). If we let →1 be →η, →2 be →β , f1 be the complete development of →η, and
f2 be the complete development of →β , then these satisfy the conditions of the compositional Z
theorem.

In Nakazawa and Fujita (2016), the compositional Z is applied to the lambda calculus with
permutation rules for direct sums. This calculus is a lambda calculus extended with two inclusion
operators ι1M, ι2M into direct sums and the case expression (case M with ι1x1 ⇒N1 | ι2x2 ⇒
N2). For simplicity, this case expression is denoted as M[x1.N1, x2.N2] in Nakazawa and Fujita
(2016). The additional reduction rules are

(ι1M)[x1.N1, x2.N2]→β N1[x1 :=M],
(ι2M)[x1.N1, x2.N2]→β N2[x2 :=M],
E[M[x1.N1, x2.N2]]→π M[x1.E[N1], x2.E[N2]],

where E denotes singular destructor contexts defined as E ::= []L | [][y1.K1, y2.K2] | · · · . The last
rule is called the permutation rule, and it makes confluence proofs much harder because of the
following critical pair: for the term P[x1.N1, x2.N2][y1.L1, y2.L2]K, we have

P[x1.N1, x2.N2][y1.L1, y2.L2]K →π P[x1.N1[y1.L1, y2.L2], x2.N2[y1.L1, y2.L2]]K(=M1)
and P[x1.N1, x2.N2][y1.L1, y2.L2]K →π P[x1.N1, x2.N2][y1.L1K, y2.L2K](=M2),

where the underlines indicate the redexes of the permutation reductions. Both M1 and M2
can be reduced to a common term M3 = P[x1.N1[y1.L1K, y2.L2K], x2.N2[y1.L1K, y2.L2K]], but in
M1 →∗ M3 we have to reduce a redex which is created during the reduction sequence and does
not occur in M1. Because of this, it is hard to apply straightforwardly either the ordinary parallel
reduction or the original Z theorem. In Nakazawa and Fujita (2016), the compositional Z theo-
rem is applied to this calculus by dividing the reduction relations into two parts, the β-reduction
and the permutations, and defining two mappings, one for the β-reduction and the other for the
permutations, satisfying the assumptions of the compositional Z theorem.

4. Confluence of λσ
v by the Compositional Z

In this section, we see that λσ
v contains similar critical pairs to those in the lambda calculus with

direct sums and that the compositional Z solves the problem.

4.1 Difficulties in confluence proof for λσ
v

Consider the term (λx.N)((λy.K)L)P. Then, we have both
(λx.N)((λy.K)L)P→σ1 = (λx.NP)((λy.K)L)(=M1)

and (λx.N)((λy.K)L)P →σ3 (λy.(λx.N)K)LP(=M2),

where the underlines indicate the redexes. The termsM1 andM2 are reduced to a common term
M3 = (λy.(λx.NP)K)L.M1 →M3 is one-step σ3 reduction, whereasM2 →∗ M3 consists of two σ1
steps:

M2 = (λy.(λx.N)K)LP→σ1 (λy.(λx.N)KP)L→σ1 (λy.(λx.NP)K)L,

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

Mathematical Structures in Computer Science 1019

where the redex of the second σ1-step is created at the first step and it does not occur inM2. This
means that we cannot naively extend the ordinary parallel reduction, by whichM2 is not reduced
to M3 in one step. To define a mapping satisfying the Z property, we have to reduce successive
σ -reductions at once. For example, the above example shows that M must be mapped to M3 or
some of its reducts.

In Nakazawa and Fujita (2016), they considered the auxiliary mappingM@N such as

(λy.(λx.N)K)L@P= (λy.(λx.N@P)K)L,

which yields the normal form for the permutation reduction. Here, there are two kinds of
permutation rules σ1 and σ3 and we consider the following two auxiliary mappings.

Definition 5. We define the mappings @1 and @3 as follows.

(λx.M)N@1P = (λx.M@1P)N V@3(λx.M)N = (λx.V@3M)N
M@1P =MP (otherwise) V@3M =VM (otherwise)

However, similarly to the case of the direct sums, the following naive mapping does not satisfy
the Z property.

x∗ = x
(λx.M)∗ = λx.M∗

((λx.M)V)∗ =M∗[x :=V∗]
(MN)∗ =M∗@1N∗ (M not a value)
(VN)∗ =V∗@3N∗ (otherwise)

For P = (λx.xy)(λz.z)v and Q= (λx.xyv)(λz.z), we have P →σ1 Q, but we also have
P∗ = (λz.z)y@1v= (λz.zv)y and Q∗ = (λz.z)yv, and hence, P∗ �→∗ Q∗. In Q∗, the substitution
(xyv)[x := λz.z] creates the σ1-redex (λz.z)yv, and it is not reduced.

4.2 Confluence proof of λσ
v by applying the compositional Z theorem

We solve this problem by the compositional Z theorem. To apply it, we divide the reductions of
λσ
v into σ and βv, and define the mappings (·)S and (·)B.

Definition 6. We define the mappings (·)S and (·)B as follows.
xS = x xB = x

(λx.M)S = λx.MS (λx.M)B = λx.MB

(MN)S =MS@1NS (M not a value) ((λx.M)V)B =MB[x :=VB]
(VN)S =VS@3NS (MN)B =MBNB (otherwise)

In the following, we show that these mappings satisfy the conditions of the compositional Z
theorem.

The outline of the proof almost follows the proof in Nakazawa and Fujita (2016). However, in
contrast to that proof, the mapping (·)S does not necessarily collapse all σ -steps; that is, there are
termsM and N such thatM →σ N andMS →+

σ NS. For example, we have

M = (λx.x)(yz)((λv.v)w)→σ1 (λx.x((λv.v)w))(yz)=N,

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

1020 K. Nakazawa et al.

and
MS = ((λx.x)(yz))S@1((λv.v)w)S = (λx.x((λv.v)w))(yz)
NS = (λx.x((λv.v)w))S@3(yz)S = (λx.x@3((λv.v)w))(yz)= (λx.(λv.xv)w)(yz),

The σ3-redex x((λv.v)w) in MS is created in the application of (·)S, and it is not reduced in MS.
Hence, we cannot apply the simplified variant of compositional Z (Corollary 2.4 in Nakazawa and
Fujita 2016) for these mappings.

From here, we prove the conditions of Theorem 4, where we consider →σ as →1, →βv as →2,
(·)S as f1, and (·)B as f2.

First, we prove auxiliary lemmas concerning the properties of the mappings @1, @3, and (·)S.

Lemma 7. For any value V and any terms M,N, we have the following.

(1) VM →∗
σ V@3M.

(2) MN →∗
σ M@1N.

Proof. They are proved by induction on the size ofM.

(1) IfM = (λx.L)K, we have
V((λx.L)K)→σ3 (λx.VL)K

→∗
σ (λx.V@3L)K (induction hypothesis)

=V@3(λx.L)K.
Otherwise, we have VM =V@3M.

(2) It is proved similarly.

Lemma 8. For any terms M and N, we have the following.

(1) MS@1NS →∗
σ (MN)S.

(2) MSNS →∗
σ (MN)S.

Proof. (1) IfM is not a value, we haveMS@1NS = (MN)S. IfM is a value, we haveMS@1NS =
MSNS →∗

σ MS@3NS = (MN)S by Lemma 7.
(2) By Lemma 7 and (1), we haveMSNS →∗

σ MS@1NS →∗
σ (MN)S.

Lemma 9. For any value V and any terms M,N,K, we have the following.

(1) ((λx.M)@3N)@1K = (λx.M@1K)@3N.
(2) V@3((λx.M)@3N)= (λx.V@3M)@3N.

Proof. They are proved by induction on the size of N.

(1) If N = (λy.P)Q, we have
((λx.M)@3((λy.P)Q))@1K = (λy.((λx.M)@3P)@1K)Q (def. of @1 and @3)

= (λy.(λx.M@1K)@3P)Q (induction hypothesis)
= (λx.M@1K)@3((λy.P)Q) (def. of @3).

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

Mathematical Structures in Computer Science 1021

Otherwise, by the definitions of @1 and @3, we have ((λx.M)@3N)@1K =
((λx.M)N)@1K = (λx.M@1K)N = (λx.M@1K)@3N.

(2) It is proved similarly.

We prove the following lemma. The second property means that the condition (3) of
Theorem 4 holds.

Lemma 10. For any term M, we have the following.

(1) M →∗
σ MS.

(2) M →∗
βv
MB.

Proof. They are proved by induction on the size ofM.

(1) In the case ofM =NK, we haveNK →∗
σ NSKS by the induction hypothesis, andNSKS →∗

σ

(NK)S by Lemma 8. In the case ofM = x, it is trivial. In the case ofM = λx.N, it is proved
by the induction hypothesis.

(2) In the case of M =NK, we consider the following cases. If N = λx.L and K is a value, we
have

(λx.L)V →βv L[x :=V]
→∗

βv L
B[x :=VB] (induction hypothesis)

= ((λx.L)V)B.

Otherwise, we have (NK)B =NBKB, andNK →∗
βv
NBKB holds by the induction hypothesis.

In the case of M = x, it is trivial. In the case of M = λx.N, it is proved by the induction
hypothesis.

The next goal is to prove that the condition (1) of Theorem 4 holds; that is, (·)S is Z for →σ

(Propositions 12 and 15).
The following lemma is used to prove the cofinality (Proposition 12): M →σ M′ implies

M′ →∗
σ MS.

Lemma 11. For any value V and any terms M,N,K, we have the following.

(1) If x �∈ FV(K), we have (λx.MK)N →∗
σ ((λx.M)@3N)@1K.

(2) If x �∈ FV(V), we have (λx.VM)N →∗
σ V@3((λx.M)@3N).

Proof. They are proved by induction on the size of N.

(1) If N = (λy.P)Q, we have

(λx.MK)((λy.P)Q)→σ3 (λy.(λx.MK)P)Q
→∗

σ (λy.((λx.M)@3P)@1K)Q (induction hypothesis)
= ((λy.(λx.M)@3P)Q)@1K (definition of @1)
= ((λx.M)@3(λy.P)Q)@1K (definition of @3).

Otherwise, we have

(λx.MK)N →∗
σ (λx.M@1K)N (Lemma 7 (2))

= ((λx.M)N)@1K (definition of @1)
= ((λx.M)@3N)@1K (definition of @3).

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

1022 K. Nakazawa et al.

(2) If N = (λy.P)Q, we have

(λx.VM)((λy.P)Q)→σ3 (λy.(λx.VM)P)Q
→∗

σ (λy.V@3((λx.M)@3P)Q (induction hypothesis)
=V@3(λy.((λx.M)@3P)Q (definition of @3)
=V@3((λx.M)@3(λy.P)Q) (definition of @3).

Otherwise, we have

(λx.VM)N →∗
σ (λx.V@3M)N (Lemma 7 (1))

=V@3((λx.M)N) (definition of @3)
=V@3((λx.M)@3N) (definition of @3).

Proposition 12. For any terms M and M′, if M →σ M′ holds, then M′ →∗
σ MS holds.

Proof. By induction on a derivation ofM →σ M′.
First, the base cases are proved as follows.
IfM = (λx.P)QK andM′ = (λx.PK)Q, we have

(λx.PK)Q→∗
σ (λx.PSKS)QS (Lemma 10)

→∗
σ ((λx.PS)@3QS)@1KS (Lemma 11)

= ((λx.P)QK)S (definition of S).

IfM =V((λx.P)Q) andM′ = (λx.VP)Q, it is proved similarly by Lemmas 10 and 11.
Next, we show the induction cases.
IfM = λx.N,M′ = λx.N′, andN →σ N′, then, by the induction hypothesis, we haveN′ →∗

σ NS.
Then, we have λx.N′ →∗

σ λx.NS = (λx.N)S.
If M = PQ, M′ = P′Q′, and either P →σ P′ and Q=Q′ or Q→σ Q′ and P = P′, then, by the

induction hypothesis and Lemma 10, we have P′ →∗
σ PS and Q′ →∗

σ QS. Then, we have P′Q′ →∗
σ

PSQS →∗
σ (PQ)S by Lemma 8.

Therefore, we prove some lemmas to prove the monotonicity (Proposition 15): M →σ M′
impliesMS →∗

σ M′S.

Lemma 13. For any values V ,W and any terms M,N, we have the following.

(1) (M@1N)[x :=V]→∗
σ M[x :=V]@1N[x :=V].

(2) (W@3M)[x :=V]→∗
σ W[x :=V]@3M[x :=V].

Proof. They are proved by induction on the size ofM.

(1) IfM = (λy.P)Q, we have

(((λy.P)Q)@1N)[x :=V]= ((λy.P@1N)Q)[x :=V] (definition of @1)
= (λy.(P@1N)[x :=V])Q[x :=V]
→∗

σ (λy.P[x :=V]@1N[x :=V])Q[x :=V] (induction hypothesis)
= ((λy.P[x :=V])Q[x :=V])@1N[x :=V] (definition of @1)
= ((λy.P)Q)[x :=V]@1N[x :=V].

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

Mathematical Structures in Computer Science 1023

Otherwise, we have (M@1N)[x :=V]=M[x :=V]N[x :=V]→∗
σ M[x :=V]@1N[x :=V]

by Lemma 7.
(2) It is proved similarly.

We prove that the mappings @1 and @3 preserve the reductions →σ and →βv in the following
sense. This is the main lemma for the monotonicity and is also used to prove that the conditions
(2) and (4) of Theorem 4 hold.

Lemma 14. For any values V ,V ′ and any terms M,M′,N,N′, we have the following.

(1) If M →σ M′, then M@1N →∗
σ M′@1N and V@3M →∗

σ V@3M′ hold.
(2) If M →βv M′, then M@1N →∗ M′@1N and V@3M →∗ V@3M′ hold.
(3) For ξ ∈ {βv, σ }, if N →ξ N′, then M@1N →ξ M@1N′ holds.
(4) For ξ ∈ {βv, σ }, if V →ξ V ′, then V@3M →ξ V ′@3M holds.

Proof. They are proved by induction on the size ofM.

(1) If M = (λx.P)Q, it is not a σ -redex, so M′ is (λx.P′)Q′ for some P′ and Q′ such that either
P →σ P′ and Q=Q′ or Q→σ Q′ and P = P′. Then, we have

((λx.P)Q)@1N = ((λx.P@1N)Q) (definition of @1)
→∗

σ ((λx.P′@1N)Q′) (inductive hypothesis)
= ((λx.P′)Q′)@1N (definition of @1).

Otherwise, we haveM@1N =MN →σ M′N →∗
σ M′@1N by Lemma 7.

The case @3 is proved similarly.
(2) IfM = (λx.P)V andM′ = P[x :=V], we have

((λx.P)V)@1N = ((λx.P@1N)V) (definition of @1)
→βv (P@1N)[x :=V]
→∗

σ P[x :=V]@1N (Lemma 13 and x �∈ FV(N)).
IfM = (λx.P)Q,M′ = (λx.P′)Q′, and either P →βv P′ and Q=Q′ or Q→βv Q′ and P = P′,
we have

((λx.P)Q)@1N = ((λx.P@1N)Q) (definition of @1)
→∗ ((λx.P′@1N)Q′) (induction hypothesis)
= ((λx.P′)Q′)@1N (definition of @1).

Otherwise, we haveM@1N =MN →βv M′N →∗
σ M′@1N by Lemma 7.

The case @3 is proved similarly.
(3) IfM = (λx.P)Q, we have

((λx.P)Q)@1N = (λx.P@1N)Q (definition of @1)
→ξ (λx.P@1N′)Q (inductive hypothesis)
= ((λx.P)Q)@1N′ (definition of @1).

Otherwise, we haveM@1N =MN →ξ MN′ =M@1N′.
(4) It is proved similarly.

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

1024 K. Nakazawa et al.

Proposition 15. For any terms M and M′, if M →σ M′ holds, then MS →∗
σ M′S holds.

Proof. By induction on a derivation ofM →σ M′.
First, the base cases are proved as follows.
IfM = (λx.P)QK andM′ = (λx.PK)Q, we have

((λx.P)QK)S = ((λx.PS)@3QS)@1KS

= (λx.PS@1KS)@3QS (Lemma 9 (1))
→∗

σ (λx.(PK)S)@3QS (Lemmas 8 (1) and 14 (4))
= ((λx.PK)Q)S.

IfM =V((λx.P)Q) andM′ = (λx.VP)Q, we have
(V((λx.P)Q))S =VS@3((λx.PS)@3QS)

= (λx.VS@3PS)@3QS (Lemma 9 (2))
= ((λx.VP)Q)S.

Next, the induction cases are proved as follows.
If M = λx.N, M′ = λx.N′, and N →σ N′, by the induction hypothesis, we have NS →∗

σ N′S.
Then, we have (λx.N)S = λx.NS →∗

σ λx.N′S = (λx.N′)S.
If M = PQ, M′ = P′Q′, and either P →σ P′, Q=Q′ or Q→σ Q′, P = P′, by the induction

hypothesis, we have PS →∗
σ P′S and QS →∗

σ Q′S. If P is not a value, we have

(PQ)S = PS@1QS

→∗
σ P′S@1Q′S (Lemma 14 (1) and (3))

→∗
σ (P′Q′)S (Lemma 8).

If P is a value, we have

(PQ)S = PS@3QS

→∗
σ P′S@3Q′S (Lemma 14 (1) and (4))

= (P′Q′)S (P′ is a value).

We prove the condition (2) of Theorem 4 (Proposition 18).

Lemma 16. For any value V and any term M, we have the following.

(1) MS[x :=VS]→∗
σ M[x :=V]S.

(2) MB[x :=VB]→∗
βv
M[x :=V]B.

Proof. (1) By induction on the size ofM. IfM = PQ and P is not a value, we have
(PQ)S[x :=VS]= (PS@1QS)[x :=VS]

→∗
σ PS[x :=VS]@1QS[x :=VS] (Lemma 13)

→∗
σ P[x :=V]S@1Q[x :=V]S (induction hypothesis and Lemma 14 (1), (3))

= (P[x :=V]Q[x :=V])S (Lemma 8 (1))
= (PQ)[x :=V]S.

If P is a value, it is proved similarly. The other cases are straightforward.

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

Mathematical Structures in Computer Science 1025

(2) By induction on the size ofM. IfM = (λy.P)W, we have

((λy.P)W)B[x :=VB]= PB[y :=WB][x :=VB] (definition of B)
= PB[x :=VB][y :=WB[x :=VB]]
→∗

βv P[x :=V]B[y :=W[x :=V]B] (induction hypothesis)

= ((λy.P[x :=V])W[x :=V])B (definition of B)
= ((λy.P)W)[x :=V]B.

IfM = xW and V = λy.P, we have

(xW)B[x := (λy.P)B]= (λy.PB)WB[x := λy.PB]
→βv PB[y :=WB[x := λy.PB]]
→∗

βv P
B[y :=W[x := λy.P]B] (induction hypothesis)

= ((λy.P)W[x := λy.P])B

= (xW)[x := λy.P]B.

The other cases are straightforward.

Lemma 17. For any terms M and N, we have MBNB →∗
βv
(MN)B.

Proof. If M is a value, we have MBNB = (xN)B[x :=MB]→∗
βv
(xN)[x :=M]B = (MN)B by

Lemma 16. IfM is not a value, we haveMBNB = (MN)B.

Proposition 18. For any terms M and M′, if M →σ M′ holds, then MB →∗ M′B holds.

Proof. By induction on a derivation ofM →σ M′.
First, the base cases are proved as follows.
IfM = (λx.P)VK andM′ = (λx.PK)V , we have

((λx.P)VK)B = PB[x :=VB]KB (definition of B)
= (PBKB)[x :=VB]
→∗

βv (PK)
B[x :=VB] (Lemma 17)

= ((λx.PK)V)B (definition of B).

IfM = (λx.P)QK,M′ = (λx.PK)Q, and Q is not a value, we have

((λx.P)QK)B = ((λx.PB)QBKB (definition of B)
→σ ((λx.PBKB)QB

→∗
βv (λx.(PK)

B)QB (Lemma 17)

= ((λx.PK)Q)B (definition of B).

The caseM =V((λx.P)Q) andM′ = (λx.VP)Q is proved similarly by Lemma 17.
Next, the induction cases are proved as follows.
If M = λx.N, M′ = λx.N′, and N →σ N′, by the induction hypothesis, we have NB →∗ N′B.

Then, we have (λx.N)B = λx.NB →∗ λx.N′B = (λx.N′)B.

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

1026 K. Nakazawa et al.

If M = (λx.P)V , M′ = (λx.P′)V ′, and either P →σ P′ and V =V ′ or V →σ V ′ and P = P′, we
have

((λx.P)V)B = PB[x :=VB] (definition of B)
→∗ P′B[x :=V ′B] (induction hypothesis)
= ((λx.P′)V ′)B (definition of B).

The other cases are straightforward.

The last subgoal is to prove the condition (4) of Theorem 4, that is, ((·)S)B is weakly Z for →βv
by → (Proposition 20).

Lemma 19. For any terms M and M′, we have the following.

(1) If M →βv M′ holds, then MS →∗ M′S holds.
(2) If M →βv M′ holds, then MB →∗ M′B holds.

Proof. (1) By induction on a derivation ofM →βv M′.
In the base case, we suppose M = (λx.P)V and M′ = P[x :=V]. We have ((λx.P)V)S =
(λx.PS)@3VS = (λx.PS)VS →βv PS[x :=VS]→∗

βv
P[x :=V]S by Lemma 16.

The induction cases are proved as follows.
If M = PQ, M′ = P′Q′, P is not a value, and either P →βv P′ and Q=Q′ or Q→βv Q′ and
P = P′, we have PS →∗ P′S and QS →∗ Q′S by the induction, and then

(PQ)S = PS@1QS

→∗ P′S@1Q′S (Lemma 14)
→∗

σ (P′Q′)S (Lemma 8).
If P is a value, it is proved similarly.
The case λx.P →βv λx.P′ is straightforward by the induction hypothesis.

(2) It is straightforwardly proved by induction on a derivation of M →βv M′, using
Lemma 16.

Proposition 20. The mapping ((−)S)B is weakly Z for →βv by →.

Proof. In this proof, we writeMSB for (MS)B.
First, we prove thatM →βv M′ impliesM′ →∗ MSB by induction on a derivation ofM →βv M′.
In the base case, we suppose M = (λx.P)V and M′ = P[x :=V]. We have MSB =

((λx.PS)@3VS)B = ((λx.PS)VS)B = PSB[x :=VSB], and P[x :=V]→∗ PSB[x :=VSB] holds by
Lemma 10.

The induction cases are proved as follows.
If M = PQ, M = P′Q′, and either P →βv P′ and Q=Q′ or Q→βv Q′ and P = P′, we have

P′ →∗ PSB andQ′ →∗ QSB by the induction hypothesis and Lemma 10, and then we have P′Q′ →∗
PSBQSB →∗ (PQ)SB by Lemmas 8 and 17.

The case λx.P →βv λx.P′ is straightforward by the induction hypothesis.
Secondly, we prove thatM →βv M′ impliesMSB →∗ M′SB. IfM →βv M′ holds, we haveMS →∗

M′S by Lemma 19 (1), and then, we haveMSB →∗ M′SB by Proposition 18 and Lemma 19 (2).

We have proved the conditions of Theorem 4, and hence, we give a confluence proof of λσ
v .

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408

Mathematical Structures in Computer Science 1027

Theorem 21. The mapping ((−)S)B is Z for → of λσ
v , and hence λσ

v is confluent.

Proof. It is sufficient to prove the conditions of Theorem 4. (1) is proved by Propositions 12
and 15. (2) is proved by Proposition 18. (3) is proved by Lemma 10. (4) is proved by
Proposition 20.

5. Conclusion
This paper gives a new proof of confluence using the compositional Z theorem for λσ

v , a variant of
the call-by-value lambda calculus, which contains permutation reductions. This is a new example
of an application of the compositional Z theorem. Comparedwith the existing proof withHindley-
Rosen’s method in Carraro and Guerrieri (2014), our proof does not depend on any normalization
property of reduction relations.

Acknowledgements. This work was partially supported by Grants-in-Aid for Scientific Research KAKENHI 18K11161 (to
Koji Nakazawa) and 17K05343 and 20K03711 (to Ken-etsu Fujita).

References
Accattoli, B. and Guerrieri, G. (2016). Open call-by-value. In: Asian Symposium on Programming Languages and Systems

(APLAS 2016), Lecture Notes in Computer Science, vol. 10017, 206–226.
Accattoli, B. and Kesner, D. (2012). The permutative λ-calculus. In: Proceedings of the International Conference on Logic

Programming and Automated Reasoning (LPAR 2012), Lecture Notes in Computer Science, vol. 7180, 15–22.
Ando, Y. (2003). Church-Rosser property of a simple reduction for full first-order classical natural deduction. Annals of Pure

and Applied Logic 119 225–237.
Carraro, A. and Guerrieri, G. (2014). A semantical and operational account of call-by-value solvability. In: Foundations of

Software Science and Computation Structures (FoSSaCS 2014), Lecture Notes in Computer Science, vol. 8412, Springer,
103–118.

Dehornoy, P. and vanOostrom, V. (2008). Z, proving confluence bymonotonic single-step upperbound functions. In: Logical
Models of Reasoning and Computation (LMRC-08).

Fujita, K. (2020). A formal system of reduction paths for parallel reduction. Theoretical Computer Science 813 327–340.
Honda, Y., Nakazawa, K. and Fujita, K. (2021). Confluence proofs of lambda-mu-calculi by Z theorem. Studia Logica 109

917–936.
Komori, Y., Matsuda, N. and Yamakawa, F. (2013). A simplified proof of the church-rosser theorem. Studia Logica 102 (1)

175–183.
Nakazawa, K. and Fujita, K. (2016). Compositional Z: Confluence proofs for permutative conversion. Studia Logica 104

1205–1224.
Nakazawa, K., Fujita, K. and Imagawa, Y. (2017). Z for call-by-value. In: Proceedings of the 6th International Workshop on

Confluence, 57–61.
Nakazawa, K. and Nagai, T. (2014). Reduction system for extensional lambda-mu calculus. In: 25th International Conference

on Rewriting Techniques and Applications joint with the 12th International Conference on Typed Lambda Calculi and
Applications (RTA-TLCA 2014), Lecture Notes in Computer Science, vol. 8560, 349–363.

Plotkin, G. (1975). Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1 125–159.
van Oostrom, V. (2021). Z; syntax-free developments. In: 6th International Conference on Formal Structures for Computation

and Deduction (FSCD 2021), Leibniz International Proceedings in Informatics, vol. 195, 24:1–24:22.

Cite this article:Nakazawa K, Fujita K-e and Imagawa Y (2022). Z property for the shuffling calculus.Mathematical Structures
in Computer Science 32, 1015–1027. https://doi.org/10.1017/S0960129522000408

https://doi.org/10.1017/S0960129522000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000408
https://doi.org/10.1017/S0960129522000408

	Z property for the shuffling calculus
	Introduction
	The Shuffling Calculus v
	Compositional Z
	Confluence of v by the Compositional Z
	Difficulties in confluence proof for v
	Confluence proof of v by applying the compositional Z theorem

	Conclusion

