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We introduce a projection-based model reduction method that systematically accounts
for nonlinear interactions between the resolved and unresolved scales of the flow in a
low-dimensional dynamical systems model. The proposed method uses a separation of
time scales between the resolved and subscale variables to derive a reduced-order model
with cubic closure terms for the truncated modes, generalizing the classic Stuart–Landau
equation. The leading-order cubic terms are determined by averaging out fast variables
through a perturbation series approximation of the action of a stochastic Koopman
operator. We show analytically that this multiscale closure model can capture both the
effects of mean-flow deformation and the energy cascade before demonstrating improved
stability and accuracy in models of chaotic lid-driven cavity flow and vortex pairing in a
mixing layer. This approach to closure modelling establishes a general theory for the origin
and role of cubic nonlinearities in low-dimensional models of incompressible flows.

Key words: low-dimensional models

1. Introduction

Despite the complex and often chaotic dynamics exhibited by many unsteady fluid flows,
in many cases it is dominated by energetic coherent structures evolving on relatively
long length and time scales (Holmes, Lumley & Berkooz 1996). This realization made
it possible to study fluid flows as high-dimensional dynamical systems evolving on a
low-dimensional manifold, providing answers to longstanding questions on topics such
as the route to turbulence (Landau 1944; Hopf 1948; Ruelle & Takens 1971; Swinney
& Gollub 1981) and the role of nonlinear interactions (Landau 1944; Stuart 1958). The
persistent nature of these coherent structures eventually also raised the possibility of
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using low-dimensional surrogate models for optimization and control objectives (Noack,
Morzynski & Tadmor 2011; Brunton & Noack 2015; Rowley & Dawson 2017).

The fundamental challenges in constructing such reduced-order models may be broken
into two categories: approximating the structures themselves, and approximating their
evolution. We refer to these as the kinematic and dynamic approximations, respectively.
A modal separation of variables assumption is often employed for the former task
(Taira et al. 2017, 2020), but although this may be suitable for many closed or
diffusion-dominated flows, it is not a natural representation of travelling waves or
advection-dominated flows (Rowley & Marsden 2000; Reiss et al. 2018; Rim, Moe &
LeVeque 2018; Grimberg, Farhat & Youkilis 2020; Mendible et al. 2020). This issue is
inextricably linked to the problem of modelling the coherent structure dynamics; as is well
known in many domains, a proper choice of coordinates can greatly simplify the modelling
task (Champion et al. 2019).

The multiscale nature of fluid flows further complicates both the kinematic and dynamic
aspects of low-dimensional modelling. For instance, the effective dimensionality of a
chaotic flow well above the threshold of instability may be orders of magnitude greater
than that of a laminar flow with one or two instability modes. Meanwhile, the ‘triadic’
structure of the nonlinear interactions in the wavenumber or frequency domain ensures
that the dynamics of all scales across the flow is linked. Thus, even if the large, energetic
coherent structures can be approximated with a low-dimensional basis, models of their
dynamics that do not account for the role played by the unresolved degrees of freedom are
often unstable or physically inconsistent (Noack et al. 2011; Callaham et al. 2021). Similar
considerations impact the development of numerical methods (Bazilevs et al. 2007),
self-consistent mean flow modelling (Meliga 2017) and resolvent analysis (Padovan, Otto
& Rowley 2020; Rigas, Sipp & Colonius 2021; Barthel, Zhu & McKeon 2021; Barthel,
Gomez & McKeon 2022).

The need for subscale modelling was apparent even in early work combining
empirical modal approximations, such as the proper orthogonal decomposition (POD),
with physics-based model reduction, such as Galerkin projection. For example,
low-dimensional models of vortex shedding in the globally unstable cylinder wake could
accurately predict the dynamics over short times, but were subject to structural instability
over a longer time horizon (Deane et al. 1991; Ma & Karniadakis 2002). Eventually, Noack
et al. (2003) showed that this was a result of the failure of the standard post-transient POD
basis to resolve the Stuart–Landau mechanism of mean-flow deformation associated with
nonlinear interactions between the fluctuations (Landau 1944; Stuart 1958), an insight that
enabled low-dimensional modelling of natural and actuated flows with an increasingly
complex dynamics (Luchtenburg et al. 2009; Deng et al. 2020; Sieber, Paschereit &
Oberleithner 2021; Callaham et al. 2022; Deng et al. 2021).

Contemporary work on POD–Galerkin modelling of turbulent shear flows also
recognized the need for closure models that could approximate the effect of unresolved
scales (Aubry et al. 1988; Rempfer & Fasel 1994; Ukeiley et al. 2001). These
efforts targeted two distinct physical mechanisms: mean-flow deformation and subscale
dissipation. For flows that are either parallel (Aubry et al. 1988) or weakly non-parallel
under the assumption of Taylor’s frozen turbulence hypothesis (Ukeiley et al. 2001), these
authors developed a Boussinesq eddy viscosity relationship between the resolved scales
and a slowly varying parallel mean flow, leading to stabilizing cubic terms consistent with
the Stuart–Landau description. To capture dissipation due to the unresolved scales, these
models also adopted a linear mixing length approximation.

Although these studies remain landmark explorations of low-dimensional coherent
structure modelling, there are several opportunities to improve the proposed
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Multiscale model reduction

closure strategies. First, it is difficult to generalize the Reynolds stress models applied
to parallel shear flows by Aubry et al. (1988) and Ukeiley et al. (2001) to fully
inhomogeneous flows. While the ‘shift mode’ approach to mean flow modelling via an
augmented POD basis introduced by Noack et al. (2003) is agnostic to the geometry of the
flow, it requires computation of the unstable steady state of the Navier–Stokes equations,
which is not generally experimentally accessible. Second, in the Richardson–Kolmogorov
energy cascade description, energy is transferred from large to small scales through
nonlinear interactions, where it is finally dissipated. This is not consistent with a linear
mixing length model, a fact exploited by later work investigating nonlinear models of
subscale dissipation (Wang et al. 2012; Cordier et al. 2013; Östh et al. 2014), particularly
the finite time thermodynamics approach, which is centred on modelling unresolved
nonlinear energy transfers (Noack et al. 2008).

Recent years have seen a surge in interest in data-driven and machine learning-based
methods (Brenner, Eldredge & Freund 2019; Duraisamy, Iaccarino & Xiao 2019; Brunton,
Noack & Koumoutsakos 2020), including a number of proposed closure and stabilization
schemes for reduced-order models, either through regression to additional linear–quadratic
terms (Mohebujjaman et al. 2017; Mohebujjaman, Rebholz & Iliescu 2018; Xie et al. 2018)
or by adding a deep learning model to approximate the residual (San & Maulik 2018a,b;
Menier et al. 2022). Alternative work has explored interpretable system identification
methods that forego the projection-based model altogether (Brunton, Proctor & Kutz
2016; Peherstorfer & Willcox 2016; Loiseau & Brunton 2018; Qian et al. 2020; Callaham
et al. 2022), but may incorporate physical constraints derived from the Galerkin system
(Loiseau, Noack & Brunton 2018b; Deng et al. 2020; Kaptanoglu et al. 2021a). If an
accurate, non-intrusive model is more important than interpretability or satisfying physical
constraints, then the traditional projection-based framework can be eliminated altogether
with black-box neural network forecasting methods (Hesthaven & Ubbiali 2018; Wan et al.
2018).

These empirical closure models are constructed on the assumption that the influence of
the unresolved variables can be approximated based on information from the resolved
variables alone. The success of the Reynolds stress–mean-flow models (Aubry et al.
1988; Ukeiley et al. 2001; Mantic̆-Lugo, Arratia & Gallaire 2014), invariant or centre
manifold reductions (Coullet & Spiegel 1983; Guckenheimer & Holmes 1983; Noack
et al. 2003; Carini, Auteri & Giannetti 2015) and weakly nonlinear analysis (Stuart 1958;
Sipp & Lebedev 2007; Meliga, Chomaz & Sipp 2009; Meliga & Chomaz 2011) suggests
that there may be circumstances where this relationship may be derived analytically via
traditional analysis. The unifying thread between these methods is the assumption of a
scale separation between the resolved and unresolved variables that can be exploited to
develop an asymptotically correct closure model.

Beyond the field of fluid dynamics, the method of adiabatic elimination (Haken 1983;
Risken 1996) has long been used to discard the fast variables in systems with emergent
large-scale coherence when there is a separation in time scales, while heterogeneous
multiscale methods have played an important role in simulating physical systems with
widely separated scales (Weinan & Engquist 2003; Weinan et al. 2007; Weinan 2011).
A similar stochastic averaging approach has been successful in climate modelling
(Majda, Timofeyev & Vanden-Eijnden 2001), where the primitive equations have the
same quadratic nonlinearity as the usual Navier–Stokes equations without rotation,
buoyancy, topography, etc. This method, also called homogenization in the multiscale
modelling literature, has its roots in the theory of singular perturbations of Markov
processes (Kurtz 1973; Papanicolaou 1976) and is rigorously supported for stochastic
systems with asymptotic scale separation; see Majda et al. (2001), Givon, Kupferman &
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Figure 1. Multiscale closure model applied to a mixing layer. The visualization of the network of average
quadratic energy transfer between the leading harmonic modes shows the cascade of energy to higher-order
modes. The multiscale model reduction (MMR) method approximates the effects of unresolved higher-order
modes via stochastic averaging, which leads to a generalized Stuart–Landau-type equation with cubic nonlinear
interactions. The network visualization of quadratic energy transfers (left) is computed from the modal
coefficients a(t) and Galerkin model for the leading harmonics, while that of the multiscale approximation
(right) is a notional illustration of the origin of the cubic terms in (4.18b). See § 6.3 for details on the
construction of this figure and the low-dimensional model of the mixing layer.

Stuart (2004), Weinan (2011) or Pavliotis & Stuart (2012) for in-depth presentations. With
some assumptions on ergodicity, a similar approach can also be taken with deterministic
systems, even in a regime where the scale separation is not in the asymptotic limit (Majda,
Timofeyev & Vanden-Eijnden 2006).

This work explores the application of multiscale stochastic averaging methods
developed by Majda et al. (2001), Givon et al. (2004), Weinan (2011), Pradas et al.
(2012), Pavliotis & Stuart (2012) and others to the closure problem in reduced-order
models of incompressible flow or other systems reducible to a linear–quadratic dynamics
(Rowley, Colonius & Murray 2004; Qian et al. 2020; Kaptanoglu et al. 2021b), including
introducing an approximation to the form of the fast dynamics that allows for computation
of the averaged dynamics in closed form. When applied to a Galerkin model of
incompressible flow, this procedure effectively approximates nonlinear energy transfers to
unresolved scales by higher-order nonlinearities in the resolved dynamics, as illustrated by
figure 1 and illustrated schematically by figure 2. We refer to this secondary dimensionality
reduction of the Galerkin system as MMR. Although dynamically complex fluid flows
often exhibit structure across a wide range of spatio-temporal scales, in the present context
the term multiscale refers specifically to the asymptotic time-scale separation assumed
formally by the averaging procedure and does not imply anything about the spectral content
of any particular flow.

Since fluid flows generally do not have a true scale separation away from the threshold
of instability, we demonstrate via numerical simulations that this method is a robust and
systematic approach to stabilizing low-dimensional models. This extends the work of
Majda et al. (2006) exploring the application of this class of methods to systems beyond
the parameter regimes where their validity can be rigorously proven. Multiscale model
reduction is a unified framework for understanding the origin and importance of cubic
terms in reduced-order models of the linear–quadratic Navier–Stokes equations, capable
of capturing both mean-flow deformation and subscale dissipation. Throughout this work
we also highlight connections to other modelling methods, including Koopman theory and
weakly nonlinear analysis.
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Figure 2. Schematic of nonlinear interactions in the multiscale closure scheme. The dynamics of one variable
(a1) in a system with two slow variables involves quadratic interactions between fast and slow variables that
would be neglected in a standard truncation. Instead, the proposed method averages over the fast scales,
ultimately generating effective cubic nonlinearities in the closed equations. The quadratic interactions Q
represent terms that might arise for instance from Galerkin projection via (2.6c).

2. Reduced-order modelling for incompressible flows

For more than three decades, POD and Galerkin projection have been the foundational
tools in low-order modelling for nonlinear incompressible fluid flow. The POD analysis
identifies dominant coherent structures in the flow and provides an energy-optimal linear
modal basis. Galerkin projection approximates both the state of the flow and its time
derivative in this finite-dimensional subspace, resulting in a reduced system of ordinary
differential equations in terms of the POD mode amplitudes. These topics have been
covered extensively elsewhere (see e.g. Holmes et al. 1996; Noack et al. 2011; Benner,
Gugercin & Willcox 2015; Rowley & Dawson 2017; Taira et al. 2017); here, we provide a
brief overview.

We assume the flow is governed by the unsteady incompressible Navier–Stokes
equations

∂u
∂t

+ ∇ · (u ⊗ u) = −∇p + 1
Re

∇2u

∇ · u = 0,

⎫⎬
⎭ (2.1)

where u(x, t) is the velocity field, p is the pressure field and Re is the Reynolds number,
Re = UL/ν, based on the kinematic viscosity ν and suitable length and velocity scales L
and U. The nonlinear term is expressed in divergence form with the tensor product ⊗. In
this work, we only consider two dimensional examples for which u = [u v]T, although all
of the following applies equally well to three-dimensional flows.

In order to reduce the system of partial differential equations (PDEs) (2.1) to a
finite-dimensional system of ordinary differential equations, we assume that the space
and time dependence can be separated, so that an arbitrary velocity field u(x, t) can be
approximated with the r-dimensional modal representation

u(x, t) ≈ ψ0(x)+
r∑

i=1

ψ i(x)ai(t), (2.2)
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where ψ0(x) is a fixed base flow around which the expansion is performed and each
mode individually satisfies the divergence-free constraint ∇ · ψ i = 0 for i = 0, 1, 2, . . . , r.
Unless otherwise specified we will take ψ0 to be the mean flow ū as estimated with a time
average.

The POD identifies the set of modes {ψ i}r
i=1 that provide the optimal rank-r

approximation for an average velocity field in the energy norm induced by the velocity
inner product

〈u1,u2〉 =
∫
Ω

u1(x) · u2(x) dΩ, (2.3)

defined on the spatial domainΩ for real-valued velocity fields u1 and u2. We approximate
this integral with a weighted sum 〈u1,u2〉 ≈ uT

1 W u2, where u1 and u2 are the discrete
approximations to u1 and u2, and W is a diagonal weight matrix containing the cell
volumes. We estimate the POD modes from the two-point temporal correlation matrix
using the method of snapshots (Sirovich 1987).

The POD expansion (2.2) is often only applied to the velocity fields. This can pose
a problem for model reduction methods approximating the pressure gradient term in the
Navier–Stokes equations. While this term vanishes for closed flows and is often negligible
for flows with a localized global instability, it is important in open shear flows, such as
the mixing layer examined in § 6 (Noack, Papas & Monkewitz 2005). There are various
methods for approximating the pressure term (see e.g. Caiazzo et al. 2014), but in this
work we use a velocity–pressure expansion with the same inner product (2.3). Defining
q(x, t) = [u p]T, we replace (2.2) and (2.3) with

q(x, t) ≈
[
ψu

0(x)

ψ
p
0 (x)

]
+

r∑
i=1

[
ψu

i (x)

ψ
p
i (x)

]
ai(t) (2.4a)

= ψ0(x)+
r∑

i=1

ψ i(x)ai(t), (2.4b)

and energy inner product 〈q1, q2〉u ≡ 〈u1,u2〉. Numerically, we simply carry the pressure
fields through the method of snapshots by setting the diagonal entries of W corresponding
to pressure to zero. The pressure components of the POD modes are therefore estimated
from the same linear combination of snapshots as the velocity components.

The derivation of the Galerkin system proceeds by substituting the velocity–pressure
POD approximation (2.4) into the Navier–Stokes equations (2.1). In order for the dynamics
to be an optimal continuous-time approximation, the residual error should be orthogonal
to the POD subspace. Using the inner product (2.3) and orthonormality properties of the
POD, this optimality condition leads to the linear–quadratic system of ordinary differential
equations (ODEs) (Holmes et al. 1996; Noack et al. 2011)

ȧi = Fi + Lijaj + Qijkajak, i, j, k = 1, 2, . . . , r (2.5)

with constant, linear and quadratic terms given by

Fi = 〈ψ i,−∇ · (ψu
0 ⊗ ψu

0)− ∇ψp
0 + Re−1∇2ψu

0〉u (2.6a)

Lij = 〈ψ i,−∇ · (ψu
0 ⊗ ψu

j + ψu
j ⊗ ψu

0)− ∇ψp
j + Re−1∇2ψu

j 〉u (2.6b)

Qijk = 〈ψ i,−∇ · (ψu
j ⊗ ψu

k )〉u. (2.6c)

A key feature of the quadratic nonlinearity of the Navier–Stokes equations is that it is
energy preserving, in the sense that it has no net contribution to the evolution equation for
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kinetic energy in the spectral domain (Kraichnan & Chen 1989), with some restrictions
on the boundary conditions. This is the foundation of the energy cascade picture of
turbulence, in which the role of the nonlinearity is to transfer energy from the large scales
to the small, dissipative scales. For the Galerkin system, the energy preservation condition
implies that (Schlegel & Noack 2015)

Qijk + Qikj + Qjik + Qjki + Qkij + Qkji = 0. (2.7)

This is often approximately true numerically for POD–Galerkin systems, but enforcing
it explicitly can improve the stability of the model (Cordier et al. 2013). Based on the
structure of the linear–quadratic system (2.5), the quadratic tensor can also be symmetrized
in the last two indices

Qijk = Qikj. (2.8)

In this work we explicitly enforce conditions (2.7) and (2.8) after construction of the
quadratic tensor (2.6c).

3. Generators of deterministic and stochastic processes

In the study of mechanics there are often several equivalent representations of the same
system (e.g. Lagrangian, Hamiltonian, etc.), each of which may be useful depending
on the application. The operator-theoretic perspective will be especially useful in
the development of the multiscale closure model as a framework for abstract formal
manipulations of the dynamical systems model. In particular, the closure model will be
derived via a perturbation series approximation to the action of a stochastic Koopman
operator. Critically, the infinite-dimensional operator itself need not be computed or
directly approximated; instead, the closed model appears as a solvability condition
analogous to the derivation of the amplitude equation in weakly nonlinear analysis (Sipp
& Lebedev 2007).

This section gives a brief overview of topics necessary for the development of the
closure models in § 4; for a more in-depth presentation of these topics see, e.g. Risken
(1996), Weinan (2011), Pavliotis & Stuart (2012), Klus et al. (2018, 2020) and Brunton
et al. (2022). Koopman theory is perhaps the most widely discussed operator-theoretic
method in recent work on the analysis of fluid flows and other large-scale nonlinear
dynamics (Mezić 2005; Rowley et al. 2009; Mezić 2013; Klus et al. 2018; Brunton et al.
2022), making it a convenient place to begin the discussion.

Suppose the state x(t) is governed by an autonomous ODE

ẋ = f (x), x ∈ X . (3.1)

We will assume, unless otherwise specified, that states are real valued, e.g. X ⊆ R
N , and

that all other functions are L2-integrable with inner product

〈 f (x), g(x)〉 =
∫
X

f (x)g(x) dx, (3.2)

where the usual complex conjugation is omitted since g is real valued.
The Koopman operator Kt acts on the L2-integrable space of scalar observables g(x) :

X → R, advancing them forward time t. More precisely, let x be the solution to the initial
value problem of (3.1) with x(0) = x0. Then the Koopman operator is defined as

Ktg(x0) = g(x(t)). (3.3)

Although the Koopman operator is generally difficult to either represent explicitly or
approximate in a useful finite-dimensional subspace, analysis of its spectral properties
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has drawn great interest in recent work. For our purposes, the infinitesimal generator L,
defined by

Lg = lim
t→0

Ktg − g
t

, (3.4)

and sometimes called the Lie operator, is more theoretically useful. If we consider g(x(t))
to be an explicit function of time, then L can be derived by applying the chain rule to g.
With a slight abuse of notation, if g(x, t) is taken to be a function of both time and initial
state x (i.e. in the Lagrangian frame of reference in state space), then this can be extended
to a PDE over all of state space

∂g
∂t

= Lg = f (x) · ∇xg. (3.5)

Thus the generator L is a linear advection operator governing the evolution of scalar
observables of the system described by (3.1). Similarly, the adjoint of (3.5), defined by
〈 f ,Lg〉 = 〈L†f , g〉 with the inner product (3.2)

∂ρ

∂t
= L†ρ = −∇x · (ρf (x)), (3.6)

is a continuity equation governing the evolution of densities ρ(x, t) in phase space. As
a point of reference, (3.6) reduces to the Liouville equation from classical mechanics
under the incompressibility condition ∇x · f = 0, and L† is also known as the generator
of the Perron–Frobenius operator (Froyland 2005; Froyland & Padberg 2009; Froyland,
Santitissadeekorn & Monahan 2010; Klus, Koltai & Schütte 2016).

This description of the dynamics can readily be extended to systems governed by
stochastic differential equations (SDEs) of the form

ẋ = f (x)+Σw(t), (3.7)

where the deterministic component f (x) is known as the drift function and the diffusion
matrix Σ modifies a vector-valued Gaussian white noise process w(t). In this case the
evolution of the probability distribution ρ(x, t) is governed by the stochastic analogue of
(3.6), known as the forward Kolmogorov, or Fokker–Planck, equation

∂ρ

∂t
= L†ρ = −∇x · (ρf )+ ∇x∇T

x : (ρD), (3.8)

where D = ΣΣT/2 is the diffusion tensor and the colon denotes tensor contraction. The
associated backwards Kolmogorov equation is the adjoint of (3.8)

∂g
∂t

= Lg = f · ∇xg + D : ∇x∇T
x g. (3.9)

To interpret (3.9), consider the expectation of a scalar observable g(x) : X → R defined
by the inner product (3.2) of g with the probability distribution ρ0(x)

E[g] = 〈ρ0, g〉 =
∫
X
ρ0(x)g(x) dx. (3.10)

The probability distribution is advanced in time by ρ(x, t) = eL†tρ0(x). Using the
definition of the adjoint, 〈ρ,Lg〉 = 〈L†ρ, g〉, the expectation of g at time t can be written
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equivalently as

E[g](t) = 〈ρ, g〉 =
∫
X
ρ0(x) eLtg(x) dx. (3.11)

Therefore, just as the Koopman operator advances an observable in time, the backwards
Kolmogorov equation describes the evolution of the expectation of an observable in the
case of statistically stationary system where ρ = ρ0 ≡ ρ∞.

As a simple example relevant for the closure modelling presented below, consider the
Ornstein–Uhlenbeck process defined by the SDE

ẋ = ν(μ− x)+ σw(t), (3.12)

for positive constants ν, μ and σ . The stationary distribution ρ∞(x) is given by the
steady-state Fokker–Planck equation

0 = L†ρ∞ = − ∂

∂x
ρ∞(x)ν(μ− x)+ σ 2

2
d2

dx2ρ
∞(x), (3.13)

along with the usual normalization condition on ρ∞. This can be solved analytically by a
Gaussian distribution with mean μ and variance σ 2/2ν. Defining an observable that is the
state itself g(x) = x, the evolution is given by the backwards Kolmogorov equation (3.9),
which in this case reduces to the initial value problem

∂

∂g
t = ν(μ− g), g(0) = x. (3.14a,b)

The expectation at time t is the solution g(t), which in this case is exponential decay
towards the mean μ

E[x](t) = g(t) = μ− (x − μ) e−νt. (3.15)

Given that the model reduction procedure described in § 2 aims to reduce the physics
model from an infinite-dimensional PDE to a finite-dimensional system of ODEs, it may be
counterintuitive that it would be helpful to return to an infinite-dimensional function space
and represent the dynamics with a partial differential equation. The primary advantage in
doing so is that these generators are linear operators, which in some cases can be amenable
to approaches that are unavailable for the nonlinear dynamics of the ODE (3.1) or SDE
(3.7).

For this reason, the prospect of using Koopman operators or Kolmogorov-type equations
to analyse nonlinear and/or stochastic systems is appealing. However, aside from simple
one-dimensional or linear examples like the Ornstein–Uhlenbeck process, it is typically
very difficult to solve these PDEs analytically. Multiscale modelling approaches use
operator representations to construct simplified approximations of the underlying systems,
addressing their intractability with perturbation methods. As will be seen in § 4, an
expansion can be used to derive a solvability condition based on the Fredholm alternative.
Using the manipulations reviewed in this section, this condition can be interpreted as
an average over subscale variables, which can be computed explicitly under suitable
assumptions. For a Galerkin model of incompressible flow, the averaged slow dynamics
takes the form of a cubic generalized Stuart–Landau equation that accounts for the
leading-order effect of the unresolved fast variables.
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4. Multiscale closure modelling

One of the primary difficulties of reduced-order modelling for fluid flows is that the
nonlinear interactions in the Navier–Stokes equations transfer energy between all scales
of the flow. Thus, restricting the dynamics to a low-dimensional subspace can lead to
significant approximation errors. Generally speaking, the goal of closure modelling is
to augment this truncated model with additional terms that account for the effect of the
unresolved scales.

The multiscale approach to closure modelling accomplishes this by first partitioning
the dynamics into fast and slow variables, and then approximating the solution to the
associated backwards Kolmogorov equation with a perturbation series expansion. The
result can be interpreted as a Koopman generator of the form of (3.5) corresponding to
the coarse-grained dynamics for the slow variables. As we will show, when applied to the
linear–quadratic Galerkin system (2.5), this leads to a generalized Stuart–Landau equation
including cubic terms.

An interesting feature of cubic Stuart–Landau-type models of fluid flow is that they
are often more accurate than linear–quadratic models, even though the nonlinearity in
the underlying governing equations is quadratic (Noack et al. 2003; Loiseau & Brunton
2018). One reason for this is the artificial space–time separation of variables introduced
by the modal representation (2.2), which can introduce spurious degrees of freedom that
represent phase-locked harmonics of travelling waves, for instance (Callaham, Brunton
& Loiseau 2022). As a result, POD–Galerkin models are vulnerable to decoherence and
can fail to improve with increasing rank, even when the kinematic approximation of the
flow field becomes nearly perfect. As illustrated by the examples in § 6, the introduction of
cubic terms can mitigate this, either by modifying the dynamics to resemble phase-locked
nonlinear oscillators or by eliminating spurious degrees of freedom altogether.

Although multiscale methods can be rigorously justified when there is a strict separation
of time scales (Majda et al. 2001; Weinan & Engquist 2003; Weinan 2011; Pavliotis
& Stuart 2012), there is no such spectral gap in most fluid flows of practical interest.
The proposed method for model reduction should therefore properly be viewed as an
approximate closure model motivated by the asymptotic limit. Nevertheless, it provides
a systematic method for stabilizing low-dimensional models and also highlights a generic
mechanism by which higher-order nonlinearities can arise from the quadratic term in the
governing equations.

4.1. Averaging over unresolved variables
Beginning with the Galerkin dynamics (2.5) for the state consisting of POD coefficients
a(t) ∈ R

r, where we assume that r is large enough for an accurate kinematic reconstruction
of a typical flow field, we partition the system into slow variables x(t) ∈ X = R

r0 and
fast variables y(t) ∈ Y = R

r−r0 , so that a = [xT yT]T. Since the POD modes are sorted
according to typical energy content and not dominant time scale, in principle, this partition
could lead to ‘fast’ variables included in x, or vice versa. However, due to the mechanism
of harmonic generation via quadratic nonlinear interaction, lower-order modes are often
related to dominant instability modes, while higher-order modes tend to represent higher
wavenumber and frequency content.

For concise notation we will use the Einstein convention that repeated indices imply
summation and we will omit explicit summation unless not doing so would lead to
ambiguity. We will index the slow variables with Roman subscripts i, j, k, � ranging from
1 to r0 and the fast variables with Greek subscripts α, β, γ ranging from 1 to r − r0.
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Multiscale model reduction

Without loss of generality we will also assume that the quadratic term has been
symmetrized in the last two indices, so that Qijk = Qikj. Then the partitioned Galerkin
system is

ẋi = f x
i (x, y) = Fx

i + Lxx
ij xj + Lxy

iβyβ + Qxxx
ijk xjxk + 2Qxxy

ijβ xjyβ + Qxyy
iβγ yβyγ (4.1a)

ẏα = f y
α(x, y) = Fy

α + Lyx
αjxj + Lyy

αβyβ + Qyxx
αjkxjxk + 2Qyxy

αjβxjyβ + Qyyy
αβγ yβyγ . (4.1b)

Standard truncation of this system is equivalent to retaining only the terms F x, Lxx and
Qxxx. Here, we will attempt to approximate the terms involving the fast variables in f x(x, y)
in an average sense in order to derive a closed system ẋ = f̂ (x), largely following the
approach of Pavliotis & Stuart (2012).

We assume that the time scales of the fast and slow dynamics are separated by a
parameter ε � 1, so that we may define f x(x, y) ≡ ε f̃ x(x, y). Furthermore, we note that
the role of the fast self-interaction term Qyyy(y, y) is to transfer energy between the
unresolved scales. Since this mechanism is of secondary importance to the transfers
between slow and fast scales, we apply a version of the ‘working assumption of stochastic
modelling’ (Majda et al. 2001)

r−r0∑
β,γ=1

Qyyy
αβγ yβyγ ≈ σαwα(t), (4.2)

where w(t) is a Wiener process and σ is an as-yet-undefined constant forcing amplitude.
This approximation of the fast self-interactions as uncorrelated additive white noise is the
simplest possible stochastic closure. More sophisticated models such as state-dependent
noise or non-diagonal covariance could also be considered. For the results shown in § 6
we ultimately take the noise amplitude to be zero, so that (4.2) is sufficiently expressive
for the present purposes.

Finally, we coarse grain the dynamics on the time scale τ = εt, leading to the slow/fast
system

∂xi

∂τ
= f̃ x

i (x, y) (4.3a)

∂yα
∂τ

= 1
ε

f̃ y
α(x, y)+ 1√

ε
σαwα(τ ), (4.3b)

where f̃
y
(x, y) are the fast dynamics (4.1b) excluding the self-interaction term Qyyy(y, y)

modelled by (4.2) and we have also used the scaling property of Wiener processes that
w(εt) = √

εw(t).
Defining an arbitrary scalar-valued observable gε(x, y), the backwards Kolmogorov

equation (3.9) associated with (4.3) is

∂gε

∂τ
= 1
ε

[
f̃ y
α(x, y)

∂

∂yα
+ σ 2

α

2
∂2

∂y2
α

]
︸ ︷︷ ︸

L0

gε + f̃ x
i (x, y)

∂

∂xi︸ ︷︷ ︸
L1

gε. (4.4)

Note that L0 can be viewed as the generator of a stochastic process in y with x as a fixed
parameter. We make the following assumptions related to the ergodicity of y:

(i) The operator L0 has a one-dimensional nullspace spanned by constants in y

L0g(x) = 0. (4.5)
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(ii) The Fokker–Planck operator L†
0 has a one-dimensional nullspace corresponding to

the stationary distribution ρ∞
x , where again x is treated as a fixed parameter

L†
0ρ

∞
x (y) = 0, (4.6)

along with the usual normalization condition
∫
Y ρ

∞
x dy = 1.

Since L0 is the generator of a stochastic Koopman operator, (4.5) states that only
observables that do not depend on the fast variables y are constant with respect to the
fast dynamics. Equation (4.6) requires that there be a unique stationary probability density
function in y for each value of x. As shown in § 4.2, in this work L0 corresponds to a
multi-dimensional Ornstein–Uhlenbeck process for which both assumptions hold and ρ∞

x
can be expressed analytically. These assumptions obviate the need to express the fast scale
y as an instantaneous function of x, as in an invariant manifold model (Guckenheimer
& Holmes 1983; Pavliotis & Stuart 2012). Instead, the fast variable is modelled with a
simplified distribution that can be averaged over as follows. We assume that the solution to
the backwards Kolmogorov equation (4.4) can be approximated by means of an asymptotic
expansion

gε(x, y, τ ) = g0 + εg1 + O(ε2). (4.7)

This expansion holds for small values of the scale separation parameter ε, implying wide
time-scale separations between the fast and slow dynamics. Substituting into (4.4) and
equating powers of ε gives the consistency conditions

0 = L0g0, (4.8a)

∂g0

∂τ
= L0g1 + L1g0. (4.8b)

By virtue of the assumption of a one-dimensional nullspace, (4.8a) is satisfied if g0 is not
a function of y, or g0 = g0(x, τ ). As expected, the leading-order solution does not depend
on the fast variable.

An effective evolution equation for g0 can be derived by considering (4.8b) as a linear
equation for g1(x, y, τ ). The Fredholm alternative specifies that, for any equation of the
form L0g1 = b to have a unique solution, all functions ρ in the nullspace of the adjoint
operator L†

0 must be orthogonal to b. Since we have assumed that the nullspace of L†
0

is one-dimensional and spanned by the stationary distribution ρ∞
x (y), this implies that

〈ρ∞
x , b〉 = 0. In other words, the solvability condition for

L0g1 = ∂g0

∂τ
− L1g0, (4.9)

is that the right-hand side of (4.9) has zero mean with respect to the stochastic process
generated by L0 ∫

Y
ρ∞

x (y)
[
∂

∂τ
− L1

]
g0(x, τ ) dy = 0. (4.10)

Using the normalization condition for ρ∞
x , this simplifies to a closed evolution equation

for g0(x, τ )
∂g0

∂τ
=

[∫
Y
ρ∞

x (y)f̃
x
i (x, y)dy

]
∂g0

∂xi
. (4.11)

Since the observable gε is arbitrary, (4.11) must hold for any g0. This PDE has the form
of the generator of a deterministic Koopman operator corresponding to the coarse-grained
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Multiscale model reduction

dynamics in x alone. Undoing the ε scaling in τ and f̃ x, (4.11) can be written as

∂g0

∂t
= f̂ (x) · ∇g0, (4.12)

corresponding to the averaged dynamics

ẋ = f̂ (x), (4.13a)

f̂i(x) =
∫
Y
ρ∞

x (y)f
x
i (x, y) dy. (4.13b)

The distribution ρ∞
x (y) specifies the probability distribution of the fast variables y and

is stationary on the fast time scale, but implicitly time varying since it is parameterized
by the state x of the slow variables. In the simplest case ρ∞

x might be proportional
to a delta function in x, indicating that the fast variables are a direct function of the
slow variables. Physically this might correspond to the case where y represents a slow
amplitude-dependent deformation of the base flow or phase-locked higher harmonics, for
instance.

More generally the functional form of this distribution might be complicated, but it is not
necessary to specify it in closed form provided the integral in (4.13b) can be evaluated. For
instance, when the dynamics is linear–quadratic then (4.13b) simplifies to first and second
moments of the distribution. Then the key to the MMR closure for the POD–Galerkin is
deriving an approximation of the fast dynamics that is consistent with the original system
but allows for computation of these moments in closed form.

As an aside, although the disappearance of the fictitious small parameter ε is necessary
for consistency with the original Galerkin system, it does call into question the validity of
the perturbation series approximation (4.7). In this work we do not attempt to make this
more rigorous, but instead demonstrate by example that it is a useful heuristic capable of
resolving important features of the flow physics. In contrast to typical multiscale modelling
applications, the underlying linear–quadratic Galerkin systems often poorly approximate
the true dynamics, so it would not be useful to perfectly match the original model even if
it was possible to do so.

4.2. Application to the Galerkin system
In order to make practical use of the averaging procedure for the partitioned Galerkin
system (4.1), we must be able to perform the integral over the distribution ρ∞

x (y) of the fast
variables. This task is somewhat simplified for the case of the linear–quadratic Galerkin
dynamics since only the means E[yα] and covariances E[yαyβ] are necessary.

The distribution ρ∞
x (y) is the solution for fixed x to the steady-state Fokker–Planck

equation

L†
0ρ = −∂(ρf y

α)

∂yα
+ σ 2

α

2
∂2ρ

∂y2
α

= 0, (4.14)

corresponding to the linear stochastic process

ẏα =
[
Fy
α + Lyx

αjxj + Qyxx
αjkxjxk

]
+

[
Lyy
αβ + 2Qyxy

αjβxj

]
yβ + σαwα(t). (4.15)

The stationary distribution is a multivariate Gaussian with mean and covariance that can
be determined from the solution of a Lyapunov equation (Risken 1996), but this would
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need to be done at each value of x. Instead, we propose the diagonal drift approximation

ẏα ≈ να(x) (μα(x)− yα)+ σαwα(t), (4.16)

for which the stationary distribution is a product of univariate Gaussians solving the
one-dimensional Fokker–Planck equation (3.13), i.e. yα ∼ N (μα, σ 2

α/2να). The integrals
in (4.13b) can then be evaluated easily using E[yα] = μα and E[yαyβ] = δαβσ

2
α/2να ,

where δαβ is the Kronecker delta symbol.
By comparison with (4.15), the conditional mean is naturally defined as

μα(x) =
r∑

j,k=1

ν−1
α

[
Lyx
αjxj + Qyxx

αjkxjxk

]
. (4.17)

Here, we have omitted the contribution of the constant forcing term F y so that the
approximate fast process y preserves the zero-mean property of the POD coefficients
for x = 0. In this work we will make the simplifying assumption that the effective
damping coefficients να are constant, although more generally they could be functions of
x. Appropriate values for να can be determined from energy balance, as described below.

With this approximation, the fast variables yα are each an independent Ornstein–
Uhlenbeck process with mean μα and damping να . Since the first and second moments
of the stationary distribution for this process are given by μα and σ 2

α/2να , the average
in (4.13) is then a straightforward calculation resulting in the generalized Stuart–Landau
model

f̂i(x) = F1
i + L11

ij xj + L12
iαμα(x)+ Q111

ijk xjxk + 2Q112
ijα xjμα(x)+ ν−1

α Q122
iαασασα/2 (4.18a)

≡ F̂i + L̂ijxj + Q̂ijkxjxk + Ĉijk�xjxkx�, (4.18b)

with the following closed quantities denoted by a hat:

F̂i = Fx
i + ν−1

α Qxyy
iαασασα/2 (4.19a)

L̂ij = Lxx
ij + ν−1

α Lxy
iαLyx

αj (4.19b)

Q̂ijk = Qxxx
ijk + ν−1

α

(
Lxy

iαQyxx
αjk + 2Qxxy

ijα Lyx
αk

)
(4.19c)

Ĉijk� = 2ν−1
α Qxxy

ijα Qyxx
αk�. (4.19d)

We will refer to the secondary reduction of a standard rank-r POD–Galerkin model to the
cubic model (4.18b) as the MMR approach to closure modelling.

The terms in the closure model are computed by summing the Galerkin tensors over
the fast variables. As a mnemonic for these averaged quantities, the superscripts for the
partitioned system could be thought of as tensor contractions with the modification of the
damping ν−1

α . For example, the cubic term Qxxy
ijα ν

−1
α Qyxx

αk� is suggestive of the slow variables
‘filtering through’ the fast dynamics via the quadratic interactions Qyxx and Qxxy.

Although the constant, linear and quadratic terms are all modified as a result of
the stochastic averaging procedure, the appearance of this cubic term is perhaps the
most noteworthy. It represents the leading-order contribution of the fast–slow nonlinear
interaction in the slow dynamics due to the slow–slow interaction in the fast dynamics.
We will explore this in more detail in the following section, but it is a generalization of the
weakly nonlinear Stuart–Landau mechanism (Landau 1944; Stuart 1958) that is capable of
resolving the stabilizing influences of both mean-flow deformation and the energy cascade.
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Multiscale model reduction

The final ingredient in the multiscale closure model (4.18b) is the determination of
the damping and diffusion coefficients να and σα . A reasonable approximation for the
diffusion could be the mean of the neglected term σα = ∑

β Qyyy
αββy2

β, although in our
numerical examples we find little difference from neglecting the diffusion altogether. For
the damping term we apply an energy-balance condition on the closed model, derived
from the assumption that the system is statistically stationary so that the average variation
of kinetic energy vanishes (Noack et al. 2011)

∂

∂t
x2

i = f̂i(x)xi = 0. (4.20)

When the closed tensors (4.19) are substituted for f̂ (x), this simplifies to a linear system
of equations for ν−1. The energy-balance approximation does not require statistics of the
fast variables, but due to the cubic term it does require well-converged fourth moments of
the slow variables. In particular, the vector νinv , which is the element-wise inverse of ν, is
the solution to the linear system

Aνinv + b = 0, (4.21a)

Aiα =
r0∑

j=1

Lxy
iαLyx

αjaiaj +
r0∑

j,k=1

Lxy
iαQyxx

αjkaiajak

+ 2
r0∑

j,k=1

Qxxy
ijα Lyx

αkaiajak + 2
r0∑

j,k,�=1

Qxxy
ijα Qyxx

αk�aiajaka� (4.21b)

bi = Lxx
ii a2

i +
r0∑

j,k=1

Qxxx
ijk aiajak. (4.21c)

In general, the damping should be positive since the linear stochastic approximation
(4.15) and its diagonal simplification are only plausible if the mean μ(x) is linearly stable
for all x. This is physically consistent with the energy cascade picture, in which we expect
that energy will primarily flow ‘downhill’ from the slow variables, representing large
coherent structures and global instabilities, to the fast variables, representing the smaller,
dissipative scales of the flow. On this basis, negative values of the damping coefficients
can also be set to zero to avoid introducing unphysical instabilities in the cubic term, for
example.

We conclude the discussion of the application to Galerkin-type systems with a
note on the computational scaling of the closure model. While the simulation of the
original linear–quadratic model is dominated by the quadratic term, which requires
O(r3) operations to evaluate, the cubic term in the closure model (4.18b) requires O(r4

0)
operations to evaluate. In some cases this may mean that the cubic model is actually more
expensive to simulate than the original Galerkin system, although whether or not this is the
case will depend on the specific values of r, the dimension of the linear–quadratic system
and r0, the dimension of the closed model. For the examples given in § 6 either r4

0 < r3,
as in §§ 6.1 and 6.2, or the two are the same order of magnitude, as in § 6.3. As we will
show, the primary advantage of this approach is not necessarily that it is faster to simulate
than the usual POD–Galerkin system, but that it is more stable and physically faithful with
many fewer modes.
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5. Flow configurations

In this work we consider models of three fluid flows: the canonical flow past a cylinder
at Reynolds number 100, a lid-driven cavity flow and an incompressible mixing layer
with two domain extents. We construct projection-based models of these flows based on
direct numerical simulation (DNS) using the open-source Nek5000 spectral element solver
(Fischer, Lottes & Kerkemeir 2008). The semi-implicit time stepping integrates diffusive
terms with third-order backwards differentiation and convective terms with a third-order
extrapolation.

Once the DNS is complete, we estimate the POD modes and coefficients using the
modred library, which provides a set of parallelized, high-performance algorithms in
Python for linear modal decompositions and model reduction (Belson, Tu & Rowley
2014). We then compute the components of the Galerkin system (2.5) by extracting the
weight matrix and necessary gradients from the POD modes with the built-in Nek5000
post-processor. Both the linear–quadratic Galerkin model (2.5) and the cubic closure
(4.18b) are simulated using the LSODA time-stepping algorithm available from scipy
with analytic Jacobian matrices for each system. The initial conditions are the orthogonal
projections of the DNS flow fields onto the POD basis.

5.1. Flow past a circular cylinder
The vortex shedding in the wake behind a cylinder at Reynolds number 100, based
on the free-stream velocity and cylinder diameter, is a canonical flow configuration for
reduced-order modelling (Noack et al. 2003) and it is shown in figure 3. We simulate
this flow on a domain of 2600 sixth-order spectral elements on x, y ∈ (−5, 15)× (−5, 5)
refined close to the cylinder wall; further details and analysis can be found in Loiseau,
Brunton & Noack (2018a) and Loiseau et al. (2018b). We first perform a global
stability analysis of the the unstable steady state, determined by solving the stationary
Navier–Stokes equations with selective frequency damping (Åkervik et al. 2006), using
a Krylov–Schur time-stepping algorithm (Loiseau et al. 2019). The transient simulation
is then initialized with the unstable steady state perturbed by the least-stable global
eigenmode, normalized so that its energy is 10−4.

The flow regime at Reynolds number 100 is beyond the Hopf bifurcation leading to
vortex shedding but below the onset of three-dimensional instability (Noack & Eckelmann
1994; Barkley & Henderson 1996; Ma & Karniadakis 2002). The flow is also far
enough from the threshold of bifurcation that weakly nonlinear analyses fail to predict
the amplitude and frequency of the vortex shedding limit cycle, although a variety of
techniques have been used to derive accurate models for the transient and post-transient
wake (Noack et al. 2003, 2011; Mantic̆-Lugo et al. 2014; Loiseau & Brunton 2018; Loiseau
et al. 2018b).

Following Noack et al. (2003) and Loiseau et al. (2018a), we compute POD modes
from 100 snapshots of the mean-subtracted velocity field, equally spaced over one period
of vortex shedding; the pressure gradient term can be shown to be negligible for Galerkin
models of this flow. In order to construct a basis that can span the deformation between
the unstable steady state and mean flow, we augment the POD basis with the ‘shift mode’,
visualized in figure 3. This additional mode is computed from the difference between
the base and mean flows and then orthonormalized with respect to the rest of the POD
modes with the Gram-Schmidt process. We denote the coefficient of this mode by aΔ(t)
to distinguish it from the usual POD modes.
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Figure 3. Vortex shedding in the wake of a circular cylinder at Re = 100. En route to the periodic
post-transient flow, Reynolds stresses deform the background flow from the unstable steady state to the
marginally stable mean flow. This can be approximated in a model by augmenting the POD basis with the ‘shift
mode’ ψΔ. The usual POD modes show the typical structure of spatial and temporal harmonics describing
periodically advecting flow features.

The full expansion basis then consists of eight POD modes capturing the limit-cycle
vortex shedding, plus the shift mode. We take the unstable steady state to be the base flow
of the modal expansion so that the origin is a fixed point of the POD–Galerkin system. This
basis accurately represents the kinematics of the post-transient flow, with a normalized
energy residual of O(10−4) (Loiseau et al. 2018a).

5.2. Lid-driven cavity flow
Lid-driven cavity flow is another idealized geometry that serves as a benchmark problem
for numerical methods and model reduction (Arbabi & Mezić 2017; Arbabi & Sapsis 2022;
Lee, Dowell & Balajewicz 2019; Rubini, Lasagna & Ronch 2020). The flow, shown in
figure 4, takes place on a square domain with (x, y) ∈ (−L, L)× (−L, L) with L = 1. A
velocity profile is imposed on the upper boundary, given by

u(x, L) = U(1 − x2)2. (5.1)

This driving velocity profile roughly approximates the shear-driven flow over an open
cavity at a much lower computational cost, although the dynamics of the shear- and
lid-driven cavities is different. The regularized fourth-order velocity profile on the lid
avoids numerical problems where the lid meets the no-slip boundaries on the other walls.

The standard Reynolds number for this flow is defined as Re = UL/ν based on the cavity
half-height and forcing velocity. The flow follows the stereotypical Ruelle–Takens route
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u(x, 1) = (1 − x2)2
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Figure 4. Regularized lid-driven cavity flow at Re = 20 000. The singular value spectrum is slow to converge
(a,b), indicating that relatively many modes are necessary for an accurate kinematic approximation. The leading
POD modes themselves appear roughly in pairs with similar spatial structure and frequency content (c). As for
the cylinder wake shown in figure 3, this usually indicates oscillatory dynamics, although the evolution of the
temporal coefficients is much more irregular in this chaotic flow than for the periodic wake.

to chaos parameterized by Reynolds number, undergoing a Hopf bifurcation at Re(2)c ≈
10 250, a secondary Hopf bifurcation to quasiperiodic flow at Re(2)c ≈ 15 500, and a final
bifurcation to chaos near Re(3)c ≈ 18 000 (Lee et al. 2019). We simulate the flow in the
chaotic regime at Re = 20 000.

The numerical configuration is similar to that described by Arbabi & Sapsis (2022).
The domain is discretized with 50 seventh-order spectral elements in each direction,
refined towards the walls. The flow is integrated for 3000 time units, saving snapshots
at a sampling rate Δt = 0.1. Again, the pressure gradient term vanishes for this closed
flow (Noack et al. 2005), so the velocity POD modes are computed from the first 5000
snapshots, with the remaining 25000 snapshots retained for the statistical comparison in
§ 6.2. Figure 4 shows a snapshot of the DNS along with the leading POD modes and the
singular value spectrum.

5.3. Incompressible mixing layer
As a more difficult test of the proposed MMR closure method, we also examine models
of an incompressible mixing layer, pictured in figure 11. The mixing layer is a canonical
example of a free shear flow exhibiting convective instability (Monkewitz & Huerre 1982;
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Huerre & Monkewitz 1985, 1990). Inlet forcing is used to excite Kelvin–Helmholtz
instability waves, which roll up into approximately discrete vortices. These vortices are
subject to a secondary instability (Brancher & Chomaz 1997) and undergo successive
helical pairing at the subharmonic of the primary Kelvin–Helmholtz frequency, a process
that drives the linear growth of the mixing layer (Winant & Browand 1974). At higher
Reynolds numbers and in three dimensions, the turbulent mixing layer is dominated by the
linear growth of coherent structures similar to those seen in two-dimensional simulation
(Brown & Roshko 1974; Stanley & Sarkar 1997), which play a major role in mixing,
transport and entrainment of the turbulent flow (Hussain 1981). From a global perspective,
the flow behaves as an amplifier, where strong non-normality in the linear operator results
in transient algebraic energy growth of small perturbations (Chomaz 2005).

By analogy to numerical methods, modelling an advection-dominated flow with a
POD–Galerkin approach is generally ill advised in much the same way that pseudospectral
methods are not ideal for solving hyperbolic (advection) equations. Although the vortices
shed in the flow past a cylinder are also travelling waves in a sense, the Kelvin–Helmholtz
instability in the mixing layer is convective in nature in contrast with the absolute
instability in the cylinder wake. For these reasons, Galerkin projection onto a global modal
basis such as POD is not a natural way to approximate shear flows like the mixing layer.
Nevertheless, both free and wall-bounded shear layers are present in a wide variety of
flows, so in order to employ a low-dimensional dynamical systems model it is important
that it be able to capture these features. The challenge of modelling advection-driven
phenomena in a global reduced-order modelling framework motivates the use of similar
configurations in several studies of stabilization methods for Galerkin-type systems
(Ukeiley et al. 2001; Noack et al. 2005; Balajewicz, Dowell & Noack 2013; Cordier et al.
2013).

Since the flow becomes increasingly complex downstream, the difficulty of modelling
the flow can be tuned by varying the streamwise extent of the domain. In contrast, the
observed dynamics of the cylinder wake and lid-driven cavity is not strongly dependent
on domain extent. We construct models on both short (Lx = 150) and long (Lx = 250)
domains, as shown in figure 5. Over the extent of the short domain, the flow is mainly
characterized by the initial instability and vortex rollup, with the earliest signs of vortex
pairing at x � 130. On the full domain, the vortex pairing accounts for a much larger
fraction of the fluctuation kinetic energy, as shown by the POD analysis below.

The inlet profile is a standard hyperbolic tangent

U( y) = Ū + (ΔU/2) tanh 2y, (5.2)

where Ū = (U1 + U2)/2 ≡ 1 and ΔU = U1 − U2 in terms of the free-stream velocities
U1 and U2 above and below the layer, respectively, and the length scale is
non-dimensionalized by the initial vorticity thickness δω = ΔU/U′(0). We define
a Reynolds number Re = δω(0)ΔU/ν based on initial vorticity thickness, velocity
difference ΔU across the layer and kinematic viscosity ν and set Re = 500 in the
simulation. The domain consists of 5200 eleventh-order spectral elements on x, y ∈
(−10, 300)× (−50, 50), but the full streamwise extent is masked to x, y ∈ (0, 250)×
(−20, 20) for modelling in order to discount any boundary effects. The domain is shown
in figure 11.

This configuration roughly follows that described by Balajewicz et al. (2013) and
Cordier et al. (2013), with two key differences. First, we simulate incompressible flow,
while these authors simulate isothermal compressible flow at low Mach numbers (Ma ∼
0.1). Consequently, we replace the ‘sponge’ boundary conditions for far-field acoustic
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Figure 5. Proper orthogonal decomposition applied to the mixing layer. The primary shear layer instability
forms Kelvin–Helmholtz waves that roll up into vortices, which in turn undergo successive vortex pairing (a).
Modes computed on both the short and long domains (c) reveal modes related to the dominant flow features:
the shear layer instability and the downstream vortex pairing. Although the vortex pairing is secondary to
the upstream instability, on the longer domain it accounts for a larger proportion of the fluctuation kinetic
energy (b). Higher-order modes not pictured here include harmonics, nonlinear cross-talk and modes related to
irregularity in the location of the vortex pairing events.

waves with a region of increased viscous damping corresponding to Re = 50 for x > 250
to avoid numerical instability at the outflow. Second, rather than disturbing the inlet with
random solenoidal perturbations, we use eigenfunction forcing described in Appendix A,
similar to that employed by Colonius, Lele & Moin (1997).

The DNS is run until a final time of t = 2820, corresponding to fifty periods of the
lowest-frequency component of the eigenfunction forcing, saving at every tenth time step
with Δt = 0.00705. The POD modes are then computed from the first 10 % of these
snapshots (4000 fields), with the remainder reserved for statistical comparison with the
models. The domain truncation can be accomplished by simply setting elements of the
weight matrix W in (2) to zero for mesh locations with x > Lx so that these locations do
not contribute to the statistics in the correlation matrix. For the mixing layer we compute
modes with both velocity and pressure fields, as described in § 2, since the pressure
gradient term is not necessarily negligible in Galerkin models of free shear flows (Noack
et al. 2005).

Figure 5 shows the leading POD eigenvalues and modes for both domains. In both
cases the bulk of the fluctuation kinetic energy is contained in the first four modes,
with the remainder of the spectrum decaying relatively slowly. As expected, the dominant
mode pair for the shorter domain corresponds to the Kelvin–Helmholtz waves, while the
second pair represents the onset of vortex pairing at roughly half the spatial wavenumber.
Higher-order modes are either harmonics (such as the third mode pair) or less regular
downstream structures related to slight variations in the vortex pairing.

The directed graph of energy transfers in figure 1 is constructed from the modes
computed on the short domain. Specifically, the leading mode pair and its first three
harmonics are shown for a simple visualization of the energy cascade; the nodes
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labelled a1–a8 thus actually correspond to mode pairs (ϕ1,ϕ2), (ϕ5,ϕ6), (ϕ17,ϕ18) and
(ϕ24,ϕ25). The thickness of the edge from node ai to aj is proportional to

∑
k Qijkaiajak

for the quadratic Galerkin tensor Q, which is roughly related to average nonlinear energy
transfer from one mode to the other, although it should not necessarily be interpreted in
any rigorous way beyond the purposes of conceptual visualization of the energy cascade.

On the longer domain the vortex pairing makes up a larger proportion of the fluctuation
kinetic energy. Consequently, the leading four modes are spatially localized downstream,
representing vortex pairing, while the upstream linear instability is not evident until the
third mode pair, even though the vortex pairing is secondary to the shear layer instability
from a physical perspective.

The slowly decaying POD spectrum and wave-like spatial structure of the modes are
a consequence of the advection-driven nature of this flow. It is well known that the
space–time separation of variables assumed by POD is not a natural representation of
travelling waves. This is one reason that free shear flows have long posed difficulties for
POD–Galerkin modelling, making this a challenging test case for the MMR approach.

6. Results

In this section we evaluate the proposed MMR closure method on several numerical test
problems. In § 6.1 we analyse vortex shedding behind a circular cylinder, showing that
the method reproduces the classic invariant manifold model due to Noack et al. (2003),
which must account for both mean-flow deformation and the energy cascade in order to
accurately model the transient dynamics. As a more challenging test in § 6.2, we show that
the multiscale closure stabilizes a reduced-order model of the chaotic lid-driven cavity
flow, while closely matching the spectral energy content of the DNS. Finally, in § 6.3 we
develop a model for convective instability and subharmonic vortex pairing in the spatially
evolving mixing layer.

By means of these examples, we show that the proposed approach for multiscale closure
is a systematic method for eliminating degrees of freedom from reduced-order models
that can resolve critical subscale phenomena and produce stable models of dynamically
complex unsteady flows. More broadly, the multiscale framework represents a general
description of the means by which effective cubic nonlinearity arises in low-dimensional
models.

As a general comment on the following figures, in order to evaluate the quality of the
dynamical approximation (rather than that of detailed time-series forecasts) we choose
visualizations that capture the overall statistical behaviour of the system more broadly than
time series. In particular, we focus on fluctuation energy levels, estimated power spectral
densities and phase portraits, which may be interpreted as approximate slices of joint
probability distributions. However, for the sake of completeness we provide a comparison
of forecasting errors in Appendix C.

6.1. Vortex shedding in the cylinder wake
In this section we revisit the canonical two-dimensional flow past a circular cylinder to
show that the MMR closure can naturally resolve the stabilizing effects, both of mean-flow
deformation and of energy transfer to higher-order modes, without assuming proximity to
a bifurcation.

In keeping with previous work demonstrating that the cylinder wake can be modelled
accurately with as few as two degrees of freedom, we reduce the 9-mode POD–Galerkin
system to a 2-mode generalized Stuart–Landau model (4.18b) with the closure model (4.19)
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Figure 6. Reduced-order models of the cylinder wake. The standard 9-mode Galerkin model accurately
estimates the stable limit cycle (a), but the transient dynamics deviates from the slow manifold, leading to
an energy overshoot (b). Both the two-dimensional invariant manifold reduction (Noack et al. 2003) and
MMR closure models prevent this by eliminating the rapidly equilibrating variable associated with mean-flow
deformation, but MMR more accurately estimates the limit-cycle amplitude. The full flow field can be
reconstructed by approximating the harmonics with polynomial regression (c).

and damping derived from the energy-balance relation (4.20). The first 9 modes capture
>99.9 % of fluctuation kinetic energy for this flow. In this case, the elimination of the
higher-order modes does not require sacrificing kinematic resolution, since the unresolved
coefficients can be approximated as sparse polynomial functions of the resolved variables
(Loiseau et al. 2018a; Callaham et al. 2022).

Figure 6(a) compares the energy of the first mode pair, E(t) = a2
1(t)+ a2

2(t), predicted
by the POD–Galerkin model and the 2-mode closure model, with DNS of the transient
flow initialized from the unstable steady state and perturbed by the least-stable eigenmode.
Also included for comparison is the invariant manifold model introduced by Noack et al.
(2003). Although the Galerkin model is stable and accurately predicts the amplitude of the
vortex shedding, it exhibits a transient energy overshoot before settling onto the limit cycle.
Figure 6(b) shows the reason for this; whereas the DNS is restricted to an approximately
parabolic invariant manifold, the finite relaxation time in the shift mode dynamics results
in the energy of the leading modes continuing its exponential growth for longer before the
energy can be absorbed into the mean-flow deformation.

In contrast, the cubic term in the MMR and invariant manifold models approximates
the relaxation of the shift mode dynamics as instantaneous, pinning its amplitude to that
of the primary mode pair. While the structure and interpretation of the two models is
the same, there are quantitative differences in their accuracy. In particular, the manifold
model slightly overestimates the energy of the limit cycle, with mode amplitudes larger
than the DNS by ∼13 %, while the multiscale closure accurately predicts the limit-cycle
amplitude. This discrepancy can most likely be attributed to the energy-balance procedure
used to estimate the subscale damping ν in the MMR model, which is not used in the
invariant manifold model.
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Figure 7. Reduced-order models of the lid-driven cavity flow. The Galerkin system eventually equilibrates
at much higher energy levels, while the MMR closure model produces stable predictions that closely match
the power spectrum of the chaotic flow (a,b). The reconstructed fields from the MMR model are also more
physically consistent with the DNS than the Galerkin model (c). For comparison, the top right panel shows the
reconstruction of the DNS flow field using an equal number of modes as the POD–Galerkin system (r = 64).

Finally, the full flow field can also be reconstructed from the two-degree-of-freedom
multiscale model by means of the sparse polynomial approximation to the nonlinear
correlations in the higher-order modes (figure 6c). The flow field predicted by the model
gives a good approximation of the DNS solution, although over long times the phase
of the vortex shedding tends to drift from that of the high-dimensional solution. By
systematically averaging over the fast variables, the multiscale closure method is thus able
to reduce the dimensionality of the model while also improving its fidelity.

6.2. Chaotic lid-driven cavity flow
The Stuart–Landau equation derived for the cylinder wake in § 6.1 is an example of a
relatively simple nonlinear oscillator with either a stable fixed point or periodic limit cycle
as an equilibrium. Here, we show that the MMR closure approach can also be applied to
systems with a more complex dynamics, as illustrated on the chaotic lid-driven cavity flow
introduced in § 5.2.

First, we construct a standard POD–Galerkin model with r = 64 modes, sufficient
to capture ∼99.8 % of the fluctuation kinetic energy. The Galerkin system is chaotic
and energetically stable. Despite its precise kinematic resolution, the Galerkin model is
inaccurate, overestimating the kinetic energy by roughly one order of magnitude, as shown
by the blue traces in figure 7.

Reducing the model to r0 = 21 degrees of freedom via a multiscale closure stabilizes it
with an equilibrium energy that approximately matches the power spectrum of the DNS
(figure 7, orange). The MMR model still retains enough modes for a ∼98 % accurate POD
reconstruction. The predicted flow fields are coherent and qualitatively consistent with the
DNS fields, even though they do not match in every detail due to the chaotic nature of the
flow.
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Varying the dimension r0 of the approximate slow variables results in models that are
energetically stable, but not necessarily chaotic. Instead, many such models eventually
settle onto a post-transient dynamics that is periodic or quasi-periodic. The persistence
of the dominant frequencies suggests that, even for models with relatively many degrees
of freedom (r0 > 2), the generalized Stuart–Landau equations produced by the MMR
closure scheme can be viewed as coupled nonlinear oscillators, especially when the spatial
components of the POD modes suggest that they may be grouped in pairs with similar
temporal frequency content.

6.3. Convective instability and vortex pairing in a mixing layer
Advection-dominated flows have historically posed a challenge for reduced-order models,
primarily because the global mode ansatz of POD is a poor representation of travelling
waves. As a final numerical example, we apply the MMR closure to model the mixing
layer introduced in § 5.3, a canonical example of convective instability in free shear flows.

In one sense, the dynamics of the mixing layer is relatively simple. The flow close to
the inlet is dominated by the shear layer instability and subsequent vortex roll-up. These
vortices are advected downstream at approximately the midline flow velocity, until the
secondary vortex pairing begins at the subharmonic of the primary instability frequency.
However, since this behaviour unfolds as the disturbances are carried downstream, a
principal challenge for low-dimensional models based on global POD modes is to preserve
phase coherence between the harmonics and subharmonics, so that the reconstructed flow
fields consist of approximately discrete vortices undergoing the vortex pairing.

As discussed in § 5.3, both the POD mode basis and the difficulty of modelling this
flow depend on the streamwise extent of the domain. Since the subharmonic vortex pairing
is energetically dominant downstream, the leading POD modes computed from a longer
domain will be related to vortex pairing, even though the primary shear layer instability
drives the dynamics from a physically causal perspective. To illustrate this effect, we
consider two domain lengths: one that is dominated by the primary instability and vortex
roll-up, and the full modelling domain with vortex pairing.

In this case the POD–Galerkin models do not necessarily improve with an increasing
number of modes. For both domains, the best dynamical approximation is found for
models constructed from r = 24 modes, corresponding to 99.8 % of fluctuation kinetic
energy on the short domain and 98.4 % on the long domain. On the short domain
(Lx = 150), this model is energetically stable but eventually approaches an unphysical
fixed point (figure 8). On the longer domain (Lx = 250), the model initially follows the
DNS trajectory before eventually becoming unstable (figure 9). In either case, increasing
the dimension of the POD–Galerkin model resulted in worse models. We then reduce
the 24-dimensional Galerkin systems to r0 = 16-dimensional generalized Stuart–Landau
models with the MMR closure.

Figure 8 shows the comparison of the closed model with the DNS and Galerkin systems
for the short domain. The MMR model closely matches the phase portraits of the DNS,
indicating that it preserves the phase relationships between the various modes, including
the early subharmonic vortex pairing (a3, a4) and higher harmonics, e.g. (a5, a6). This
remains true even when integrated to very long times (the final integration time is t = 2820
in this case, as with the DNS described in § 5.3). As a result, the approximated fields are
highly coherent, with the same pattern of vortex roll-up, advection, and pairing as seen in
the DNS (figure 8b–d).
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Figure 8. Models of the mixing layer on a short domain. The phase portraits of the mode pairs (a) show
phase locking between the fundamental mode pair (a1, a2), the subharmonic vortex pairing (a3, a4), and the
first harmonic (a5, a6). These phase relationships are preserved by the MMR closure, resulting in physically
consistent flow field estimates (b–d).
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Figure 9. Mixing layer models on the long domain. While standard POD–Galerkin models are energetically
unstable until at least r = 64, the multiscale closure stabilizes the model with only 16 variables (a,b). The
model also remains coherent on long integration times (see also figure 10), producing flow field predictions
that are consistent with the large-scale structure of the DNS (c–e).

On the longer domain, the multiscale closure also stabilizes the Galerkin model. Figure 9
compares the true energy content of the POD coefficients with that predicted by the model,
both in the time and frequency domain. Although the evolution of the energy matches at
the dominant frequencies, the MMR model does not capture the weakly chaotic dynamics
exhibited by the DNS as a result of slight irregularity in the vortex pairing. Instead, after
a brief transient the solution becomes approximately periodic with phase locking between
the modes (figure 10). As with the short domain, this synchronization ensures that the
predicted flow fields remain coherent, even when integrated for long times (figure 9c–e).

As might be anticipated based on the more complex dynamics on the longer domain,
the fields predicted by the MMR model do not match the DNS quite as closely as on the
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Figure 10. Phase portraits of the mixing layer model on the long domain. The MMR closure (orange)
closely matches the DNS trajectories (black) for the most energetic modes, even though the structure is more
complicated than the Lissajous-type harmonics on the short domain (figure 8). This figure does not show a
Galerkin model for comparison because they are energetically unstable (figure 9).

shorter domain, particularly closer to the inlet. This is likely because fine-scale resolution
of the upstream region of the flow requires higher harmonics of the primary instability
that do not appear in the POD modes of the longer domain until much higher-order
mode number. Higher-resolution predictions might therefore be constructed by applying
nonlinear correlations analysis and polynomial regression to selected higher-order modes,
as in the cylinder reconstruction in § 6.1; see also Loiseau et al. (2018a) and Callaham
et al. (2022). Still, the dominant vortices are still evident in the prediction of the
low-dimensional model, even in the downstream pairing region.

On both domains, the synchronization and long-time phase coherence between the
modes further reinforces the picture outlined in § 6.2 of the closure model as consisting of
coupled nonlinear oscillators. Although the description of this flow in terms of spatially
fixed global modes is not an ideal representation of the advection-driven dynamics, the
proposed MMR closure method is able to successfully stabilize the POD–Galerkin models
and accurately capture the phase relationships necessary for accurate predictions of the full
flow fields.

7. Conclusion

In this work, we have developed a MMR approach to improving linear–quadratic
dynamical systems derived from POD–Galerkin projection of the Navier–Stokes
equations, with the addition of systematically computed cubic closure terms. These cubic
closure terms are derived through an adaptation and application of a multiscale stochastic
averaging method that originated in singular perturbation theories of Markov processes
(Kurtz 1973; Papanicolaou 1976; Majda et al. 2001; Weinan 2011; Pavliotis & Stuart
2012). Whereas the standard truncation of the Galerkin system disregards the influence
of unresolved variables, the proposed MMR method accounts for their effect through
averaging via a stochastic Koopman operator. In particular, this approach is able to
model nonlinear interactions between resolved and unresolved variables, capturing key
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mechanisms such as mean-flow deformation and the energy cascade. The closed model
includes cubic terms, taking the form of generalized Stuart–Landau equations that often
act as coupled nonlinear oscillators.

Since the derivation of the MMR closure method relies on an asymptotic time-scale
separation between resolved and subscale variables that is generally absent in fluid flows,
we have not attempted to prove the general validity of this approach when the flow is not
close to a bifurcation. Instead, we demonstrated by numerical example that the method
dramatically improves the stability and accuracy of low-dimensional models of unsteady
fluid flows compared with the standard POD–Galerkin models. After a comparison with
the well-known benchmark problem of vortex shedding in a cylinder wake, we have
shown that the MMR method can reproduce the chaotic dynamics in lid-driven cavity
flow. Finally, we developed models of an incompressible mixing layer and showed that
the coupled-oscillator MMR closures not only stabilize the models, but preserve phase
relationships between the modes, which is critical for physically consistent predictions of
advection-driven flow.

These results raise several possibilities for interesting future work. For example, the
mixing layer is an ‘amplifier’ flow characterized by convective instability and transient
energy growth. It is therefore highly sensitive to the nature of the upstream flow; models
developed for a specific inlet forcing may not generalize. Further consideration of this
issue could be the foundation of a multiscale approach to input/output models in the
resolvent framework (McKeon & Sharma 2010; Sharma & McKeon 2013; Zare, Jovanović
& Georgiou 2017; Padovan et al. 2020; Pickering et al. 2021). In this work we neglect
the time-varying boundary condition in the region upstream of the modelling domain,
but an input/output model could more properly treat this explicitly as forcing, as is done
for instance in control-oriented reduced-order models (Barbagallo, Sipp & Schmid 2009;
Sipp et al. 2010). Recent work on trajectory-based optimal oblique projections has also
shown promise for capturing dynamically important, but typically low-energy, modes in
an input–output framework for model reduction of open shear flows (Otto, Padovan &
Rowley 2022).

Amplifier flows are therefore one potential failure mode for the MMR method as
presented here. This may be understood as a reflection of the unsuitability of standard
POD–Galerkin for input–output modelling. By extension, without further development
MMR would also most likely struggle to model configurations with time-varying base
flows or actuation. As a more fundamental limitation, this approach does depends on the
presumption of underlying low-dimensional structure in the dynamics of the flow. As a
limiting case, MMR would likely fail to produce useful models of homogeneous isotropic
turbulence.

As discussed for the chaotic lid-driven cavity flow in § 6.2, we have observed that the
MMR models often tend towards phased-locked periodic or quasiperiodic solutions rather
than chaos, consistent with the idea of a system of weakly coupled oscillators. However,
we expect that in the development of models of chaotic or turbulent flows it may be helpful
to re-introduce some degree of stochasticity to better match the flow statistics. Fortunately,
this is straightforward in the multiscale modelling framework (Weinan 2011; Pavliotis &
Stuart 2012). For instance, the homogenization method (Majda et al. 2001) begins from
slightly different scaling assumptions and results in a closed model in which the fast-scale
stochastic forcing appears as a new diffusion term. A careful investigation of different scale
separation assumptions and stochastic approximations could be valuable in extending this
framework to turbulent flows. The diagonal drift approximation could also be revisited;
numerical estimation of the ‘stationary’ distribution of the fast Ornstein–Uhlenbeck
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process by solving the Lyapunov equation at each time step may improve the accuracy
of averaging enough to justify the additional computational cost.

Moreover, since successful POD–Galerkin models of chaotic or turbulent flows often
depend on explicit models of mean-flow deformation (Aubry et al. 1988; Ukeiley et al.
2001) or subscale dissipation (Rempfer & Fasel 1994; Noack et al. 2008; Wang et al.
2012; Cordier et al. 2013; Östh et al. 2014), both of which can be approximated naturally
in the multiscale modelling framework, the MMR approach may be useful as a general
approach to subscale and mean-flow modelling that is independent of the flow geometry.

The potential application to flows with continuous spectral components still relies
conceptually on the existence of low-dimensional structure in the flow, although the
success of filtering in flows with broadband turbulence to perform large-eddy simulation
(LES) raises the possibility of a subscale LES-type closure model based on multiscale
analysis. This might take the form of a multiple-scale expansion in both space and time or
of a filter designed for the isotropic scales of turbulence, for instance. In either case, the
Stuart–Landau form of the MMR closure model suggests that a spatio-temporal analysis
would be akin to a Ginzburg–Landau theory of turbulence modelling.

In this work we have only considered a linear–quadratic dynamics derived from
POD–Galerkin projection. This has the advantage of being based on the governing
equations, but recent work has shown that data-driven model discovery can be a
powerful alternative (Brunton et al. 2016; Loiseau & Brunton 2018; Loiseau et al.
2018a,b; Deng et al. 2020; Qian et al. 2020; Rubini et al. 2020; Callaham et al. 2022).
Data-driven modelling is especially useful when the governing equations are unknown
or projection-based modelling is not as straightforward, as for incompressible fluid flow
(Loiseau 2020; Qian et al. 2020; Guan, Brunton & Novosselov 2021). In a sense,
data-driven modelling might circumvent the need for closure modelling by fitting directly
to the time series, including leveraging the intuition that cubic terms will appear in
the effective dynamics (Loiseau & Brunton 2018). However, the linear–quadratic system
has certain symmetries and conservation properties that can be enforced in constrained
regression to a quadratic model (Schlegel & Noack 2015; Loiseau & Brunton 2018;
Kaptanoglu et al. 2021a,b), while extending these properties to cubic nonlinearity is not
straightforward. An interesting future direction could be exploring a two-step process, first
identifying a quadratic model that satisfies the constraints, and then applying the MMR
closure to reduce it to a lower-dimensional cubic model. Since the empirical models are
often sparse, this could potentially result in models with improved stability and scaling
compared with the projection-based approach. Alternatively, a more flexible deep-learning
model could be used to replace the proposed diagonal drift approximation, for instance
with a modified variational autoencoder (Kingma & Welling 2013) that parameterizes the
distribution of subscale variables conditioned on the slow variables.

It will also be interesting to extend this analysis to systems where the leading-order
cubic terms tend to destabilize the system, such as the subcritical bifurcation in plane
Poiseuille flow (Stewartson & Stuart 1971). This is an important scenario in the transition
to turbulence, particularly for shear flows in which non-normal energy amplification can
activate the nonlinearity even when the flow is globally stable. Higher-order effective
nonlinearity could potentially be incorporated into the framework via state-dependent
diffusion or an alternative fast drift model, for instance.

Beyond the context of POD–Galerkin reduced-order modelling, the MMR framework
represents a general theory of effective cubic nonlinearity arising in amplitude equations
for global modes in quadratically nonlinear fluid flow. The system of generalized
Stuart–Landau equations produced by the closure model presents a picture of the flow as
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a set of coupled nonlinear oscillators describing the evolution of mode pairs. Close to the
threshold of instability the MMR closure is consistent with a weakly nonlinear analysis,
but it does not rely on proximity to a bifurcation. The multiscale modelling methodology
is therefore an alternative to standard asymptotic expansions that may have implications
for a variety of theoretical and numerical approaches to modelling the large, slow scales
of unsteady fluid flows.
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Appendix A. Stability analysis of the mixing layer inlet profile

This appendix describes the eigenfunction forcing applied at the inlet of the mixing layer
configuration described in § 5.3. The flow acts an amplifier (Huerre & Monkewitz 1985,
1990; Chomaz 2005), so the downstream flow is highly sensitive to the inlet conditions;
eigenfunction forcing accentuates the natural dynamics of the flow.

Since the dominant Kelvin–Helmholtz instability is inviscid (Michalke 1964), we derive
the forcing from a temporal stability analysis of the inviscid equations linearized about
the parallel hyperbolic tangent inlet profile u(x) = (U( y), 0). Defining a perturbation
streamfunction ψ(x, t) with real wavenumber α and complex velocity c = cr + ici

ψ(x, t) = Re
{
ψ̂( y) exp(iα(x − ct))

}
, (A1)

the evolution of the perturbation is given by the Rayleigh equation

(U − c)
(

d2

dy2 − α2
)
ψ̂ − U′′ψ̂ = 0. (A2)

For each wavenumber α, this can be written as a generalized eigenvalue problem

A(α)ψ̂j( y;α) = c(j)B(α)ψ̂j( y;α), (A3)

for the jth velocity c and perturbation streamfunction ψ̂ , where we use the convention of
sorting by decreasing Im{c(j)}.

The base profile is odd, so the real phase velocity is the midline value cr = Ū
(Michalke 1964). With Ū = 1, perturbations oscillate with frequency ω = α and growth
rate σ(α) = αci(α). For further details on linear stability analysis of shear flows, see for
example Huerre & Monkewitz (1985) and Schmid & Henningson (2012). We choose
a spectral discretization of (A2) using a Hermite collocation scheme from a Python
implementation of the dmsuite library (Weidemann & Reddy 2000). We find the
least stable wavenumber α∗ by maximizing the growth rate σ (i.e. minimizing -αc(1)i )
using an implementation of the BFGS algorithm available in scipy. Since this departs
from the standard shooting method, we validate it against Michalke (1964), who uses
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Figure 11. An incompressible mixing layer at Re = 500. The hyperbolic tangent base flow is convectively
unstable, amplifying small perturbations as they are carried downstream. We force the flow at the inlet with
eigenfunctions of inviscid flow equations linearized around the base flow (left). The central part of the domain
is used for further modelling to avoid boundary effects, while the downstream extent x ∈ (250, 300) is strongly
damped to prevent numerical instability at the outlet.

the profile U( y) = 0.5(1 + tanh y) based on non-dimensionalizing with the shear layer
thickness δω/2 rather than vorticity thickness. With that profile we find a least-stable
wavenumber α∗ = 0.4449 and growth rate σ = 0.0949 compared with the reported results
of α∗ = 0.4446 and σ = 0.0949. For the present base profile (5.2) we find α∗ = 0.8912
and σ = 0.2129.

Once the wavenumber α∗ and eigenfunction ψ̂1 corresponding to the maximum growth
rate is identified, the inlet velocity perturbation can be computed from

û1( y;α∗) = ψ̂ ′
1( y;α∗), v̂1( y;α∗) = iα∗ψ̂1( y;α∗). (A4a,b)

The optimal perturbations are shown in figure 11. Following Colonius et al. (1997), we
also apply forcing at the first three subharmonics of the least-stable mode computed from
solving (A2) at α∗/2, α∗/4, and α∗/8, rescaling each so that the maximum value of û1
is 10−3ΔU. We perturb the inlet profile by Re{û1( y, αn) exp(iωnt)} for n = 1, 2, 4, 8 and
αn = ωn = α∗/n and use a simulation time step of Δt = 0.00705 = 10−3 × 2π/α∗, so
that the sampling rate of the simulation is commensurate with the forcing frequency.

Appendix B. Variable truncation of the mixing layer model

One of the limitations of projection-based reduced-order modelling for systems without an
explicit scale separation is a lack of principled criteria for selecting the truncation rank, or
dimension of the projection subspace. A common approach is to use ad hoc criteria such
as the number of modes required to resolve some fraction of the fluctuation kinetic energy
(e.g. 90 % or 99 %) on average. To some extent this simply replaces the arbitrary choice
of rank truncation with an equally arbitrary choice of approximation accuracy. This is
especially the case when the dynamic approximation accuracy of the reduced-order model
does not monotonically improve with increasing kinematic approximation accuracy (as
can be seen in figure 9, for instance).

Unfortunately, this problem is compounded in the secondary reduction step of the MMR
method, since one must select both the rank r of the original POD–Galerkin system and the
rank r0 of the final MMR system. Our approach in this work was to follow the heuristic
of simulating the POD–Galerkin system at various values of r and choosing that which
performs best or remains stable for longest (e.g. r = 24 for the mixing layer model in
figure 9). The final MMR models then typically behave similarly for a range of final ranks
r0.
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Figure 12. Alternative truncations of the mixing layer model in § 6.3. Rather than the ‘optimal’ value of
r = 24, the MMR models shown here are constructed from Galerkin systems of rank r = 64. While the
POD–Galerkin models are inaccurate and energetically unstable for any rank truncation, while the MMR
models are less sensitive to the specific values of rank truncation.

However, in order to show that the method is relatively insensitive to the specific choices
of rank truncation, here we repeat the model reduction for the mixing layer on the longest
domain shown in figure 9. These models begin with r = 64 rather than the ‘optimal’
POD–Galerkin rank of r = 24. Although less accurate than the model reported in § 6.3, the
resulting models are stable for all values r0 of the final rank and significantly outperform
any POD–Galerkin model as shown by figure 12.

As a more principled example, figure 13 shows a model constructed by choosing a
kinematic reconstruction accuracy threshold of 99 % for the POD–Galerkin rank r. The
MMR rank r0 is then selected with the classic ‘elbow’ criterion, which selects a truncation
level based on the inflection point of the singular value distribution. Again, the model is
less accurate than the results shown in in § 6.3, but significantly more stable and accurate
than any Galerkin system. Thus, while a principled approach to rank selection is an open
problem for both POD–Galerkin modelling and the proposed multiscale reduction, the
latter appears generally less sensitive to this choice.

Appendix C. Forecasting accuracy

As discussed in § 6, MMR is not primarily intended to produce accurate forecasts over long
time horizons. The underlying POD–Galerkin model is developed based on optimizing the
estimate of the instantaneous time derivative, which does not necessarily result in optimal
finite-time predictions. Since MMR is developed based on asymptotic consistency with
the Galerkin system it is also not optimized for forecasting accuracy. In this, autoregressive
methods (Billings 2013) that are specifically tailored to forecasting are more appropriate.
On the other hand, dynamical accuracy is often more important than long-term forecasting
in applications such as the design of feedback controllers (Noack et al. 2011; Brunton &
Noack 2015).
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Figure 13. Truncation of the mixing layer in § 6.3 based on the singular value spectrum. In this case the initial
truncation level r = 32 is selected based on a residual of 1 %, while the MMR rank r0 = 6 is based on the
‘knee’ criterion (see text). As with the models shown in figure 12, the resulting model is stable and roughly
matches the true dynamics, but is not as accurate as the model reported in § 6.3.
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Figure 14. Time-series forecasts for the mixing layer (a,c) and lid-driven cavity (b,d). Due to the complex
dynamics of these flows, neither modelling approach produces accurate forecasts over long time horizons.
The normalized energy error ΔE(t)/E(t) is comparable between the standard POD–Galerkin and MMR
models (a,b). Predictions for leading individual coefficients show significant errors after several periods of
the dominant oscillatory frequency (c,d).
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However, for the sake of completeness figure 14 gives a comparison of the forecasting
accuracy of both the standard POD–Galerkin and MMR models. The error metric is the
normalized energy error

ΔE(t)
E(t)

= ‖aDNS(t)− aROM(t)‖2

‖aDNS(t)‖2 . (C1)

In this metric neither POD–Galerkin nor MMR produces accurate long-term forecasts.
In flows with a relatively simple dynamics (e.g. the cylinder wake or short-domain

mixing layer), small errors in the phase of oscillations tend to accumulate over time, even
if the dynamical behaviour is modelled accurately. For instance, figure 14(c) shows that
errors in MMR-based predictions of individual POD coefficients can largely be attributed
to phase drift, while the Galerkin forecast diverges due to dynamical instability.

However, if the flow is chaotic (e.g. the lid-driven cavity) then detailed forecasting on
times much longer than that determined by the Lyapunov exponent is impossible even in
principle. Hence, while MMR more accurately captures the statistical behaviour of the
lid-driven cavity flow (figure 7), it does not improve upon the finite-time predictions of the
POD–Galerkin model (figure 14d).
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ARBABI, H. & MEZIĆ, I. 2017 Study of dynamics in post-transient flows using Koopman mode decomposition.
Phys. Rev. Fluids 2, 124402.

ARBABI, H. & SAPSIS, T. 2022 Data-driven modeling of strongly nonlinear chaotic systems with
non-Gaussian statistics. SIAM/ASA J. Uncertainty Quant. 10 (2), 555–583.

AUBRY, N., HOLMES, P., LUMLEY, J.L. & STONE, E. 1988 The dynamics of coherent structures in the wall
region of a turbulent boundary layer. J. Fluid Mech. 192, 115.

BALAJEWICZ, M., DOWELL, E. & NOACK, B.R. 2013 Low-dimensional modelling of high-Reynolds-number
shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285–308.

BARBAGALLO, A., SIPP, D. & SCHMID, P.J. 2009 Closed-loop control of an open cavity flow using
reduced-order models. J. Fluid Mech. 641, 1.

BARKLEY, D. & HENDERSON, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a
circular cylinder. J. Fluid Mech. 322, 215–241.

BARTHEL, B., GOMEZ, S. & MCKEON, B.J. 2022 Variational formulation of resolvent analysis. Phys. Rev.
Fluids 7, 013905.

BARTHEL, B., ZHU, X. & MCKEON, B.J. 2021 Closing the loop: nonlinear Taylor vortex flow through the
lens of resolvent analysis. J. Fluid Mech. 924, A9.

BAZILEVS, Y., CALO, V.M., COTTRELL, J.A., HUGHES, T.J.R., REALI, A. & SCOVAZZI, G. 2007
Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Comput. Meth. Appl. Mech. Engng 197 (1), 173–201.

BELSON, B.A., TU, J.H. & ROWLEY, C.W. 2014 Algorithm 945: modred - a parallelized model reduction
library. ACM Trans. Math. Softw. 40 (4), 1–23.

BENNER, P., GUGERCIN, S. & WILLCOX, K. 2015 A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Rev. 57 (4), 483–531.

BILLINGS, S.A. 2013 Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and
Spatio-Temporal Domains. Wiley.

BRANCHER, P. & CHOMAZ, J.-M. 1997 Absolute and convective instabilities in spatially periodic shear flows.
Phys. Rev. Lett. 78 (4), 658–661.

BRENNER, M.P., ELDREDGE, J.D. & FREUND, J.B. 2019 Perspective on machine learning for advancing
fluid mechanics. Phys. Rev. Fluids 4, 100501.

BROWN, G.L. & ROSHKO, A. 1974 On density effects and large structures in turbulent mixing layers. J. Fluid
Mech. 64 (4), 775–816.
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