A DIFFUSIVE LOGISTIC EQUATION WITH MEMORY IN BESSEL POTENTIAL SPACES

ALEJANDRO CAICEDO and ARLÚCIO VIANA ${ }^{\boxtimes}$

(Received 27 January 2015; accepted 18 April 2015; first published online 16 June 2015)

Dedicated to Agnaldo Maciel Viana on his 66th birthday

Abstract

This paper is devoted to the study of the local existence, uniqueness, regularity, and continuous dependence of solutions to a logistic equation with memory in the Bessel potential spaces.

2010 Mathematics subject classification: primary 35K20; secondary 35D30.
Keywords and phrases: partial integrodifferential equation, Bessel potential spaces, logistic equation, memory effect, local well-posedness.

1. Introduction

The logistic equation that takes into account dispersal effects is given by

$$
u_{t}(t, x)=D \Delta u(t, x)+a u(t, x)-b u^{2}(t, x) .
$$

Here, $u(t, x)$ is the concentration of the population at the location x and time $t>0$, D is the diffusion coefficient and a and b are the growth rate and the crowding effect, respectively. This model has been widely utilised for many different purposes. See, for example, $[5,6,8,9,11,13,14,16,17]$ and the references therein.

Logistic equations subject to memory effects have also been considered; see, for example, [7, 10, 12, 18, 24-26]. Cushing [7] gives a systematic analysis of memory effects in population dynamics. Gopalsamy [12] investigated the asymptotic behaviour of nonconstant solutions of delay logistic equations. In particular, he considered the logistic equation with continuously distributed delays

$$
\frac{d x}{d t}=x(t)\left[a-b \int_{-\infty}^{t} H(t-s) x(s) d s\right],
$$

where a and b are positive numbers and H is a delay kernel representing the manner in which the past history of the species influences the current growth rate. Continuously distributed delays are also known as the memory.

[^0]Motivated by these considerations, we study the following logistic equation with memory starting from the initial time:

$$
\begin{equation*}
u_{t}(t, x)=\Delta u(t, x)+u(t, x)\left[a-b \int_{0}^{t} \lambda(t-s) u(s, x) d s\right] . \tag{1.1}
\end{equation*}
$$

We also consider a more general Cauchy-Dirichlet problem:

$$
\begin{gather*}
u_{t}(t, x) \Delta u(t, x)+u(t, x)\left[a-b \int_{0}^{t} \lambda(t-s)(-\Delta)^{\beta} u(s, x) d s\right] \text { in }(0, \infty) \times \Omega \tag{1.2}\\
u=0 \quad \text { on }(0, \infty) \times \partial \Omega \tag{1.3}\\
u(x, 0)=u_{0}(x) \quad \text { in } \Omega \tag{1.4}
\end{gather*}
$$

in a sufficiently regular domain $\Omega \subset \mathbb{R}^{n}$. Notice that (1.2) reduces to (1.1) whenever $\beta=0$. Here, $\lambda: \mathbb{R} \longrightarrow \mathbb{R}$ functions as a delay kernel representing the manner in which the history of the species influences the current growth rate. Condition (1.3) means that the boundary of Ω is inhospitable.

Under certain conditions, the existence of solutions to the problem

$$
\begin{gathered}
u_{t}(t, x)=\Delta u(t, x)+u(t, x)\left[a-b u-\int_{0}^{t} \lambda(t-s) u(s, x) d s\right] \\
\partial u / \partial n=0, \\
u(x, 0)=u_{0}(x),
\end{gathered}
$$

for $(t, x) \in(0, \infty) \times \Omega$, was proved by Schiaffino [19] and Yamada [24]. In [19] the initial data was taken in $\left\{\varphi \in C^{1}(\bar{\Omega}): \partial u / \partial n=0\right.$ on $\left.\partial \Omega\right\}$, whereas initial data in $\left\{\varphi \in W^{2, p}(\Omega): \partial u / \partial n=0\right.$ on $\left.\partial \Omega\right\}$ was considered in [24].

The study of partial differential equations in low-regularity spaces has attracted much interest of late, which motivates us to take the initial data in the Bessel potential space $H_{0}^{\sigma, p}=\left\{\varphi \in H^{\sigma, p}(\Omega):\left.\varphi\right|_{\partial \Omega}=0\right\}$, with $1<p<\infty$ and $0<\sigma<2$. Thus we allow more irregular initial data than Schiaffino [19] and Yamada [24]. As examples of parabolic problems treated in Bessel potential spaces, we cite the study of the Navier-Stokes equations (see [3, 4, 20, 21] and references therein) and the models of population dynamics in low-regularity spaces in the recent paper by Viana [23].

Our main result gives a unique mild solution to the problem (1.2)-(1.4) which is spatially more regular after the starting point, provided the indices N, p, σ and β are suitably chosen, and depends continuously on the initial data. Moreover, the time of existence of this solution is uniform for initial data taken in balls of small radius in $H_{0}^{\sigma, p}$, and therefore uniform in precompact subsets of $H_{0}^{\sigma, p}$.

2. Preliminaries

Given a Banach space Y, as usual, $\|\cdot\|_{Y}$ denotes the norm associated to Y. The ball of radius r and centred at $x \in Y$ is denoted by $B_{Y}(x, r)$. If X and Y are Banach spaces, $X \hookrightarrow Y$ means that X is continuously and densely embedded in Y.

Defintion 2.1. A continuous function $u:[0, \tau] \longrightarrow H_{0}^{\sigma, p}$ is said to be a mild solution for (1.2)-(1.4), if it is a solution of the following integral equation:

$$
u(t)=e^{\Delta t} u_{0}+\int_{0}^{t} e^{\Delta(t-s)} u(s)\left[a-b \int_{0}^{s} \lambda(s-r)(-\Delta)^{\beta} u(r) d r\right] d s
$$

2.1. Bessel potential spaces and the heat semigroup. Let $1<p<\infty$ and let $\sigma \in(0,2) \backslash\{1 / p\}$. The Bessel potential space $H_{0}^{\sigma, p}$ coincides with the complex interpolation space $\left[W^{2, p} \cap W_{0}^{1, p}, L^{p}(\Omega)\right]_{\sigma / 2}$ for $0<\sigma<2, \sigma \neq 1 / p$ (see [22, Section 4.3.3]).

It is well known that the Dirichlet Laplacian Δ is a sectorial operator from $W^{2, p} \cap$ $W_{0}^{1, p}$ into $L^{p}(\Omega)$ (see, for example, [15]). Therefore, by the theory developed in [2, Ch. V], the heat semigroup $e^{\Delta t}: L^{p}(\Omega) \longrightarrow L^{p}(\Omega)$ satisfies the estimate

$$
\begin{equation*}
t^{\sigma^{\prime} / 2-\sigma / 2}\left\|e^{\Delta t} \varphi\right\|_{H_{0}^{\sigma^{\prime}, p}} \leq M\|\varphi\|_{H_{0}^{\sigma, p}} \tag{2.1}
\end{equation*}
$$

for all $\varphi \in H_{0}^{\sigma, p}$ and $t>0$, where $M \geq 1$. Here $0 \leq \sigma \leq \sigma^{\prime}<2$ and neither of σ, σ^{\prime} is equal to $1 / p$. In particular, if $\sigma \in(0,2) \backslash\{1 / p\}$, then

$$
\begin{equation*}
t^{\sigma / 2}\left\|e^{\Delta t} \varphi\right\|_{H_{0}^{\sigma, p}} \leq M\|\varphi\|_{L_{p}(\Omega)} \tag{2.2}
\end{equation*}
$$

for all $\varphi \in L_{p}(\Omega)$ and $t>0$.
Remark 2.2. The following estimate is essential to treat the term which involves the fractional Laplacian:

$$
\left\|(-\Delta)^{\sigma / 2} \varphi\right\|_{L^{p}} \leq c\|\varphi\|_{H^{\sigma, p}}
$$

for all $\varphi \in H^{\sigma, p}$. This is a consequence of the equivalence between the norms $\left\|(-\Delta)^{\sigma}(\cdot)\right\|_{L^{p}}$ and $\left\|\left(I-(-\Delta)^{\sigma}\right)(\cdot)\right\|_{L^{p}}$, the fact that $\left\|\left(I-(-\Delta)^{\sigma}\right)(\cdot)\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}$ is a norm on $H^{2 \sigma, p}\left(\mathbb{R}^{N}\right)$, and that the extension operator $E: H^{s, p}(\Omega) \longrightarrow H^{s, p}\left(R^{N}\right)$ is continuous (see [1, Ch. 7]).

Henceforth, we assume that

$$
\begin{equation*}
1<p<\infty, \quad \sigma \in(0,2) \backslash\left\{\frac{1}{p}\right\} \quad \text { and } \quad \sigma \geq 2 \beta+\frac{N}{2 p} \tag{H}
\end{equation*}
$$

Under these conditions, we use the results contained in [22, Section 4.6] to obtain the embeddings

$$
\begin{equation*}
H_{0}^{\sigma, p} \hookrightarrow H^{\sigma, p}(\Omega) \hookrightarrow H^{2 \beta, 2 p}(\Omega) \hookrightarrow L^{2 p}(\Omega) \hookrightarrow L^{p}(\Omega) \tag{2.3}
\end{equation*}
$$

2.2. Nonlinear estimates.

Lemma 2.3. Let $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ be a locally integrable function. Assume that (H) holds and consider the function $g:[0, \infty) \times H_{0}^{\sigma, p} \rightarrow L^{p}(\Omega)$ defined by

$$
g(t, \varphi)=\varphi\left[a-b \int_{0}^{t} \lambda(t-s)(-\Delta)^{\beta} \varphi d s\right]
$$

Then, given $\varphi, \psi \in H_{0}^{\sigma, p}$, there exists $C>0$ such that

$$
\|g(t, \varphi)-g(t, \psi)\|_{L^{p}(\Omega)} \leq C\|\varphi-\psi\|_{H_{0}^{\sigma, p}}\left[\|\lambda\|_{L_{\mathrm{loc}}^{1}(0, t)}\left(\|\varphi\|_{H_{0}^{\sigma, p}}+\|\psi\|_{H_{0}^{\sigma, p}}^{\sigma, p}+1\right]\right.
$$

and

$$
\|g(t, \varphi)\|_{L^{p}(\Omega)} \leq C\|\varphi\|_{H_{0}^{\sigma, p}}\left(\|\lambda\|_{L^{1}(0, t)}\|\varphi\|_{H_{0}^{\sigma, p}}+1\right),
$$

where the constant C depends on $a, b,|\Omega|$ (the Lebesgue volume of Ω) and the embeddings (2.3).
Proof. Let $\varphi, \psi \in H_{0}^{\sigma, p}$. First we write

$$
\begin{aligned}
g(t, \varphi) & -g(t, \psi) \\
\quad= & (\varphi-\psi)\left[a-b \int_{0}^{t} \lambda(t-s)(-\Delta)^{\beta} \varphi\right]+b \psi \int_{0}^{t} \lambda(t-s)\left[(-\Delta)^{\beta} \psi-(-\Delta)^{\beta} \varphi\right] d s .
\end{aligned}
$$

We now use the Minkowski and Hölder inequalities combined with Remark 2.2 and the embeddings (2.3) to obtain

$$
\begin{aligned}
\| g(t, \varphi) & -g(t, \psi) \|_{L^{p}} \\
\leq & \|\varphi-\psi\|_{L^{2 p}}\left\|a-b \int_{0}^{t} \lambda(t-s)(-\Delta)^{\beta} \varphi d s\right\|_{L^{2 p}} \\
& +b\|\psi\|_{L^{2 p}} \int_{0}^{t}|\lambda(t-s)|\left\|(-\Delta)^{\beta} \psi-(-\Delta)^{\beta} \varphi\right\|_{L^{2 p}} d s \\
\leq & C\|\varphi-\psi\|_{H_{0}^{\sigma, p}}\left(a|\Omega|^{1 / 2 p}+b\|\lambda\|_{L^{1}(0, t)}\|\varphi\|_{H_{0}^{\sigma, p}}+b\|\lambda\|_{L^{1}(0, t)}\|\psi\|_{\left.H_{0}^{\sigma, p}\right)}\right. \\
\leq & C\|\varphi-\psi\|_{H_{0}^{\sigma, p}}^{\sigma\left[\|\lambda\|_{L^{1}(0, t)}\left(\|\varphi\|_{H_{0}^{\sigma, p}}+\|\psi\|_{H_{0}^{\sigma, p}}\right)+1\right] .}
\end{aligned}
$$

In particular, taking $\psi \equiv 0$,

$$
\left.\|g(t, \varphi)\|_{L^{p}} \leq C\|\varphi\|_{H_{0}^{\sigma, p}}^{\sigma, p}\|\lambda\|_{L^{1}(0, t)}\|\varphi\|_{H_{0}^{\sigma, p}}+1\right)
$$

for all $\varphi \in H^{\sigma, p}$, because $\sigma \geq 2 \beta+N / 2 p$.
Lemma 2.4. Let $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ be a locally integrable function. Assume that (H) holds and consider functions $u_{i}:[0, \tau] \rightarrow H_{0}^{\sigma, p}$ such that

$$
\sup _{t \in[0, \tau]}\left\|u_{i}(t)\right\|_{H_{0}^{\sigma, p}} \leq \mu^{\prime}, \quad i=1,2
$$

where $\mu^{\prime}>0$. Further, suppose that $\lambda:[0, \infty) \rightarrow[0, \infty)$ is locally integrable. Then

$$
\begin{aligned}
& \left\|\int_{0}^{t} e^{\Delta(t-s)}\left[g\left(r, u_{1}(r)\right)-g\left(r, u_{2}(r)\right)\right] d r d s\right\|_{H_{0}^{\sigma, p}} \\
& \quad \leq M C\left(2\|\lambda\|_{L^{1}(0, t)} \mu^{\prime}+1\right) \frac{2}{2-\sigma} t^{1-\sigma / 2} \sup _{s \in[0, t]}\left\|u_{1}(s)-u_{2}(s)\right\|_{H_{0}^{\sigma, p}},
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|\int_{0}^{t} e^{\Delta(t-s)} g(r, u(r)) d r d s\right\|_{H_{0}^{\sigma, p}} \leq M C\left(\|\lambda\|_{L^{\prime}(0, t)} \mu^{\prime}+1\right) \mu^{\prime} \frac{2}{2-\sigma} t^{1-\sigma / 2} \tag{2.4}
\end{equation*}
$$

Proof. A combination of Remark 2.2 and Lemma 2.3 gives

$$
\begin{aligned}
& \left\|\int_{0}^{t} e^{(t-s) \Delta}\left[g\left(r, u_{1}(r)\right)-g\left(r, u_{2}(r)\right)\right] d r d s\right\|_{H_{0}^{\sigma, p}} \\
& \quad \leq M C \sup _{s \in[0, t]}\left\|u_{1}(s)-u_{2}(s)\right\|_{H_{0}^{\sigma, p}} \int_{0}^{t}(t-s)^{-\sigma / 2} d s\left(2\|\lambda\|_{L^{1}(0, t)} \mu^{\prime}+1\right) \\
& \quad \leq M C\left(2\|\lambda\|_{L_{\text {loc }}^{1}(0, t)} \mu^{\prime}+1\right) \frac{2}{2-\sigma} t^{1-\sigma / 2} \sup _{s \in[0, t]}\left\|u_{1}(s)-u_{2}(s)\right\|_{H_{0}^{\sigma, p}},
\end{aligned}
$$

and in a similar way one obtains (2.4).

3. Main result

We can now state and prove our main result.
Theorem 3.1. Let $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ be a locally integrable function and assume that (H) holds. Given $v_{0} \in H_{0}^{\sigma, p}$, there exist $\tau>0$ and $r>0$ such that for every $u_{0} \in B_{H_{0}^{\sigma, p}}\left(v_{0}, r\right)$ the Cauchy-Dirichlet problem (1.2)-(1.4) possesses a unique mild solution $u:[0, \tau] \rightarrow$ $H_{0}^{\sigma, p}$. Further, $u \in C\left((0, \tau] ; H_{0}^{\sigma^{\prime}, p}\right)$ for every $\sigma^{\prime} \in[\sigma, 2) \backslash\{1 / p\}$ and the solutions depend continuously on the initial data.

Proof. Let $0<\mu \leq 1$. Choose $\tau>0$ small enough so that, for all $t \in[0, \tau]$,

$$
\left\|e^{\Delta t} v_{0}-v_{0}\right\|_{H_{0}^{\sigma, p}}<\frac{\mu}{3}
$$

and

$$
M C\left(\|\lambda\|_{L^{1}(0, t)} \mu^{\prime}+1\right) \mu^{\prime} \frac{2}{2-\sigma} t^{1-\sigma / 2}<\frac{\mu}{3}
$$

where $\mu^{\prime}:=\mu+\left\|v_{0}\right\|_{H_{0}^{\sigma, p}}$. Set $r=\mu / 3 M$. It follows that $\left\|e^{\Delta t} u_{0}-v_{0}\right\|_{H_{0}^{\sigma, p}}<2 \mu / 3$.
Now define

$$
\mathcal{B}=\left\{u \in C\left([0, \tau] ; H_{0}^{\sigma, p}\right): \sup _{t \in[0, \tau]}\left\|u(t)-v_{0}\right\|_{H_{0}^{\sigma, p}} \leq \mu\right\}
$$

Consider the map $\Lambda: \mathcal{B} \rightarrow \mathcal{B}$ defined by

$$
(\Lambda u)(t)=e^{\Delta t} u_{0}+\int_{0}^{t} e^{\Delta(t-s)} u(s)\left[a-b \int_{0}^{s} \lambda(s-r)(-\Delta)^{\beta} u(r) d r\right] d s
$$

First, we will show that we actually have $\Lambda \mathcal{B} \subset \mathcal{B}$. For $0 \leq t_{1}<t_{2} \leq \tau$ and $u \in \mathcal{B}$,

$$
\begin{aligned}
& \|(\Lambda u)\left(t_{1}\right)-(\Lambda u)\left(t_{2}\right) \|_{H_{0}^{\sigma, p}} \\
& \leq\left\|e^{\Delta t_{1}} u_{0}-e^{\Delta t_{2}} u_{0}\right\|_{H_{0}^{\sigma, p}} \\
& \quad+\int_{0}^{t_{1}}\left\|\left[e^{\Delta\left(t_{1}-s\right)}-e^{\Delta\left(t_{2}-s\right)}\right] u(s)\left[a-b \int_{0}^{s} \lambda(s-r)(-\Delta)^{\beta} u(r) d r\right]\right\|_{H_{0}^{\sigma, p}} d s \\
& \quad+\int_{t_{1}}^{t_{2}}\left\|e^{\Delta\left(t_{2}-s\right)} u(s)\left[a-b \int_{0}^{s} \lambda(s-r)(-\Delta)^{\beta} u(r) d r\right]\right\|_{H_{0}^{\sigma, p}} d s
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\|e^{\Delta t_{1}} u_{0}-e^{\Delta t_{2}} u_{0}\right\|_{H_{0}^{\sigma, p}} \\
& +\left\|I-e^{\Delta\left(t_{2}-t_{1}\right)}\right\|_{\mathcal{L}\left(H_{0}^{\sigma, p}\right)} M C\left(\|\lambda\|_{L^{\prime}\left(0, t_{1}\right)} \mu^{\prime}+1\right) \mu^{\prime} \frac{2}{2-\sigma} t_{1}^{1-\sigma / 2} \\
& +M C \frac{2}{2-\sigma}\left(1-\left(\frac{t_{1}}{t_{2}}\right)^{1-\sigma / 2}\right)\left(\|\lambda\|_{L^{\prime}(0, t)} \mu^{\prime}+1\right) \mu^{\prime},
\end{aligned}
$$

which converges to zero as either $t_{1} \rightarrow t_{2}^{-}$or $t_{2} \rightarrow t_{1}^{+}$. Moreover, from Lemma 2.4,

$$
\left\|(\Lambda u)(t)-v_{0}\right\|_{H_{0}^{\sigma, p}}
$$

$$
\begin{aligned}
& \leq\left\|e^{\Delta t} u_{0}-v_{0}\right\|_{H_{0}^{\sigma, p}}+\int_{0}^{t}\left\|e^{\Delta(t-s)}\left[a-b \int_{0}^{s} \lambda(s-r)(-\Delta)^{\beta} u(r) d r\right] d r\right\|_{H_{0}^{\sigma, p}} d s \\
& <\frac{2 \mu}{3}+M C \frac{2}{2-\sigma} t^{1-\sigma / 2}\left(\|\lambda\|_{L^{\prime}(0, t)} \mu^{\prime}+1\right) \mu^{\prime} \leq \frac{2 \mu}{3}+\frac{\mu}{3}=\mu .
\end{aligned}
$$

Hence, Λ is well defined.
Next, we show that Λ is a contraction. For $u, v \in \mathcal{B}$, by Lemma 2.4,

$$
\begin{aligned}
\|(\Lambda u) & (t)-(\Lambda v)(t) \|_{H_{0}^{\sigma, p}} \\
& \leq M C \frac{2}{2-\sigma} \tau^{1-\sigma / 2}\left(2\|\lambda\|_{L^{1}(0, \tau)} \mu^{\prime}+1\right) \sup _{s \in[0, t]}\|u(s)-v(s)\|_{H_{0}^{\sigma, p}} \\
& \leq \frac{\mu}{3} \sup _{s \in[0, t]}\|u(s)-v(s)\|_{H_{0}^{\sigma, p}} \\
& \leq \frac{1}{3} \sup _{s \in[0, t]}\|u(s)-v(s)\|_{H_{0}^{\sigma, p}} .
\end{aligned}
$$

Hence, by the Banach fixed point theorem, Λ has a unique fixed point $u \in \mathcal{B}$. This is a mild solution for (1.2)-(1.4).

If we repeat these steps, but using (2.1) instead of (2.2), we find that

$$
\begin{aligned}
\| u\left(t_{1}\right)- & u\left(t_{2}\right) \|_{H_{0}^{\sigma^{\prime}, p}} \\
\leq & M t^{\sigma / 2-\sigma^{\prime} / 2}\left\|I-e^{\Delta\left(t_{2}-t_{1}\right)}\right\|_{\mathcal{L}\left(t_{0}^{\left.\sigma^{\prime}, p\right)}\right)}\left\|u_{0}\right\|_{H_{0}^{\sigma, p}} \\
& +\left\|I-e^{\Delta\left(t_{2}-t_{1}\right)}\right\|_{\mathcal{L}\left(H_{0}^{\left.\sigma^{\prime}, p\right)}\right)} M C\left(\|\lambda\|_{L^{1}(0, t)} \mu^{\prime}+1\right) \mu^{\prime} \frac{2}{2-\sigma} t^{1-\sigma^{\prime} / 2} \\
& +M C \frac{2}{2-\sigma^{\prime}}\left(1-\left(\frac{t_{1}}{t_{2}}\right)^{1-\sigma^{\prime} / 2}\right)\left(\|\lambda\|_{L^{1}(0, t)} \mu^{\prime}+1\right) \mu^{\prime},
\end{aligned}
$$

for $0<t_{1}<t_{2} \leq \tau$. Consequently, $u \in C\left((0, \tau] ; H_{0}^{\sigma^{\prime}, p}\right)$. This shows the existence and regularity of the mild solution. Let us prove that it is unique. Let \tilde{u} be a mild solution of (1.2)-(1.4). Then, by Lemma 2.3,

$$
\begin{aligned}
\| u(t) & -\tilde{u}(t) \|_{H_{0}^{\sigma, p}} \\
& \leq M \int_{0}^{t}(t-s)^{-\sigma / 2}\|g(u(r))-g(\tilde{u}(r))\|_{L^{p}} d r d s \\
& \leq M C \int_{0}^{t}(t-s)^{-\sigma / 2} \sup _{r \in[0, s]}\|u(r)-\tilde{u}(r)\|_{H_{0}^{\sigma, p}}\left(2\|\lambda\|_{L^{1}(0, t)} \eta+1\right) d s,
\end{aligned}
$$

where $\eta:=\max \left\{\sup _{t \in[0, \tau]}\|u(t)\|_{H_{0}^{\sigma, p}}, \sup _{t \in[0, \tau]}\|\tilde{u}(t)\|_{H_{0}^{\sigma, p}}\right\}$. Thus,

$$
\|u(t)-\tilde{u}(t)\|_{H_{0}^{\sigma, p}} \leq M C\left(2\|\lambda\|_{L^{1}(0, \tau)} \eta+1\right) \int_{0}^{t}(t-s)^{-\sigma / 2} \sup _{r \in[0, s]}\|u(r)-\tilde{u}(r)\|_{H_{0}^{\sigma, p}} d s
$$

Put $f(t):=\sup _{s \in[0, t]}\|u(s)-\tilde{u}(s)\|_{H_{0}^{\sigma, p}}$ and $C=M C\left(2\|\lambda\|_{L^{1}(0, \tau)} \eta+1\right)$. It follows that

$$
f(t) \leq C \int_{0}^{t}(t-s)^{-\sigma / 2} f(s) d s
$$

for all $t \in[0, \tau]$. By the singular Gronwall inequality, $f(t)=0$ for all $t \in[0, \tau]$ and uniqueness follows.

Finally, take $u_{1}, u_{2} \in B_{H_{0}^{\sigma . p}}\left(v_{0}, r\right)$ and, for $i=1,2$, let $u_{i}(t)$ be the mild solution that starts at $u_{i}, i=1,2$. Then

$$
\begin{aligned}
\| u_{1}(t)- & u_{2}(t) \|_{H_{0}^{\sigma, p}} \\
\leq & \left\|e^{\Delta t} u_{1}-e^{\Delta t} u_{2}\right\|_{H_{0}^{\sigma, p}} \\
& +M C\left(2\|\lambda\|_{L^{1}}(0, \tau) \mu^{\prime}+1\right) \frac{2}{2-\sigma} \tau^{1-\sigma / 2} \sup _{s \in[0, t]}\left\|u_{1}(t)-u_{2}(t)\right\|_{H_{0}^{\sigma, p}} \\
\leq & \left\|u_{1}-u_{2}\right\|_{H_{0}^{\sigma, p}}+\frac{\mu}{3 \mu^{\prime}} \sup _{s \in[0, t]}\left\|u_{1}(s)-u_{2}(s)\right\|_{H_{0}^{\sigma, p}} .
\end{aligned}
$$

Hence,

$$
\sup _{s \in[0, t]}\left\|u_{1}(s)-u_{2}(s)\right\|_{H_{0}^{\sigma, p}} \leq \frac{3}{2}\left\|u_{1}-u_{2}\right\|_{H_{0}^{\sigma, p}}
$$

Thus the mild solution of (1.2)-(1.4) depends continuously on the initial data.

References

[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, A Series of Monographs and Textbooks, 65 (Academic Press, New York, 1975).
[2] H. Amann, Linear and Quasilinear Parabolic Problems. Abstract Linear Theory: I, Monographs in Mathematics, 89 (Birkhäuser Verlag, Boston, 1995).
[3] H. Amann, 'Navier-Stokes equations with nohomogeneous Dirichlet data', J. Nonlinear Phys. 10(1) (2003), 1-11.
[4] D. Bothe, M. Köhne and J. Prüss, 'On a class of energy preserving boundary conditions for incompressible Newtonian flows', SIAM J. Math. Anal. 45(6) (2013), 3768-3822.
[5] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology (Wiley, Chichester, 2003).
[6] R. S. Cantrell and C. Cosner, 'Density dependent behavior at habitat boundaries and the Allee effect', Bull. Math. Biol. 69 (2007), 2339-2360.
[7] J. M. Cushing, 'Volterra integrodifferential equations in population dynamics', Math. Biol. 80 (1979), 81-148.
[8] Y. Du, R. Peng and P. Polácik, 'The parabolic logistic equation with blow-up initial and boundary values', J. Anal. Math. 118 (2012), 297-316.
[9] J. Dyson, R. Villella-Bressan and G. Webb, 'Asymptotic behaviour of solutions to abstract logistic equations', Math. Biosci. 206 (2007), 216-232.
[10] W. Feng and X. Lu, 'Asymptotic periodicity in diffusive logistic equations with discrete delays', Nonlinear Anal. 26 (1996), 171-178.
[11] J. Goddard II, R. Shivaji and E. K. Lee, 'Diffusive logistic equation with non-linear boundary conditions', J. Math. Anal. Appl. 375 (2011), 365-370.
[12] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74 (Kluwer Academic Publishers Group, Dordrecht, 1992).
[13] K. P. Hadeler, 'Diffusion equations in biology', Math. Biol. 80 (1979), 149-177.
[14] S. Harris, 'Diffusive logistic population growth with immigration', Appl. Math. Lett. 18 (2005), 261-265.
[15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics, 840 (Springer, Berlin, 1980).
[16] S. Oruganti, J. Shi and R. Shivaji, 'Diffusive logistic equations with constant yield harvesting, I: Steady solutions', Trans. Amer. Math. Soc. 354(9) (2002), 3601-3619.
[17] J. F. Rodrigues and H. Tavares, 'Increasing powers in a degenerate parabolic logistic equation', Chin. Ann. Math. 34B(2) (2013), 277-294.
[18] G. Seifert, "Almost periodic solutions for delay logistic equations with almost periodic time dependence", Differ. Integral Equ. 9(2) (1996), 335-342.
[19] A. Schiaffino, 'On a diffusion Volterra equation', Nonlinear Anal. 3(5) (1979), 595-600.
[20] K. Schumacher, 'The instationary Stokes equations in weighted Bessel-potential spaces', J. Evol. Equ. 9 (2009), 1-36.
[21] O. Steiger, 'Navier-Stokes equations with first order boundary conditions', J. Math. Fluid Mech. 8 (2006), 456-481.
[22] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978).
[23] A. Viana, 'Local well-posedness for a Lotka-Volterra system in Besov spaces', Comput. Math. Appl. 69 (2015), 667-674.
[24] Y. Yamada, 'On a certain class of semilinear Volterra diffusion equations', J. Math. Anal. Appl. 88 (1982), 433-451.
[25] X. Yang, W. Wang and J. Shen, 'Permanence of a logistic type impulsive equation with infinite delay', Appl. Math. Lett. 24 (2011), 420-427.
[26] C. Zhao, L. Debnath and K. Wang, 'Positive periodic solutions of a delayed model in population', Appl. Math. Lett. 16 (2003), 561-565.

ALEJANDRO CAICEDO, Departamento de Matemática, Universidade Federal de Sergipe, Avenue Vereador Olímpio Grande, Itabaiana-SE, Brazil e-mail: alejocro@gmail.com

ARLÚCIO VIANA, Departamento de Matemática, Universidade Federal de Sergipe, Avenue Vereador Olímpio Grande, Itabaiana-SE, Brazil
e-mail: arlucioviana@ufs.br

[^0]: (c) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

