
23
Non-Abelian fields

Positive and negative electrical charges label the different kinds of matter that
respond to the electromagnetic field; there is the gravitational mass, for example,
which only seems to have positive sign and labels matter which responds to the
gravitational field. More kinds of charge are required to label particles which
respond to the nuclear forces. With more kinds of charge, there are many
more possibilities for conservation than simply that the sum of all positive and
negative charges is constant. Non-Abelian gauge theories are physical models
analogous to electromagnetism, but with more general ideas of charge. Some
have three kinds of charge: red, green and blue (named whimsically after the
primary colours); other theories have more kinds with very complicated rules
about how the different charges are conserved. This chapter is about such
theories.

23.1 Lie groups and algebras

In chapter 9 it was noted that the gauge invariance of matter and electromagnetic
radiation could be thought of as a symmetry group called U (1): the group of
phase transformations on matter fields:

#→ eiθ(x)#, (23.1)

for some scalar function θ(x). Since phase factors of this type commute with
one another,

[eiθ(x), eiθ ′(x)] = 0 (23.2)

such a symmetry group is called commutative or Abelian. The symmetry group
was identified from the anti-symmetry properties of the curls in Maxwell’s
equations, but the full beauty of the symmetry only became apparent in the
covariant formulation of field theory.

466
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23.2 Construction 467

In the study of angular momentum in chapter 9, it was noted that the
symmetry group of rotations in two spatial dimensions was U (1), but that in
three spatial dimensions it was O(3). The latter is a non-Abelian group, i.e. its
generators do not commute; instead they have a commutator which satisfies a
relation called a Lie algebra.

Non-Abelian gauge theories have, for the most part, been the domain of
particle physicists trying to explain the elementary nature of the nuclear forces
in collision experiments. In recent times, some non-Abelian field theories have
also been used by condensed matter physicists. In the latter case, it is not
fundamental fields which satisfy the exotic symmetry properties, but composite
excitations in matter referred to as quasi-particles.

The motivation for non-Abelian field theory is the existence of families of
excitations which are related to one another by the fact that they share and
respond to a common form of charge. Each so-called flavour of excitation is
represented by an individual field which satisfies an equation of motion. The
fields are grouped together so that they form the components of a column vector,
and matrices, which multiply these vectors exact symmetry transformations on
them – precisely analogous to the phase transformations of electromagnetism,
but now with more components. The local form of the symmetry requires the
existence of a non-Abelian gauge field, Aµ, which is matrix-valued.

Thus one asks the question: what happens if fields are grouped into multiplets
(analogous to the components of angular momentum) by postulating hidden
symmetries, based on non-Abelian groups.

This idea was first used by Yang and Mills in 1954 to develop the isospin
SU (2) model for the nuclear force [141]. The unfolding of the experimental
evidence surrounding nucleons led to a series of deductions about conservation
from observed particle lifetimes. Charge labels such as baryon number, isospin
and strangeness were invented to give a name to these, and the supposition that
conserved charges are associated with symmetries led to the development of
non-Abelian symmetry models. For a summary of the particle physics, see, for
example, refs. [34, 108].

Non-Abelian models have been used in condensed matter physics, where
quasi-fields for mean-field spin systems have been formulated as field theories
with SU (N ) symmetry [1, 54].

23.2 Construction

We can now extend the formalism in the remainder of this book to encompass
non-Abelian fields. To do this, we have to treat the fields as multi-component
vectors on the abstract internal space of the symmetry group, since the transfor-
mations which act on the fields are now matrices. The dimension of the matrices
which act on matter fields (Klein–Gordon or Dirac) does not have to be the same
as those which attach to the gauge field Aµ – the only requirement is that both
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468 23 Non-Abelian fields

sets of matrices satisfy the same algebra. This will become clearer when we
examine the nature of gauge transformations for non-Abelian groups.

We begin with some notation. Let {T a
R }, where a = 1, . . . , dG , denote a set

of matrices which acts as the generators of the simple Lie algebra for the group
G. These matrices satisfy the Lie algebra

[T a, T b] = −i f ab
cT c . (23.3)

T a are chosen here to be Hermitian. This makes the structure constants
real numbers. It is also possible to find an anti-Hermitian representation by
multiplying all of the T a by a factor of i = √−1, but we shall not use this
convention here. With anti-Hermitian conventions, the Abelian limit leads to
an imaginary electric charge which does not agree with the conventions used in
other chapters.

The T a are dR × dR matrices. In component form, one may therefore write
them explicitly (T a)AB , where A, B = 1, . . . , dR, but normally the explicit
components of T a are suppressed and a matrix multiplication is understood.
We denote the group which is obtained from these by GR, which means the
representation R of the group G. The normalization of the generators is fixed
by defining

Tr
(
T a

R T b
R

) = I2(GR)δ
ab, (23.4)

where I2 is called the Dynkin index for the representation GR. The Dynkin
index may also be written

I2(GR) = dR

dG
C2(GR), (23.5)

where dR is the dimension (number of rows/columns) of the generators in the
representation G R and dG is the dimension of the group. C2(G R) is the quadratic
Casimir invariant for the group in the representation G R: C2(G R) and I2(G R)

are constants which are listed in tables for various representations of Lie groups.
dG is the same as the dimension of the adjoint representation of the algebra
Gadj, by definition of the adjoint representation. Note therefore that I2(Gadj) =
C2(Gadj).

In many texts, authors make the arbitrary choice of replacing the right hand
side of eqn. (23.4) with 1

2δ
ab. This practice simplifies formulae in a small

number of special cases, but can lead to confusion later. Also, it makes the
identification of group constants (for arbitrary groups) impossible and leads
therefore to expressions which are not covariant with respect to changes of
symmetry group.

To construct a physical theory with such an internal symmetry group we
must look to the behaviour of the fields under a symmetry transformation. We
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23.2 Construction 469

require the analogue of a gauge transformation in the Abelian case. We begin
by assuming that the form of a symmetry transformation on matter fields is

#→ U#, (23.6)

for some matter field # and some matrix

U = exp
(
iθa(x)T a

)
, (23.7)

which is the element of some Lie group, with an algebra generated by T a ,
(a = 1, . . . , dG). Eqn. (23.6) contains an implicit matrix multiplication: the
components are normally suppressed; if we write them explicitly, eqn. (23.6)
has the appearance:

#A → U A
B#

B . (23.8)

Since the generators do not commute with one another, and since U is a com-
bination of these generators, T a and U cannot commute; moreover, consecutive
gauge transformations do not commute,

[U,U ′] �= 0, (23.9)

in general. The exception to this statement is if the group element U lies in
the centre of the group (i.e. the group’s Abelian sub-group) which is generated
purely by the Cartan sub-algebra:

Uc = exp
(
iθ i (x)Hi

)
, (i = 1, . . . , rank G) (23.10)

0 = [Uc,U ]. (23.11)

Under such a transformation, the spacetime-covariant derivative is not gauge-
covariant:

∂µ(U#) �= U (∂µ#). (23.12)

We must therefore follow the analogue of the procedure in chapter 10 to define a
covariant derivative for the non-Abelian symmetry. We do this in the usual way,
by introducing a gauge connection, or vector potential

Aµ = Aa
µ(x)T

a, (23.13)

which is a linear combination of all the generators. The basis components Aa
µ(x)

are now the physical fields, which are to be varied in the action. There is
one such field for each generator, i.e. the total number of fields is equal to the
dimension of the group dG . In terms of this new field, we write the covariant
derivative

Dµ = ∂µ + i
g

h̄
Aµ, (23.14)
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470 23 Non-Abelian fields

where g is a new charge for the non-Abelian symmetry. As in the Abelian case,
Dµ will only satisfy

Dµ(U#) = U (Dµ#), (23.15)

if # and Aµ both transform together. We can determine the way in which Aµ
must transform by writing

Dµ(U#) = (∂µU )#+U (∂µ#)+ i
g

h̄
AµU#

= U

(
∂µ#+U−1(∂µU )#+ i

g

h̄
U−1 AµU#

)
. (23.16)

From this, we deduce that

i
g

h̄
A′µ# = i

g

h̄
U−1 AµU#+U−1(∂µU )#, (23.17)

so that the complete non-Abelian gauge transformation has the form

#′ = U#

A′µ = U−1 AµU − ih̄

g
U−1(∂µU ). (23.18)

The transformation of the field strength tensor in a non-Abelian field theory can
be derived from its definition:

Fµν = ∂µAν − ∂ν Aµ + i
g

h̄
[Aµ, Aν], (23.19)

and has the form

Fµν → U−1 FµνU. (23.20)

Note that the field strength is not gauge-invariant: it transforms in a non-trivial
way. This means that Fµν is not an observable in non-Abelian field theory. The
field strength tensor can also be expressed directly in terms of the covariant
derivative by the formula

[Dµ, Dν] = i
g

h̄
Fµν, (23.21)

or

Fµν = DµAν − Dν Aµ − i
g

h̄
[Aµ, Aν]. (23.22)

The field strength can also be expressed as a linear combination of the generators
of the Lie algebra, and we define the physical components relative to a given
basis set T a by

Fµν = Fa
µνT

a. (23.23)

Using the algebra relation (23.3), these components can be expressed in the form

Fa
µν = ∂µAa

ν − ∂ν Aa
µ + g f a

bc Ab
µAc

ν. (23.24)
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23.4 Equations of motion and continuity 471

23.3 The action

We are now in a position to postulate a form for the action of a non-Abelian
gauge theory. We have no way of knowing what the ‘correct’ action for such
a theory is (nor any way of knowing if such a theory is relevant to nature), so
we allow ourselves to be guided by the invariant quantities which can be formed
from the non-Abelian fields. For free scalar matter fields, it is natural to write

SM =
∫
(dx)

{
h̄2c2(Dµ#)†(Dµ#)+ m2c4#†#

}
, (23.25)

where

Dµ# = ∂µ#+ ig Aµ# (23.26)

which has the form of a matrix acting on a vector. Clearly, the number of
components in the vector # must be the same as the number of rows and
columns in the matrix Aµ in order for this to make sense. The dagger symbol
implies complex conjugation and transposition.

For the non-Abelian Yang–Mills field the action analogous to the Maxwell
action is SYM[A + A], where

SYM[A] = 1

4µNA I2(Gadj)

∫
(dx)Tr

(
FµνFµν

)
, (23.27)

where µNA is analogous to the permeability in electromagnetism. The trace
in eqn. (23.27) refers to the trace over implicit matrix components of the
generators. The cyclic property of the trace ensures that this quantity is
gauge-invariant. Under a gauge transformation, one has

Tr
(
FµνFµν

)→ Tr
(
U−1 FµνFµνU

) = Tr
(
FµνFµν

)
. (23.28)

23.4 Equations of motion and continuity

The Wong equations describe classical point particles coupled to a non-Abelian
gauge field [140]:

m
dxµ

dτ
= pµ

m
dpµ

dτ
= gQa Faµν pν

m
dQ

dτ
= −g f abc pµAb

µQc. (23.29)
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472 23 Non-Abelian fields

23.5 Multiple representations

The gauge field Aµ appears several times in the action: both in connection with
the covariant derivative acting on matter fields, and in connection with the Yang–
Mills term. The dimension dR of the matrix representation used in the different
parts of the action does not have to be equal throughout. Indeed, the number
of components in the matter vector is chosen on ‘phenomenological’ grounds to
match the number of particles known to exist in a multiplet. A common choice
is:

• the fundamental representation for matter fields, i.e. Aµ = Aa
µT a

f in Dµ;

• the adjoint representation for the Yang–Mills terms, i.e. Aµ = Aa
µT a

adj in
TrF2. common situation is to choose

Although this is a common situation, it is not a necessity. The choice of
representation for the matter fields should be motivated by phenomenology. In
the classical theory, there seems to be no good reason for choosing the adjoint
matrices for gauge fields. It is always true that the components of the field
transform in the adjoint representation regardless of the matrices used to define
the action.

23.6 The adjoint representation

One commonly held belief is that the gauge field, Aµ, must be constructed from
the generators of the adjoint representation. The components of the gauge field
Aa
µ transform like a vector in the adjoint representation, regardless of the matrix

representations used to define the gauge fields in the action. This follows simply
from the fact that Aµ is a linear combination of all the generators of the algebra
[21]. To show this, we begin by noting that, in a given representation, the
structure constants which are identical for any matrix representation form the
components of a matrix representation for the adjoint representation, by virtue
of the Jacobi identity (see section 8.5.2).

Consider an arbitrary field  , with components θa relative to a set of basis
generators T a in an arbitrary representation, defined by

 = T aλa. (23.30)

The generator matrices may be in a representation with arbitrary dimension dR .
Under a gauge transformation, we shall assume that the field transforms like

 ′ = U−1 U, (23.31)

where U is in the same matrix representation as T a and may be written

U = exp(iθaT a). (23.32)
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23.6 The adjoint representation 473

Using the matrix identity,

exp(A)B exp(−A) = B + [A, B]+ 1

2!
[A, [A, B]]

+ 1

3!
[A, [A, [A, B]]]+ · · · , (23.33)

it is straightforward to show that

 ′ = λa
{
δa

r − θb f ab
r +

1

2
θbθc f ca

s f bs
r

− 1

3!
θbθcθd f da

q f cq
p f bp

r + . . .
}

T r , (23.34)

where the algebra commutation relation has been used. In our notation, the
generators of the adjoint representation may be written

(T a
adj)

b
c = i f ab

c , (23.35)

and the structure constants are real. Eqn. (23.34) may therefore be identified as

 ′ = λa(Uadj)
a
bT b, (23.36)

where

Uadj = exp(iθaT a
adj). (23.37)

If we now define the components of the transformed field by

 ′ = λ′aT a, (23.38)

in terms of the original generators, then it follows that

λ′a = (Uadj)
a
bλ

b. (23.39)

We can now think of the set of components λa and λ′a as being grouped into dG

component column vectors λ and λ′, so that

λ′ = Uadjλ. (23.40)

In matrix notation, the covariant derivative of the matrix-valued field  is

Dµ = ∂µ + ig[Aµ, ], (23.41)

for any representation. Using the algebra commutation relation this becomes

Dµ = ∂µ + ig Aadj
µ  , (23.42)

where Aadj
µ = Aa

µT a
adj. We have therefore shown that the vectorial components

of the gauge field transform according to the adjoint representation, regardless
of the matrices which are used in the matrix form.
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474 23 Non-Abelian fields

23.7 Field equations and continuity

S =
∫
(dx)

{
(Dµ#)†(Dµ#)+ m2#†#+ 1

4I2(Gadj)
Tr
(

FµνFµν
)}
.

(23.43)

The variation of the action with respect to #† yields the equation of motion
for #:

δS =
∫
(dx)

{
(Dµδ#)†(Dµ#)+ m2δ#†#

}
=

∫
(dx)δ#†

{−D2#+ m2#
}

+
∫

dσµ
{
δ#†(Dµ#)

}
. (23.44)

The gauge-fixing term is

SGF = 1

2αµNA I2(Gadj)

∫
dvx Tr

(
DµAµ

)2
. (23.45)

23.8 Commonly used generators

It is useful to have explicit forms for the generators in the fundamental and
adjoint representations for the two most commonly discussed groups. For
SU (N ), the matrices of the fundamental representation have dimension N .

23.8.1 SU (2) Hermitian fundamental representation

Here, the generators are simply one-half the Pauli matrices in the usual basis:

T 1 = 1

2

(
0 1
1 0

)

T 2 = 1

2

(
0 −i
i 0

)

T 3 = 1

2

(
1 0
0 −1

)
(23.46)

In the Cartan–Weyl basis, we construct

H = T 3 = 1

2

(
1 0
0 −1

)

Eα = 1√
2
(T 1 + iT 2) = 1√

2

(
0 1
0 0

)
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23.8 Commonly used generators 475

E−α = 1√
2
(T 1 − iT 2) = 1√

2

(
0 0
1 0

)
, (23.47)

where the eigenvalue α = 1 and

[H, Eα] = αEα
[Eα, E−α] = αH. (23.48)

The diagonal components of H are the weights of the representation.

23.8.2 SU (2) Hermitian adjoint representation

In the adjoint representation, the generators are simply the components of the
structure constants in the regular basis:

T 1 =

 0 0 0

0 0 −i
0 i 0




T 2 =

 0 0 i

0 0 0
−i 0 0




T 3 =

 0 −i 0

i 0 0
0 0 0


 . (23.49)

To find a Cartan–Weyl basis, in which the Cartan sub-algebra matrices are
diagonal, we explicitly look for a transformation which diagonalizes one of
the matrices. The same transformation will diagonalize the entire Cartan
sub-algebra. Pick arbitrarily T 1 to diagonalize. The self-inverse matrix of
eigenvectors for T 1 is easily found. It is given by

 =


 −1 0 0

0 1√
2

−i√
2

0 i√
2

−1√
2


 . (23.50)

Constructing the matrices  −1T a , one finds a new set of generators,

T 1 =

 0 0 0

0 1 0
0 0 −1




T 2 =

 0 1 i

1 0 0
−i 0 0
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476 23 Non-Abelian fields

T 3 =

 0 i 1
−i 0 0
1 0 0


 . (23.51)

The Cartan–Weyl basis is obtained from these by constructing the combinations

E±1 = 1√
2
(T 3 ∓ iT 2)

H = T 1. (23.52)

Explicitly,

E1 =

 0 i 0

0 0 0
1 0 0




E−1 =

 0 0 1
−i 0 0
0 0 0


 . (23.53)

It may be verified that

[H, Eα] = αEα (23.54)

for α = ±1. The diagonal values of H are the roots of the Lie algebra. It is
interesting to note that the footprint of SU (2) crops up often in the generators
of other groups. This is because SU (2) sub-groups are a basic entity where the
roots show the simplest reflection symmetry. Since roots occur in signed pairs,
SU (2) is associated with root pairs.

23.8.3 SU (3) Hermitian fundamental representation

The generators of SU (3)’s fundamental representation are the Gell-Mann ma-
trices:

T1 = 1

2


 0 −1 0
−1 0 0
0 0 0




T2 = 1

2


 0 i 0
−i 0 0
0 0 0




T3 = 1

2


 −1 0 0

0 1 0
0 0 0
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T4 = 1

2


 0 0 −1

0 0 0
−1 0 0




T5 = 1

2


 0 0 i

0 0 0
−i 0 0




T6 = 1

2


 0 0 0

0 0 −1
0 −1 0




T7 = 1

2


 0 0 0

0 0 i
0 −i 0




T8 = 1

2
√

3


 −1 0 0

0 −1 0
0 0 2


 . (23.55)

The generators of the Cartan sub-algebra T 3 and T 8 are already diagonal in
this representation. Forming a matrix which is an explicit linear combination of
these generators θaT a , the following linear combinations are seen to parametrize
the algebra naturally:

E∓1 = i√
2
(T 1 ± iT 2)

E∓2 = i√
2
(T 4 ± iT 5)

E∓3 = i√
2
(T 6 ± iT 7)

H 1 = T 3

H 2 = T 8. (23.56)

These matrices satisfy the Cartan–Weyl relations[
Hi , Eα

] = αi Eα

[Eα, E−α] = αi Hi , (23.57)

where i is summed over the elements of the Cartan sub-algebra. This last
relation tells us that the commutator of the generators for equal and opposite
roots always generates an element of the centre of the group. The coefficients αi

are the components of the root vectors on the sub-space spanned by the Cartan
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sub-algebra. Explicitly,

E1 = 1√
2


 0 0 0
−1 0 0
0 0 0




E−1 = 1√
2


 0 −1 0

0 0 0
0 0 0




E2 = 1√
2


 0 0 0

0 0 0
−1 0 0




E−2 = 1√
2


 0 0 −1

0 0 0
0 0 0




E3 = 1√
2


 0 0 0

0 0 0
0 −1 0




E−3 = 1√
2


 0 0 0

0 0 −1
0 0 0


 . (23.58)

Constructing all of the opposite combinations in the second relation of
eqn. (23.57), one finds the root vectors in the Cartan–Weyl basis,

α±1 = ±(1, 0)

α±2 = ±
(

1

2
,

√
3

2

)

α±3 = ±
(
−1

2
,

√
3

2

)
. (23.59)

23.8.4 SU (3) Hermitian adjoint representation

The generators in the adjoint representation are obtained from the observation in
eqn. (23.35) that the structure constants form a representation of the Lie algebra
with the same dimension as the group:

(T a)bc = i f ab
c , (23.60)
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23.8 Commonly used generators 479

where a, b, c = 1, . . . , 8. The structure constants are

f123 = 1

f147 = − f156 = f246 = f257 = f345 = − f367 = 1

2

f458 = f678 =
√

3

2
, (23.61)

together with anti-symmetric permutations. In explicit form, we have

T 1 = i




0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2 0
0 0 0 0 0 1

2 0 0
0 0 0 0 − 1

2 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0




T 2 = i




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 − 1

2 0
0 0 0 1

2 0 0 0 0
0 0 0 0 1

2 0 0 0
0 0 0 0 0 0 0 0




T 3 = i




0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 1

2 0
0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 0 0
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T 4 = i




0 0 0 0 0 0 1
2 0

0 0 0 0 0 1
2 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0 −

√
3

2
0 − 1

2 0 0 0 0 0 0
− 1

2 0 0 0 0 0 0 0

0 0 0 0
√

3
2 0 0 0




T 5 = i




0 0 0 0 0 − 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 − 1
2 0 0 0 0

0 0 1
2 0 0 0 0

√
3

2
0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0 0

0 0 0 −
√

3
2 0 0 0 0




T 6 = i




0 0 0 0 1
2 0 0 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 0 0 − 1
2 0

0 1
2 0 0 0 0 0 0

− 1
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 −

√
3

2

0 0 0 0 0 0
√

3
2 0




T 7 = i




0 0 0 − 1
2 0 0 0 0

0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 1
2 0 0

1
2 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0

√
3

2
0 0 0 0 0 0 0 0

0 0 0 0 0 −
√

3
2 0 0
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T 8 = i




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 −
√

3
2 0 0 0

0 0 0
√

3
2 0 0 0 0

0 0 0 0 0 0 −
√

3
2 0

0 0 0 0 0
√

3
2 0 0

0 0 0 0 0 0 0 0



. (23.62)

The anti-Hermitian form of these matrices is obtained by dropping the leading
factor of i. The Cartan–Weyl basis for the adjoint representation is obtained
by diagonalizing one (and thereby several) of the generators. We choose to
diagonalize T 8 because of its simple form. This matrix has four zero eigenvalues
representing an invariant sub-space, so eigenvectors must be constructed for
these manually. A set of normalized eigenvectors can be formed into a matrix
which will diagonalize the generators of the Cartan sub-algebra:

 =




i√
2

1√
2

0 0 0 0 0 0
1√
2

i√
2

0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 i√

2
1√
2

0 0 0

0 0 0 1√
2

i√
2

0 0 0

0 0 0 0 0 i√
2

1√
2

0

0 0 0 0 0 1√
2

i√
2

0
0 0 0 0 0 0 0 1



. (23.63)

The inverse of this is simply the complex conjugate. The new basis is now
constructed by forming  −1T a :

T 1 =




0 0 i√
2

0 0 0 0 0

0 0 − 1√
2

0 0 0 0 0

− i√
2
− 1√

2
0 0 0 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 − 1
2 0

0 0 0 1
2 0 0 0 0

0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0




https://doi.org/10.1017/9781009289887.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.027


482 23 Non-Abelian fields

T 2 =




0 0 1√
2

0 0 0 0 0

0 0 − i√
2

0 0 0 0 0
1√
2

i√
2

0 0 0 0 0 0

0 0 0 0 0 − i√
2

0 0

0 0 0 0 0 0 − i√
2

0

0 0 0 i√
2

0 0 0 0

0 0 0 0 i√
2

0 0 0
0 0 0 0 0 0 0 0




T 3 =




1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 − 1

2 0 0 0
0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 1

2 0
0 0 0 0 0 0 0 0




T 4 =




0 0 0 0 0 0 i√
2

0

0 0 0 0 0 i√
2

0 0

0 0 0 − i
2
√

2
− 1

2
√

2
0 0 0

0 0 i
2
√

2
0 0 0 0 − i

√
3

2
√

2

0 0 − 1
2
√

2
0 0 0 0

√
3

2
√

2
0 − i

2 0 0 0 0 0 0
− i

2 0 0 0 0 0 0 0

0 0 0 − i
√

3
2
√

2

√
3

2
√

2
0 0 0




T 5 =




0 0 0 0 0 0 1
2 0

0 0 0 0 0 − 1
2 0 0

0 0 0 1
2
√

2
i

2
√

2
0 0 0

0 0 1
2
√

2
0 0 0 0 −

√
3

2
√

2

0 0 − i
2
√

2
0 0 0 0 i

√
3

2
√

2
0 − 1

2 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0

0 0 0 −
√

3
2
√

2
− i

√
3

2
√

2
0 0 0
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T 6 =




0 0 0 − 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 i
2
√

2
1

2
√

2
0

− 1
2 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0

0 0 i i
2
√

2
0 0 0 0 − i

√
3

2
√

2

0 0 1
2
√

2
0 0 0 0

√
3

2
√

2

0 0 0 0 0 i
√

3
2
√

2

√
3

2
√

2
0




T 7 =




0 0 0 − i
2 0 0 0 0

0 0 0 0 − i
2 0 0 0

0 0 0 0 0 − 1
2
√

2
− i

2
√

2
0

i
2 0 0 0 0 0 0 0
0 i

2 0 0 0 0 0 0

0 0 − 1
2
√

2
0 0 0 0 −

√
3

2
√

2

0 0 i
2
√

2
0 0 0 0 i

√
3

2
√

2

0 0 0 0 0 −
√

3
2
√

2
− i

√
3

2
√

2
0




T 8 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
√

3
2 0 0 0 0

0 0 0 0 −
√

3
2 0 0 0

0 0 0 0 0
√

3
2 0 0

0 0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 0 0



. (23.64)

The Cartan–Weyl basis is now obtained by constructing the linear combinations

E∓1 = 1√
2
(T 1 ± iT 2)

E∓2 = 1√
2
(T 4 ± iT 5)

E∓3 = 1√
2
(T 6 ± iT 7). (23.65)

https://doi.org/10.1017/9781009289887.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.027


484 23 Non-Abelian fields

Explicitly,

E1 =




0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
−i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1√

2
0

0 0 0 1√
2

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




E−1 =




0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 1√

2
0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 − 1√

2
0 0 0

0 0 0 0 0 0 0 0




E2 =




0 0 0 0 0 0 0 0
0 0 0 0 0 1√

2
0 0

0 0 0 − i
2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0 −i

√
3

2
0 0 0 0 0 0 0 0
− i√

2
0 0 0 0 0 0 0

0 0 0 0 i
√

3
2 0 0 0




E−2 =




0 0 0 0 0 0 i√
2

0
0 0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0 0

0 0 i
2 0 0 0 0 −i

√
3

2
0 0 0 0 0 0 0 0
0 − i√

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0
√

3
2 0 0
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E3 =




0 0 0 − 1√
2

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 i

2 0 0
0 0 0 0 0 0 0 0
0 1√

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0

√
3

2

0 0 0 0 0 i
√

3
2 0 0




E−3 =




0 0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0 0

0 0 0 0 0 0 1
2 0

− 1√
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − i

2 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

3
2 0



. (23.66)

These generators satisfy the relations in eqns. (23.57) and define the components
of the root vectors in two ways. The diagonal components of the generators
spanning the Cartan sub-algebra are the components of the root vectors. We
define

H1 = T3

H2 = T8. (23.67)

The commutators in eqns. (23.57) may now be calculated, and one identifies

α±1 = ∓(1, 0)

α±2 = ∓
(

1

2
,

√
3

2

)

α±3 = ∓
(
−1

2
,

√
3

2

)
. (23.68)
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