Five new species and one new record of Astrothelium (Trypetheliaceae, Ascomycota) from Thailand

Theerapat LUANGSUPHABOOL, H. Thorsten LUMBSCH, André APTROOT, Jittra PIAPUKIEW and Ek SANGVICHIEN

Abstract: Five new species and one new record of *Astrothelium (Trypetheliaceae)* are reported from Thailand. Phylogenetic analysis of four DNA loci (ITS, nuLSU, mtSSU rDNA and *RPB1*) demonstrated the placement of the new species within *Astrothelium*, as well as their distinction from similar or related taxa. The new species are: *A. flavocoronatum*, with a yellow pigment surrounding the ostiole, and 3-septate ascospores $22-28 \times 8.0-9.5 \,\mu\text{m}$; *A. macrostiolatum*, with large whitish ostiolar area, a hamathecium inspersed with small oil droplets, and 9–11-septate ascospores $80-100 \times 17-19 \,\mu\text{m}$; *A. neglectum*, with lichexanthone on the thallus and pseudostromata, a non-inspersed hamathecium and 3–5-septate ascospores $21-25 \times 7.5-9.5 \,\mu\text{m}$; *A. neovariolosum*, with inspersed hamathecium and 3–septate ascospores $17-23 \times 6-7 \,\mu\text{m}$; and *A. siamense*, with inspersed hamathecium and 4–7-septate ascospores $30-50 \times 10.5-12.0 \,\mu\text{m}$. *Astrothelium aenascens* is reported from Thailand for the first time.

Key words: lichen-forming fungi, phylogeny, taxonomy, tropical lichens, Trypetheliales

Accepted for publication 6 June 2016

Introduction

The genus *Astrothelium* Eschw. includes pyrenocarpous lichen-forming fungi within *Trypetheliaceae* (Harris 1984, 1995). Originally restricted to species with lateral, fused ostioles and transversely septate ascospores, in its revised delineation it comprises the majority of species in the *Trypetheliaceae* (Aptroot & Lücking 2016), with variable ascoma arrangement and ascospore septation. In both its traditional and its current circumscription, the genus has a pantropical distribution (Harris 1984; Makhija & Patwardhan 1989; Awasthi 1991; Aptroot *et al.* 2008; Kirk *et al.* 2008; Aptroot 2009; Hyde *et al.* 2013).

Studies on species diversity in taxa with astrothelioid ascomata and ascospores in Astrothelium (i.e. Astrothelium in its previous sense) have focused mostly on neotropical regions (Malme 1924; Harris 1984; 1995; Aptroot et al. 2008; Lücking et al. 2011; Lima et al. 2013; Córdova-Chávez et al. 2014). In contrast, the diversity of this group in the Indomalayan area is far less known, with the exception of the Indian subcontinent (Makhija & Patwardhan 1988, 1989; Awasthi 2000; Singh & Sinha 2010; Weerakoon & Aptroot 2014). Some of the species within this group found in the Indian subcontinent are believed to be endemic to the area (Makhija & Patwardhan 1989; Weerakoon & Aptroot 2014). The diversity of Astrothelium species with astrothelioid ascomata and ascospores in Thailand is poorly known, with only four species recorded: A. cinnamomeum (Eschw.) Müll. Arg., A. eustomum (Mont.) Müll. Arg., A. galbineum Kremp., and

T. Luangsuphabool: Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand.

H. T. Lumbsch: Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA.

A. Aptroot: ABL Herbarium, Gerrit van der Veenstraat 107, NL-3762 XK Soest, The Netherlands.

J. Piapukiew: Department of Botany, Faculty of Science, Chulalongkorn University, Pathumwan, Bang-kok, 10330 Thailand.

E. Sangvichien (corresponding author): Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand. Email: eks@ru.ac.th

A. variolosum (Ach.) Müll. Arg. (Vongshewarat 2000; Aptroot *et al.* 2007). These taxa are either widely distributed in South-East Asia or are pantropical (Aptroot *et al.* 2008).

The aim of this study was to investigate the diversity of astrothelioid species of *Astrothelium* in Thailand, including taxonomy, chemistry and molecular data. We found the diversity to be higher than previously understood, with five species described here new to science and one new record for Thailand.

Material and Methods

Specimen collection, identification and mycobiont isolation

Specimens were collected from tropical rainforest and submontane evergreen forests in several locations in Thailand (Table 1). Cross-sections were mounted in tap water and investigated using an Olympus SZ11 stereomicroscope and Olympus BX41 compound microscope with differential interference contrast (DIC) (Olympus U-DICT), connected to a Canon EOS650 digital camera. Secondary metabolites were examined by colour spot test (10% KOH, saturated solution NaClO and *p*phenylenediamine dissolved in ethanol), reaction under long-wave UV light (360 nm), and thin-layer chromatography (TLC) using solvent A (Culberson 1972; Lumbsch 2002).

The lichen mycobionts were isolated from fresh material by the ascospore discharge technique (Sangvichien *et al.* 2011). Ascospore germination and cultivation of the mycobiont was carried out on Malt-Yeast Extract medium incubated at room temperature (32–35 °C). Fifteen mycobionts developed colonies after 4–6 weeks that were used in this study. Lichen specimens and mycobiont cultures were deposited at the Lichen Herbarium of Ramkhamhaeng University (RAMK), Bangkok.

DNA extraction and PCR amplification

Fragments of mycobiont cultures were used for genomic DNA extraction using the CTAB method as modified by Cubero & Crespo (2002). DNA amplification was performed for four nucleotide markers: 1) internal transcribed spacer (ITS), 2) nuclear large subunit ribosomal DNA (nuLSU), 3) mitochondrial small subunit ribosomal DNA (mtSSU), and 4) the largest subunit of RNA polymerase II (*RPB1*) using the following primers: 1) ITS1F (Gardes & Bruns 1993) with ITS4 (White *et al.* 1990), 2) LR0R with LR3 (Vilgalys & Hester 1990), 3) mrSSU1 (Zoller *et al.* 1999) with MSU7 (Zhou & Stanosz 2001), and 4) RPB1-Af with RPB1-Cr (Matheny *et al.* 2002).

The 50 µl PCR reaction consisted of 5 µl 10× Pfu Buffer with MgSO₄, 2 mM of dNTP mix, 20 µM of each primer, 1.25 U of Pfu DNA Polymerase (Thermo Fisher Scientific Inc.) and 5 µl of 1/10 dilution of DNA solution. PCR conditions were as follows: initial denaturation for 1 min at 94 °C and 38 cycles of 94 °C for 1 min, 51 °C for 1 min (ITS1F/ITS4), 52 °C for 45 s (LR0R/LR3), 53 °C for 45 s (mrSSU1/MSU7) and 52 °C for 1.30 min (RPB1-Af/RPB1-Cr), followed by an extension at 72 °C for 1 min, and a final extension at 72 °C for 5 min. The samples were detected under UV light using agarose gel electrophoresis containing DNA Stain G (SERVA). The Gel/PCR DNA Fragments Extraction Kit (Genaid, Taiwan) was used to clean up the PCR products, according to the manufacturer's instructions, and DNA was sequenced at 1st BASE Laboratories (Malaysia).

Sequence alignments and phylogenetic analyses

DNA sequences were aligned using MUSCLE (Edgar 2004) and manually adjusted using MEGA v.6 software (Tamura et al. 2013). Two samples of Bathelium madreporiforme were selected as outgroup. Single locus analyses (data not shown) did not show conflict, hence a concatenated dataset from our loci was used (Table 1). The nucleotide substitution model was determined using jModelTest v.2.1.4 (Darriba et al. 2012) with the Akaike Information Criterion (AIC). The GTR+I+G model was chosen for phylogenetic tree reconstruction through maximum likelihood (ML) and Bayesian inference (BI). Maximum likelihood analyses were carried out using RAxML-HPC2 v.8.2.4 (Stamatakis et al. 2008) on the Cipres Web Portal (https://www.phylo.org) and bootstrap values were calculated with 1000 pseudoreplicates. Bayesian analysis was performed using MrBayes v.3.2.1 (Ronquist & Huelsenbeck 2003) for 10 million generations with two independent runs of four chains. Tree samples were saved every 100th trees and the mean standard deviation of split frequencies <0.01. Additionally, maximum parsimony (MP) trees were estimated using PAUP* v.4.0b10 (Swofford 1999) with a heuristic search algorithm and bootstrap values were calculated using 1000 replicates. Phylogenetic trees were visualized using FigTree v.1.4.2 (http:// tree.bio.ed.ac.uk/software/figtree/).

Results and Discussion

Seventy-two new DNA sequences from our loci (ITS, nuLSU, mtSSU, *RPB1*) were generated for this study (Table 1). The concatenated 3138 nucleotide dataset had positions. Molecular data supported the presence of 17 lineages of Astrothelium (Fig. 1), including five new species (A. flavocoronatum, A. macrostiolatum, A. neglectum, A. neovariolosum and A. siamense) and a new record from Thailand (see Taxonomic Treatment).

Taxon	Voucher information	GenBank Accession numbers			
		ITS	nuLSU	mtSSU	RPB1
Astrothelium aenascens HRK93	Thailand, Phitsanulok, 027887 (RAMK)	LC127385	LC127403	LC128018	LC128036
A. aenascens HRK98	Thailand, Phitsanulok, 027888 (RAMK)	LC127386	LC127404	LC128019	LC128037
A. cinnamomeum DUKE	Costa Rica, Lücking 15322b (F)	DQ782839	AY584652	AY584632	DQ782824
A. crassum MPN98	Peru, Nelsen 4004a (F)	_	GU327710	GU327685	_
A. crassum MPN335	Brazil, Cáceres 6011 (F)	-	KM453761	KM453827	-
A. flavocoronatum KY859	Thailand, Nakhon Nayok, 027890 (RAMK)	LC127381	LC127398	LC128014	LC128030
A. flavocoronatum TSL63	Thailand, Phetchabun, 027889 (RAMK)	AB758900	LC127397	AB759874	LC128031
A. laevigatum MPN43	Peru, Nelsen s. n. (F)	_	KM453768	KM453833	_
A. leucoconicum MPN42	Peru, Nelsen 4000c (F)	_	KM453764	KM453830	_
A. leucosessile MPN258	Panama, Lücking 27059 (F)	_	KM453762	KM453828	_
A. macrocarpum MPN260	Panama, Lücking 27077 (F)	_	KM453763	KM453829	_
A. macrocarpum NSR6	Thailand, Nakhon Si Thammarat, 027891 (RAMK)	AB759880	LC127402	AB759879	LC128033
A. macrocarpum UBN37	Thailand, Ubon Ratchathani, 027892 (RAMK)	LC127384	LC127400	LC128015	LC128032
A. macrocarpum UBN43	Thailand, Ubon Ratchathani, 027894 (RAMK)	LC127383	LC127399	LC128016	LC128034
A. macrocarpum UBN113	Thailand, Ubon Ratchathani, 027893 (RAMK)	LC127382	LC127401	LC128017	LC128035
A. macrostiolatum PHL84*	Thailand, Loei, 027895 (RAMK)	LC127389	LC127407	LC128022	LC128040
A. neglectum TAK8	Thailand, Tak, 027898 (RAMK)	LC127392	LC127410	LC128025	LC128043
A. neglectum TAK12	Thailand, Tak, 027896 (RAMK)	LC127393	LC127411	LC128026	LC128044
A. neglectum TAK17	Thailand, Tak, 027897 (RAMK)	LC127394	LC127412	LC128027	LC128045
A. neovariolosum KY777	Thailand, Nakhon Nayok, 027899 (RAMK)	LC127390	LC127408	LC128023	LC128041
A. neovariolosum KY848	Thailand, Nakhon Nayok, 027900 (RAMK)	LC127391	LC127409	LC128024	LC128042
A. obtectumMPN422	Brazil, Lücking 31242 (F)	_	KM453767	KM453832	_
A. robustum MPN754	Costa Rica, Mercado-Díaz 586(F)	-	KM453760	KM453826	_
A. scorioides MPN770	Fiji, Lumbsch 20556h (F)	-	KM453766	KM453831	_
A. siamense KRB105	Thailand, Krabi, 027901 (RAMK)	LC127387	LC127405	LC128020	LC128038
A. siamense KRB139	Thailand, Krabi, 027902 (RAMK)	LC127388	LC127406	LC128021	LC128039
A. versicolor MPN259	Panama, Lücking 27045 (F)	-	KM453769	KM453834	-
A. versicolor MPN703	Brazil, Cáceres & Aptroot 11137 (F)	-	KM453765	-	-
Bathelium madreporiforme NAN95	Thailand, Nan, 027903 (RAMK)	LC127396	LC127414	LC128029	LC128047
B. madreporiforme UBN147	Thailand, Ubon Ratchathani, 027904 (RAMK)	LC127395	LC127413	LC128028	LC128046

 TABLE 1. Species and specimens used in this study, with vouchers, location, herbarium (RAMK) and GenBank Accession numbers. Newly generated sequences are in bold. * = sequences from lichen thalli.

FIG. 1. Phylogenetic relationships of selected astrothelioid species in the genus Astrothelium based on maximum likelihood, maximum parsimony and Bayesian inference analyses using four loci (ITS, nuLSU, mtSSU, *RPB1*). The most likely tree obtained using RAxML is shown here. ML and MP bootstrap values \geq 70% and posterior probabilities \geq 0.95 are given at branches in this sequence.

The А. new species macrostiolatum, A. neovariolosum and A. siamense are closely related and also share certain phenotypic characters, such as a green thallus, white pseudostromata lacking anthraquinones and hamathecium inspersed with oil droplets. However, they differ in ascospore characters (see below). These three new species form a paraphyletic grade basal to A. aenascens Aptroot (Fig. 1), which agrees in the inspersed hamathecium but differs in producing anthraquinones on ascomata. Astrothelium flavocoronatum also differs from the other new species in containing anthraquinones on the ascomata. This new species is similar to A. aenascens Aptroot and A. macrocarpum (Fée) Aptroot & Lücking (syn.: A. galbineum Kremp.) (Aptroot & Lücking 2016) in having anthraquinones and 3-septate ascospores of a similar size. However, our molecular data supported the distinction of A. flavocoronatum from A. aenascens and A. macrocarpum. The molecular data also support that Astrothelium neglectum, a fifth new species, is distinct from A. neovariolosum and A. siamense, two species that are similar to the new taxon in having a green thallus, white pseudostromata and containing lichexanthone. However, ascospore characters differ between these taxa and the hamathecium lacks oil droplets in the latter two species.

Astrothelium macrocarpum (Fée) Aptroot & Lücking (syn.: A. galbineum Kremp.) has been reported as the most common Astrothelium species in Thailand (Vongshewarat 2000). Specimens morphologically consistent with that species were also found in this study. However, although specimens from the Neotropics and Thailand form a monophyletic clade, the molecular data suggest that the Thai material is somewhat distinct from the neotropical material (Fig. 1). The circumscription of A. macrocarpum (as A. galbineum) has been discussed previously. Harris (1984) reduced A. ochrothelizum Müll. Arg. to synonymy with A. galbineum, while these two species were separated by Makhija & Patwardhan (1989) based on ascoma characters. In fact, in A. macrocarpum the ascomata are totally embedded in the pseudostromata as in the Thai material (Vongshewarat 2000; Aptroot et al. 2008; Aptroot 2009).

Taxonomic Treatment

Astrothelium flavocoronatum Luangsuphabool, Aptroot & Sangvichien. sp. nov.

MycoBank No.: MB 816951

Similar to Astrothelium diplocarpum in having anthraquinone pigments around the ostiole neck, but differing in having smaller ascospores; thallus yellow to green, perithecial wall carbonized, ostiole with yellow anthraquinone, ascospores 3-septate, $22-28 \times 8.0-9.5 \,\mu\text{m}$.

Type: Thailand, Nakhon Nayok Province, Khao Yai National Park, montane evergreen forest, on tree bark, 14°26'N, 101°22'E, alt. 760 m, 2015, *Luangsuphabool* KY859 (RAMK-027890—holotype).

(Fig. 2A-C)

Thallus crustose, corticate, yellow to green, smooth, continuous, prothallus black; cortex distinct, $40-70 \,\mu\text{m}$ thick; algal layer continuous, $35-75 \,\mu\text{m}$ thick; medulla $120-175 \,\mu\text{m}$ thick. *Algae* trentepohlioid.

Ascomata perithecia, pyriform, black, 0.40–0.85 mm diam., semi-immersed to emergent, solitary, usually consisting of two cavities that are joined with a common ostiole. Wall carbonized, $\leq c$. 50 µm thick. Ostiole apical, black, surrounded by yellow layer. Pseudostromata raised above the thallus, covered with thallus cortex or naked and carbonized. Hamathecium hyaline, not inspersed; paraphyses anastomosing, $0.85-1.00 \,\mu\text{m}$ thick. Asci clavate, $105-110 \times$ 18.5–19.0 µm. Ascospores 8 per ascus, hyaline, transversely 3-septate, narrowly ellipsoid, $22-28 \times 8.0-9.5 \,\mu m$, lumina diamondshaped to rounded.

Pycnidia not observed.

Chemistry. Thallus UV-, K+ yellow, C-, KC-, P-. Ascomata: around ostiole UV+ orange, K+ red, C+ red, P-. TLC: parietin, emodin.

Etymology. The specific epithet refers to the yellow tissue which surrounds the ostiole of the new species.

Notes. This new species is similar to the neotropical Astrothelium diplocarpum Nyl. in

FIG. 2. A–C, Astrothelium flavocoronatum (holotype): A & B, thallus with ascomata; C, ascospores. D–F, Astrothelium macrostiolatum (holotype): D, thallus with ascomata; E, ascus and hamathecium inspersed; F, ascospores. Scales: A, B & D = 1 mm; C, E & F = 10 μ m. In colour online.

having anthraquinone pigments around the ostiole neck, but differs in having smaller ascospores (9-septate, $90-110 \times 22-28 \,\mu\text{m}$ in *A. diplocarpum*) (Harris 1995; Aptroot *et al.* 2008). Also, *A. macrocarpum* (Fée) Aptroot & Lücking (syn.: *A. galbineum* Kremp.) and *A. aenascens* Aptroot are similar in having ascomata with anthraquinones and in the ascospore characters, but the new species differs in having ascomata with one to several ostioles in *A. macrocarpum*) and a non-inspersed hamathecium (inspersed in *A. aenascens*). Molecular evidence supports this distinction.

Additional specimen examined. **Thailand:** Phetchabun: Thung Salaeng Luang National Park, montane evergreen forest, on tree bark, 16°35'N, 100°52'E, alt. 740 m, 2008, *Luangsuphabool* TSL63 (RAMK-027889).

Astrothelium macrostiolatum Luangsuphabool, Aptroot & Sangvichien. sp. nov.

MycoBank No.: MB 816952

Similar to Astrothelium eustomum in thallus and pseudostroma characters, but differing in having 9-11 septate, $80-100 \times 17-19 \,\mu\text{m}$ ascospores, an inspersed hamathecium and lacking secondary metabolites; thallus

olive-green, pseudostroma with whitish ostiolar area, hamathecium inspersed with small oil droplets.

Type: Thailand, Loei Province, Phu Ruea District, Phu Luang Wildlife Sanctuary, montane evergreen forest, on tree bark, 17°16'N, 101°30'E, alt. 1460 m, 2014, *Luangsuphabool* PHL84 (RAMK-027895—holotype).

(Fig. 2D-F)

Thallus crustose, corticate, olive-green, smooth or somewhat warted, shiny, prothallus black; cortex distinct, $15-40 \,\mu\text{m}$ thick; algal layer continuous, $20-60 \,\mu\text{m}$ thick, medulla $25-90 \,\mu\text{m}$ thick. *Alga* trentepohlioid.

Ascomata perithecia, pyriform, black, 0.9-1.1 mm diam., common ostiole with two cavities, solitary or immersed in pseudostroma. Wall carbonized, $\leq c$. 100 µm thick. Ostiole apical, black. Pseudostromata white, mostly covered by thallus but leaving a large whitish ostiolar area free. Hamathecium hyaline, inspersed with small oil droplets usually less than 2 µm diam.; paraphyses anastomosing, $0.8-1.0 \,\mu\text{m}$ thick. Asci clavate, $240-300 \times 37-55 \,\mu\text{m}$. Ascospores 8 per ascus, hyaline, transversely 9–11 septate, fusiform, $80-100 \times 17-19 \,\mu m$ lumina diamondshaped to rounded.

Pycnidia not observed

Chemistry. Thallus UV–, K+ yellow, C–, KC–, P–. Pseudostromata UV–, K–, C–, P–. TLC: no substances detected.

Etymology. The specific epithet refers to the large whitish ostiolar area.

Notes. This new species is similar to Astrothelium eustomum (Mont.) Müll. Arg. in thallus and pseudostromatal characters, and also to A. diplocarpoides Müll. Arg. and A. diplocarpum Nyl. in having rather large ascospores. However, it differs from those taxa in having more numerous septa, an inspersed hamathecium and a lack of secondary metabolites; 3-5-septate ascospores, a non-inspersed hamathecium, and lichexanthone are found in A. eustomum, 5-7-septate ascospores and lichexanthone are characteristic of A. diplocarpoides, and 9-septate ascospores, non-inspersed a hamathecium and anthraquinones are found in *A. diplocarpum* (Harris 1984; Aptroot *et al.* 2008; Lücking *et al.* 2011; Aptroot & Lücking 2016).

Astrothelium neglectum Luangsuphabool, Aptroot & Sangvichien. sp. nov.

MycoBank No.: MB 816953

Similar to Astrothelium eustomum in thallus, pseudostroma and ascospore characters, but differing by containing lichexanthone in the thallus; thallus yellow to green, pseudostromata white, hamathecium not inspersed, ascospores 3-5 septate, $21-25 \times 7 \cdot 5-9 \cdot 5 \mu m$.

Type: Thailand, Tak Province, Umphang District, Palatha Village, on tree bark, 15°49'N, 98°50'E, alt. 500 m, 2010, *Luangsuphabool* TAK17 (RAMK-027897—holotype).

(Fig. 3A-D)

Thallus crustose, corticate, yellow to green, smooth, shiny, prothallus black; cortex distinct, $65-120 \,\mu\text{m}$ thick; algal layer continuous, $15-55 \,\mu\text{m}$ thick, medulla 60– $165 \,\mu\text{m}$ thick. *Alga* trentepohlioid.

Ascomata perithecia, pyriform, black, 0.65– 1.15 mm diam., 2–5 cavities with common ostiole immersed in pseudostroma. Wall carbonized, $\leq c$. 70 µm thick. Ostiole apical, black. Pseudostromata white, rounded to irregular, flattened top and raised above the thallus. Hamathecium hyaline, not inspersed; paraphyses anastomosing, 1.3–2.0 µm thick. Asci clavate, 110–140 × 15–20 µm. Ascospores 8 per ascus, hyaline, transversely 3–5 septate, fusiform, 21–25 × 7.5–9.5 µm, lumina diamond-shaped to rounded.

Pycnidia not observed.

Chemistry. Thallus UV+ yellow (lichexanthone), K+ yellow, C-, KC-, P-. Pseudostromata UV+ yellow (lichexanthone), K-, C-, P-. TLC: lichexanthone.

Etymology. The specific epithet refers to this species having been previously overlooked.

Notes. The new species is similar to Astrothelium eustomum (Mont.) Müll. Arg. in

FIG. 3. Astrothelium neglectum (holotype). A, thallus with ascomata; B, ascomata; C, ascus with ascospores; D, mature ascospores. Scales: A & B = 1 mm; C & D = 10 μ m. In colour online.

thallus, pseudostromatal and ascospore characters, but differs by containing lichexanthone in the thallus, whereas this substance is present only on the ostioles in A. eustomum (Harris 1984; Aptroot et al. 2008; Aptroot 2009). Also, A. neovariolosum and A. siamense are similar in having a corticated thallus, white pseudostromata, KOH- and lichexanthone, but the new species differs in ascospore characters and the non-inspersed hamathecium (3-septate ascospores, $17-23 \times 6-7 \,\mu\text{m}$, and hamathecium inspersed in A. neovariolosum; 4–7-septate, $30-50 \times 10.5-12.0 \,\mu\text{m}$ and hamathecium inspersed in A. siamense).

Additional specimens examined. **Thailand:** Tak: Umphang District, on tree bark, 15°49'N, 98°50'E, alt. 500 m, 2010, Luangsuphabool TAK8 (RAMK-027898), TAK12 (RAMK-027896).

Astrothelium neovariolosum Luangsuphabool, Aptroot & Sangvichien. sp. nov.

MycoBank No.: MB 816954

Similar to Astrothelium variolosum in pseudostroma and ascospore characters, but differing by an inspersed hamathecium; thallus greenish, pseudostromata grey to yellowish, ascospores 3-septate, $17-23 \times 6-7 \mu m$.

Type: Thailand, Nakhon Nayok Province, Khao Yai National Park, montane evergreen forest, on tree bark, 14°25'N, 101°22'E, alt. 750 m, 2013, *Luangsuphabool* KY777 (RAMK-027899—holotype).

(Fig. 4A-C)

Thallus crustose, corticate, greenish, smooth or somewhat warted, shiny, prothallus black; cortex distinct, 16–28 µm thick; algal layer continuous, 18–35 µm thick; medulla 40–85 µm thick. *Alga* trentepohlioid.

Ascomata perithecia, pyriform, black, 0.5-0.8 mm diam., fused ostiole with two cavities, single to 2-8 aggregate groups immersed Wall in pseudostroma. carbonized, $\leq c. 50 \,\mu\text{m}$ thick. Ostiole apical, black. Pseudostromata grey to yellowish, raised above the thallus, round to irregular. Hamathecium hyaline, inspersed with oil droplets; paraphyses anastomosing, 0.9-1.0 µm thick. $115-125 \times 12.0-13.5 \,\mu m$. Asci clavate. Ascospores 8 per ascus, hyaline, transversely 2016

FIG. 4. A–C, Astrothelium neovariolosum (holotype); A, thallus with ascomata; B, ascus with ascospores; C, ascospores. D–F, Astrothelium siamense (holotype); D, thallus with ascomata; E, ascus with ascospores; F, ascospores. Scales: A & D = 1 mm; B, C, E & F = 10 μ m. In colour online.

3-septate, narrowly ellipsoid, $17-23 \times 6-7 \mu m$, lumina diamond-shaped to rounded. *Pycnidia* not observed.

Chemistry. Thallus UV+ yellow (lichexanthone), K+ yellow, C-, KC-, P-. Pseudostromata UV+ brown-orange, K-, C-, P-. TLC: lichexanthone.

Etymology. The specific epithet refers to the morphological similarities with *A. variolosum*.

Notes. The new species is most similar to Astrothelium variolosum (Ach.) Müll. Arg. in

having white to grey pseudostromata and in ascospore characters, but differs by its inspersed hamathecium (hamathecium not inspersed in *A. variolosum*) (Aptroot *et al.* 2008; Aptroot 2009).

Additional specimen examined. Thailand: Nakhon Nayok: Khao Yai National Park, tree bark, 14°25'N, 101°22' E, alt. 760 m, 2014, Luangsuphabool KY848 (RAMK-027900).

Astrothelium siamense Luangsuphabool, Aptroot & Sangvichien. sp. nov.

MycoBank No.: MB 816955

Similar to Astrothelium variolosum in thallus and pseudostroma characters, but differing in having larger ascospores and an inspersed hamathecium; thallus olive-green to yellow, pseudostromata white, hamathecium inspersed, ascospores 4-7 septate, 30-50 ×10.5-12.0 µm.

Type: Thailand, Krabi Province, Khlong Thom District, Thung Tieo-Sra Morakot trail, tropical rainforest, on tree bark, 7°55'N, 99°16'E, alt. 70 m, 2012, Luangsuphabool KRB139 (RAMK-027902—holotype).

(Fig. 4D-F)

Thallus crustose, corticate, olive-green to yellow, smooth, shiny, prothallus black; cortex distinct, 20-60 µm thick; algal layer 10–40 µm continuous, thick; medulla 10-40 µm thick. Alga trentepohlioid.

Ascomata perithecia, pyriform, black, 0.26-0.52 mm diam., common ostiole with two cavities, solitary to aggregated groups immersed in pseudostroma. Wall carbonized, $\leq c. 30 \,\mu m$ thick. Ostiole apical, black. Pseudostromata white, raised above the thallus, round to irregular. Hamathecium hyaline, inspersed with oil droplets; paraphyses anastomosing, $0.7-1.0 \,\mu\text{m}$ thick. Asci clavate, $125-150 \times 20-$ 23 µm. Ascospores 8 per ascus, hyaline, transversely 4–7 septate, fusiform, $30-50 \times 10.5-$ 12.0 µm, lumina diamond-shaped to rounded.

Pycnidia not observed.

Chemistry. Thallus UV+ yellow (lichexanthone), K+ yellow, C-, KC-, P-. Pseudostromata UV-, K-, C-, P-. TLC: lichexanthone.

Etymology. The specific epithet refers to 'Siam', the traditional name for Thailand, where the species was collected.

Notes. This new species is similar to Astrothelium variolosum (Ach.) Müll. Arg. in having a green thallus and white to grey pseudostromata, but differs in having larger ascospores and an inspersed hamathecium (3-septate ascospores, $20-26 \times 7-9 \,\mu\text{m}$ and hamathecium not inspersed in A. variolosum) (Aptroot et al. 2008; Aptroot 2009). The new species is also similar to A. neovariolosum in thallus and pseudostroma characters and in containing lichexanthone, but differs in having larger ascospores (3-septate, $17-23 \times 6-7 \,\mu\text{m}$ in A. neovariolosum).

Additional specimen examined. Thailand: Krabi: Khlong Thom District, Hin Phoeng Waterfall, on tree bark, 7°51'N, 99°15'E, alt. 75 m, 2012, Luangsuphabool KRB105 (RAMK-027901).

New record for Thailand

Astrothelium aenascens Aptroot

Lichenologist 48: xx (2016).

Thallus crustose, corticated, greenish to grey, smooth. Alga trentepohlioid.

Ascomata perithecia, black, carbonized, aggregated groups immersed in pseudostroma and sharing common ostiole. Ostiole apical, black. Pseudostromata raised, containing yellow to orange pigment. Hamathecium hyaline, inspersed with oil droplets, branched and anastomosing. Ascospores 8 per ascus, 3-septate, $24-30 \times 9-10 \,\mu m$, transversely lumina diamond-shaped to rounded.

Chemistry. Thallus UV+ yellow to orange, K+ yellow. Pseudostromata UV+ red-orange, K+ red. TLC: lichexanthone, parietin.

Specimens examined. Thailand: Phitsanulok Province: Nakhon Thai District, Phu Hin Rong Kla National Park, montane evergreen forest, on tree bark, 16°59'N, 100°59'E, alt. 1310 m, 2009, Luangsuphabool HRK93 (RAMK-027887), HRK98 (RAMK-027888).

This study was financially supported by the Royal Thai Government through Ramkhamhaeng University, a CU Graduate School Thesis Grant and a scholarship from the Human Resource Development in Science Project (Science Achievement Scholarship of Thailand). We would like to thank Kansri Boonpragob and Kajonsak Vongshewarat for their helpful suggestions and Anupan Kongbangkerd and Thanakorn Wongsa for their assistance during fieldwork.

REFERENCES

- Aptroot, A. (2009) Trypetheliaceae. Flora of Australia 57: 535-552.
- Aptroot, A. & Lücking, R. (2016) A revisionary synopsis of the Trypetheliaceae (Ascomycota: Trypetheliales). Lichenologist 48: 763-982.
- Aptroot, A., Saipunkaew, W., Sipman, H. J. M., Sparrius, L. B. & Wolseley, P. A. (2007) New lichens from Thailand, mainly microlichens from Chiang Mai. Fungal Diversity 24: 75-134.
- Aptroot, A., Lücking, R., Sipman, H. J. M., Umaña, L. & Chaves, J. L. (2008) Pyrenocarpous lichens with

bitunicate asci. A first assessment of the lichen biodiversity inventory in Costa Rica. *Bibliotheca Lichenologica* **97:** 1–162.

- Awasthi, D. D. (1991) A key to the microlichens of India, Nepal and Sri Lanka. *Bibliotheca Lichenologica* 40: 1–340.
- Awasthi, D. D. (2000) Lichenology in Indian Subcontinent: A Supplement to 'A Handbook of Lichens'. Dehra Dun: Bishen Singh Mahendra Pal Singh.
- Córdova-Chávez, O., Aptroot, A., Castillo-Camposa, G., Cáceres, M. E. S. & Pérez-Pérez, R. E. (2014) Three new lichen species from cloud forest in Veracruz, Mexico. *Cryptogamie*, *Mycologie* 35: 157–162.
- Cubero, O. F. & Crespo, A. (2002) Isolation of nucleic acids from lichens. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (I. Kranner, R. P. Beckett & A. K. Varma, eds): 381–392. Berlin: Springer.
- Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. *Journal of Chromatography* **72:** 113–125.
- Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* 9: 772.
- Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32: 1792–1797.
- Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2: 113–118.
- Harris, R. C. (1984) The family *Trypetheliaceae* (Loculoascomycetes: lichenized *Melanommatales*) in Amazonian Brazil. *Supplement Acta Amazonica* 14: 55–80.
- Harris, R. C. (1995) More Florida Lichens. Including the 10¢ Tour of the Pyrenolichens. Bronx, New York: Published by the author.
- Hyde, K. D., Liu, J. K., Binder, M., Aryawansha, H., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P. W., Dai, D. *et al.* (2013) Families of Dothideomycetes. *Fungal Diversity* **63**: 1–313.
- Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (2008) *Dictionary of the Fungi. 10th edn.* Wallingford: CAB International.
- Lima, E. L., Maia, L. C., Aptroot, A. & Cáceres, M. E. S. (2013) New lichen species from Vale do Catimbau, Pernambuco, Brazil. *Bryologist* 116: 327–329.
- Lücking, R., Seavey, F., Common, R. S., Beeching, S. Q., Breuss, O., Buck, W. R., Crane, L., Hodges, M., Hodkinson, B. P., Lay, E. et al. (2011) The lichens of Fakahatchee Strand Preserve State Park, Florida: proceedings from the 18th Tuckerman Workshop. Bulletin of the Florida Museum of Natural History 49: 127–186.
- Lumbsch, H. T. (2002) Analysis of phenolic products in lichens for identification and taxonomy. In *Protocols* in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (I. Kranner, R. P. Beckett & A. K. Varma, eds): 281–295. Berlin: Springer.

- Makhija, U. & Patwardhan, P. G. (1988) Materials for a lichen flora of the Andaman Islands – IV. Pyrenocarpous lichens. *Mycotaxon* **31**: 467–481.
- Makhija, U. & Patwardhan, P. G. (1989) The lichen family Asterotheliaceae sensu Zahlbrucker in India. Biovigyanam 15: 61–89.
- Malme, G. O. A. (1924) Die Flechten der ersten Regnellschen Expedition. Astrotheliaceae, Paratheliaceae und Trypetheliaceae. Arkiv f
 ør Botanik 19 (1): 1–34.
- Matheny, P. B., Liu, Y. J., Ammirati, J. F. & Hall, B. D. (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, *Agaricales*). *American Journal of Botany* 89: 688–698.
- Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.
- Sangvichien, E., Hawksworth, D. L. & Whalley, A. J. S. (2011) Ascospore discharge, germination and culture of fungal partners of tropical lichens, including the use of a novel culture technique. *IMA Fungus* 2: 143–153.
- Singh, K. P. & Sinha, G. P. (2010) Indian Lichens: An Annotated Checklist. Kolkata: Botanical Survey of India, Ministry of Environment and Forests.
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. *Systematic Biology* 57: 758–771.
- Swofford, D. L. (1999) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30: 2725–2729.
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4239–4246.
- Vongshewarat, K. (2000) Study on taxonomy and ecology of the lichen family Trypetheliaceae in Thailand. M.Sc. thesis, Ramkhamhaeng University.
- Weerakoon, G. & Aptroot, A. (2014) Over 200 new lichen records from Sri Lanka, with three new species to science. *Cryptogamie*, *Mycologie* 35: 51–62.
- White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: A Guide to Methods and Applications* (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315–322. San Diego: Academic Press.
- Zhou, S. & Stanosz, G. R. (2001) Primers for amplification of mt SSU rDNA, and a phylogenetic study of *Botryosphaeria* and associated anamorphic fungi. *Mycological Research* 105: 1033–1044.
- Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. *Lichenologist* 31: 511–516.