Symbols

- $d^*_{\boldsymbol{ij}}$ alternative description of the components of the magnetic part of the rescaled Weyl tensor, page 264
- $(e_a, \Gamma_a{}^b{}_c, \Xi, s, L_{ab}, d^a{}_{bcd}, T_{ab})$ unknowns in the frame version of the standard conformal field equations, page 196
- $(e_a, \hat{\Gamma}_a{}^b{}_c, \hat{L}_{ab}, d^a{}_{bcd}, T_{ab}, \Xi, d_a)$ unknowns in the frame version of the extended conformal field equations, page 205
- $(e_{AA'}, \Gamma_{AA'BC}, \Xi, s, L_{AA'BB'}, \phi_{ABCD}, T_{AA'BB'})$ unknowns in the spinorial version of the standard conformal field equations, page 199
- $(e_{AA'}, \hat{\Gamma}_{AA'BC}, \hat{L}_{AA'BB'}, \phi_{ABCD}, T_{AA'BB'}, \Xi, d_{AA'})$ unknowns in the spinorial version of the extended conformal field equations, page 208
- $(\boldsymbol{o},\boldsymbol{\iota})$ spin basis in index-free notation, page 66
- $(\hat{\Sigma}_{AA'BB'}, \hat{\Xi}^{C}{}_{DAA'BB'}, \hat{\Delta}_{CC'DD'BB'}, \hat{\Lambda}_{BB'CD}, \delta_{AA'}, \varsigma_{AA'BB'}, \gamma_{AA'BB'})$ zero quantities in the spinorial extended conformal field equations, page 208
- $(\hat{\Sigma}_{ab}, \hat{\Xi}^{c}{}_{dab}, \hat{\Delta}_{cdb}, \Lambda_{bcd}, \delta_{a}, \gamma_{ab}, \varsigma_{ab})$ zero quantities in the frame extended conformal field equations, page 205
- $(\mathcal{M}, \boldsymbol{g})$ generic spacetime, page 45
- (\mathcal{U}, φ) coordinate chart, page 28
- $(\Sigma_{AA'BB'}, \Xi^{C}{}_{DAA'BB'}, Z_{AA'BB'}, Z_{AA'}, \Delta_{CDBB'}, \Lambda_{BB'CD}, Z, M_{AA'})$ zero quantities in the spinorial version of the standard conformal equations, page 199
- $(\Sigma_{ab}, \Xi^{c}{}_{dab}, Z_{ab}, Z_{a}, \Delta_{cdb}, \Lambda_{bcd}, Z, M_{a})$ zero quantities in the frame version of the standard conformal field equations, page 196
- $(g_{ab}, \Xi, s, L_{ab}, d^a{}_{bcd}, T_{ab})$ unknowns in the metric standard conformal field equations, page 191
- $(h_{ij}, s_{ij}, \zeta, \varsigma)$ unknowns in the conformal static equations, page 511
- (o^A, ι^A) spin basis in abstract index notation, page 71
- $(u, r, \theta^{\mathcal{A}})$ Bondi coordinates, page 236

 $(x(\tau), \boldsymbol{\beta}(\tau))$ conformal geodesic with parameter τ , page 127

 (x^{μ}) local coordinates in a four-dimensional manifold, page 28

 $[\nabla_a, \nabla_b]$ commutator of covariant derivatives, page 39

 $[[\boldsymbol{\xi}, \boldsymbol{\eta}]]$ antisymmetric product of $\boldsymbol{\xi}, \, \boldsymbol{\eta} \in \mathfrak{S}$, page 65

- [g] conformal class of the metric g, page 113
- $[\boldsymbol{u}, \boldsymbol{v}]$ commutator of the vector fields \boldsymbol{u} and \boldsymbol{v} , page 34

- $\alpha_a, \beta_a, \omega_a, \ldots$ components of the covectors $\alpha, \beta, \omega, \ldots$ with respect to the frame $\{e_a\}$, page 51
- $\alpha_a, \beta_a, \omega_a, \ldots$ generic covectors in abstract index notation
- $\approx\,$ diffeomorphism between sets, page 27
- $\bar{\xi}^{A'}, \bar{\eta}_{A'}, \ldots$ complex conjugates of the spinors ξ^A, η_B, \ldots , page 72
- β^2 norm of the covector $\tilde{\boldsymbol{\beta}}$, page 134
- $\beta_a\,$ covector associated to a conformal geodesic in abstract index notation, page 127
- $\alpha, \beta, \omega, \ldots$ generic covectors in index-free notation
- $\boldsymbol{\beta}$ covector associated to a conformal geodesic in index-free notation, page 127
- χ Weingarten map, page 56
- \boldsymbol{D} generic three-dimensional connection in index-free notation
- \boldsymbol{d} rescaled conformal geodesic covector, page 201
- $\pmb{\delta}$ Euclidean metric on $\mathbb{R}^3,$ page 143
- e, e_{AB} space spinor irreducible components of the frame vector $e_{AA'}$, page 104
- $\ell\,$ three-dimensional Lorentzian metric on the conformal boundary of an anti-de Sitter-like spacetime, page 456
- $m{f}$ covector defining a Weyl connection in index-free notation, page 119
- \boldsymbol{f} unphysical conformal geodesic covector, page 201
- ${\boldsymbol g}$ generic four-dimensional Lorentzian metric tensor in index-free notation
- \boldsymbol{g}^{\sharp} generic contravariant four-dimensional Lorentzian metric tensor in index-free notation
- $g_{\mathscr{E}}$ standard metric on the Einstein cylinder, page 144
- γ metric in the quotient manifold, page 141
- h generic (negative definite) Riemannian three-dimensional metric
- \hbar standard metric on the unit 3-sphere, page 142
- ${\pmb K}$ extrinsic curvature tensor of a hypersurface in index-free notation, page 61
- ${\boldsymbol k}$ intrinsic metric of compact two-dimensional surfaces
- M, N, \ldots generic higher rank tensors in index-free notation
- ${old N}$ tangent to the generators of null infinity
- ∇ , $\overline{\nabla}$ generic linear connections in index-free notation, page 38
- $\boldsymbol{\nu}$ unit normal to a hypersurface \mathcal{S} , page 54
- ω, ω^{AB} space spinor irreducible components of the frame covector $\omega^{AA'}$, page 104
- ∂_{μ} coordinate basis vector
- ${\boldsymbol Q}$ transition tensor between connections in index-free notation, page 42
- \boldsymbol{q} intrinsic metric of null infinity
- Σ torsion tensor of a connection ∇ in index-free notation, page 39
- σ standard metric on the unit 2-sphere
- $\sigma_{\mathbf{L}}(\boldsymbol{\xi})$ symbol of a differential operator \mathbf{L} , page 252
- $m{t}$ vector field generating a timelike congruence
- $\boldsymbol{\tau}$ vector counterpart of the spinor $\tau_{AA'}$, page 102
- v, u, w, \ldots generic vectors in index-free notation

 ς shear tensor, page 226 z, ζ deviation vector and covector, respectively, page 135 \mathcal{L}_{h} conformal Killing operator of the metric h, page 257 $\mathbf{\check{u}}$ perturbation quantity in an evolution system $\chi_{(AB)CD}$ spinorial counterpart of the Weingarten tensor χ_{AB} spinorial counterpart of the acceleration vector • composition of functions, page 36 I disjoint union of sets $\delta(i)$ Dirac's delta, page 279 $\Delta_{\mathbf{h}}$ Laplacian operator of the Riemannian metric \mathbf{h} $\delta_{\mu}{}^{\nu}, \delta_{a}{}^{b}, \delta_{i}{}^{j}, \delta_{\alpha}{}^{\beta}, \delta_{A}{}^{B}, \delta_{A}{}^{B}, \delta_{a}{}^{b}, \delta_{i}{}^{j}$ Kronecker's delta $\delta_{\alpha\beta}$ components of the three-dimensional Euclidean metric in Cartesian coordinates, page 47 δ_{AB} Sen connection on a timelike conformal boundary, page 471 δ_{ii} components of a three-dimensional Riemannian metric with respect to an orthonormal basis, page 45 $\dot{\gamma}(s)$ tangent vector to a curve, page 30 $\dot{\boldsymbol{x}}(s)$ alternative notation for the tangent vector to a curve, page 30 $\epsilon = \pm 1$ encodes the causal character of a hypersurface, page 54 ϵ_{abcd} components of the volume form with respect to an orthonormal basis $\epsilon_{AB}, \epsilon^{AB}$ components of the spinors $\epsilon_{AB}, \epsilon^{AB}$ with respect to a spin basis, page 71 $\epsilon_{A'B'}, \epsilon^{A'B'}$ complex conjugates of the spinors $\epsilon_{AB}, \epsilon^{AB}$ $\epsilon_{AA'BB'CC'DD'}$ spinorial counterpart of the volume form, page 78 ϵ_{ABCDEF} spinorial counterpart of the three-dimensional volume form, page 105 ϵ_{abcd} volume form of a metric g_{ab} , page 49 $\epsilon_{AB}, \epsilon^{AB}$ antisymmetric spinors, page 67 \equiv definition η_{ABCD} components of the electric part of the Weyl spinor, page 373 η_{ab} components of a four-dimensional Lorentzian metric with respect to an orthonormal basis, page 45 $\eta_{\mu\nu}$ components of the Minkowski metric tensor in Cartesian coordinates, page 47 \eth , \eth eth and eth-bar operators, page 241 exp exponential map, page 275 Γ geodesic distance, page 276 $\gamma(s)$ curve in a manifold with parameter s, page 30 $\Gamma_a{}^c{}_b$ connection coefficients of ∇ with respect to $\{e_a\}$ $\gamma_i{}^j{}_k$ connection coefficients of the three-dimensional connection D with respect to the frame $\{e_i\}$, page 59 $\Gamma_{\mu}{}^{\nu}{}_{\lambda}$ Christoffel symbols of the metric **g** in the coordinates (x^{μ}) $\Gamma_{A'A'}{}^{BB'}{}_{CC'}$ spinorial counterpart of the connection coefficients $\Gamma_a{}^b{}_c$, page 82 $\Gamma_{AA'}{}^B{}_C$ reduced spin connection coefficients, page 82

xxii

- Γ_{ABCD} space spinor counterpart of the reduced spin connection coefficients $\Gamma_{AA'CD}$, page 107
- $\gamma_{\boldsymbol{A}\boldsymbol{B}}{}^{\boldsymbol{C}}{}_{\boldsymbol{D}}\,$ reduced spatial spin connection coefficients, page 109
- $\gamma_{AB}{}^{CD}{}_{EF}$ spinorial counterpart of the three-dimensional connection coefficients $\gamma_i{}^j{}_k$, page 109
- $\hat{\Omega}, \, \tilde{\Omega}$ massless and, respectively, massive part of the conformal factor associated to Euclidean initial data sets, page 529
- $\hat{\boldsymbol{\nabla}}$ generic Weyl connection in index-free notation, page 119
- $\hat{\Gamma}_{a}{}^{b}{}_{c}$ connection coefficients of a Weyl connection $\hat{\nabla}$, page 119
- $\hat{\Gamma}_{AA'}{}^{B}{}_{C}$ reduced Weyl connection spin coefficients, page 206
- $\hat{\nabla}_a$ generic Weyl connection in abstract index notation, page 119
- $\hat{\rho}^{\boldsymbol{c}}{}_{\boldsymbol{d}\boldsymbol{a}\boldsymbol{b}}$ Weyl connection algebraic curvature, page 203
- $\hat{\rho}_{ABCC'DD'}$ Weyl connection reduced spinorial algebraic curvature, page 207
- \hat{P}^{c}_{dab} Weyl connection geometric curvature, page 203
- $\hat{P}_{ABCC'DD'}$ Weyl connection reduced spinorial geometric curvature, page 207
- κ conformal factor associated to the construction of the cylinder at spatial infinity, page 541
- $\Lambda\,$ Newman-Penrose Ricci scalar, page 87
- $\lambda\,$ cosmological constant, page 2
- $\Lambda_{(ABCD)},\;\Lambda_{AB}\;$ irreducible components of the spinorial Bianchi equation, page 351
- $\langle \boldsymbol{\omega}, \boldsymbol{v} \rangle\,$ action of the covector $\boldsymbol{\omega}$ on the vector \boldsymbol{v}
- $\langle t \rangle^{\perp} \mid_{p}$ subspace orthogonal to t, page 55
- $\langle t \rangle\,$ one-dimensional subspace spanned by $t,\, {\rm page}\,\, 55$
- $\langle \langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle \rangle$ Hermitian product of $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathfrak{S}$, page 94
- $\llbracket \nabla_a, \nabla_b \rrbracket$ modified commutator of covariant derivatives, page 40
- \mathbb{H}^n *n*-dimensional half Euclidean space, page 29
- \mathbb{R}^+ non-negative real numbers
- \mathbb{R}^2 Euclidean plane
- \mathbb{R}^n *n*-dimensional Euclidean space
- \mathbb{S}^2 2-sphere
- \mathbb{S}^3 three-dimensional unit sphere, page 142
- \mathbf{A}^* transpose of the complex conjugate of the matrix \mathbf{A}
- \mathbf{A}^3 normal matrix in an initial boundary value problem, page 314
- \mathbf{A}^{μ} symmetric matrices in a symmetric hyperbolic system, page 294
- d exterior derivative (differential), page 31
- $\mathbf{d}x^{\mu}$ coordinate basis covector
- \mathbf{L} generic differential operator
- \mathbf{L}^* formal adjoint of the differential operator \mathbf{L}
- \mathbf{L}_{h} Yamabe operator, page 256
- ${\bf T}\,$ map associated to the prescription of boundary conditions in an initial boundary value problem, page 314
- $\mathbf{u}, \mathbf{v}, \mathbf{w}, \dots \mathbb{C}^N$ -valued functions

- $\mathcal{B}_a(p)$ ball of radius a > 0 centred at the point p
- \mathcal{C}_p null cone at a point $p \in \mathcal{M}$, page 45
- $\mathcal{C}_p^+, \mathcal{C}_p^-$ future and, respectively, past null cone at a point $p \in \mathcal{M}$, page 45
- $\hat{\mathcal{D}}$ a generic derivation, page 30
- \mathcal{D}_{AB} Sen connection of $\nabla_{AA'}$ induced by $\tau_{AA'}$, page 105
- ${\mathcal E}\,$ corner in an initial boundary value problem, page 314
- ${\mathcal G}\,$ generic lens-shaped domain, page 301
- \mathcal{H}_k standard hyperboloids, page 154
- \mathcal{I} cylinder at spatial infinity, page 542
- \mathcal{I}^0 intersection of the cylinder at spatial infinity with a Cauchy initial hypersurface, page 542
- \mathcal{I}^{\pm} critical sets where null infinity touches spatial infinity, page 542
- \mathcal{M}, \mathcal{N} generic (unphysical) spacetime manifolds
- $\mathcal{N},\,\mathcal{N}'$ initial null hypersurfaces in a characteristic problem, page 320
- \mathcal{N}_i complex null cone at *i*, page 522
- $\mathcal{N}_{\mathbb{C}}(i)$ complexification of the null cone through *i*, page 532
- \mathcal{P} covariant derivative in the direction of $\tau_{AA'}$, page 105
- ${\mathcal Q}\,$ generic quotient manifold, page 141
- ${\mathcal R}\,$ generic subset of a hypersurface ${\mathcal S}\,$
- ${\mathcal S}\,$ generic hypersurface on a manifold ${\mathcal M}\,$
- \mathcal{T} timelike boundary, page 314
- $\mathcal{U},\,\mathcal{V}\,$ generic open subsets of a manifold or \mathbb{R}^n
- $\mathcal{U}_{\mathbb{C}}$ complexification of a neighbourhood $\mathcal U$ of the point at infinity, page 532
- $\mathcal Z$ intersection of initial null hypersurfaces in a characteristic problem, page 320
- \mathfrak{S} complex vector space, page 65
- $\mathfrak{S}(\mathcal{M})$ spin structure (spin bundle) over \mathcal{M} , page 81
- $\mathfrak{S}(\mathcal{S})$ space spinor structure over a three-dimensional manifold \mathcal{S} , page 101
- $\mathfrak{S}^*\,$ dual of the complex vector space $\mathfrak{S},$ page 65
- $\mathfrak{S}^{\bullet}(\mathcal{M}), \mathfrak{S}_{A}(\mathcal{M}), \mathfrak{S}^{A}(\mathcal{M}), \mathfrak{S}_{AA'}{}^{B}(\mathcal{M}), \ldots$ various spin bundles over \mathcal{M} \mathfrak{S}^{\bullet} spin algebra, page 66
- $\mathfrak{S}^A, \mathfrak{S}_A, \ldots$ alternative notation for the vector spaces $\mathfrak{S}, \mathfrak{S}^*, \ldots$, page 66
- $\mathfrak{S}^{A'}, \mathfrak{S}_{A'B'}, \ldots$ complex conjugates of the spaces $\mathfrak{S}^{A}, \mathfrak{S}_{AB}, \ldots$, page 72
- $\mathfrak{T}^{\bullet}(\mathcal{M})$ tensor bundle over \mathcal{M} , page 34
- $\mathfrak{T}^{a}(\mathcal{M})$ alternative notation for the tangent bundle over \mathcal{M} , page 36
- $\mathfrak{T}^{a_1\cdots a_k}{}_{b_1\cdots b_l}(\mathcal{M})$ alternative notation for the tensor bundle over \mathcal{M} , page 36
- $\mathfrak{T}_a(\mathcal{M})$ alternative notation for the cotangent bundle over \mathcal{M} , page 36
- $\mathfrak{X}(\mathcal{M})\,$ set of of scalar fields over $\mathcal{M},\, page \; 30$
- $\mathring{\mathbf{u}}$ background quantity in an evolution system
- ${\mathscr C}$ generic cut of null infinity
- \mathscr{C}_{\star} fiduciary cut of null infinity
- ${\mathscr E}$ extension operator of functions between Sobolev spaces, page 308
- ${\mathscr I}\,$ part of the conformal boundary that is a hypersurface, page 178
- $\mathscr{I}^\pm\,$ future and, respectively, past null infinity

 $\mathscr{N}^+_i,\,\mathscr{N}^-_i$ null cones generated by the null geodesics through $i,\,\mathrm{page}$ 531

 $\mathcal{N}_{\! u}\,$ outgoing null hypersurface associated to the retarded time u

 $\mathcal{R}_{\boldsymbol{h}}$ linearised Ricci operator, page 289

- ${\mathcal Z}$ generic intersection of null infinity with a null hypersurface
- int \mathcal{A} topological interior of the set \mathcal{A} , page 397

i square root of -1

 μ_{ABCD} components of the magnetic part of the Weyl spinor, page 373

 $\nabla_{\boldsymbol{a}}$ covariant directional derivative in the direction of $\boldsymbol{e_a},$ page 51

 $\nabla_{\boldsymbol{u}} \boldsymbol{v}$ covariant derivative of \boldsymbol{v} with respect to \boldsymbol{u} , page 38

 ∇_a , $\overline{\nabla}_a$ generic linear connections in abstract index notation, page 38

 $\nabla_{AA'}$ directional spinorial covariant derivative, page 82

 $\nabla_{AA'}, \tilde{\nabla}_{AA'}, \dots$ spinor covariant derivatives, page 81

 ∇_{AB} space spinor counterpart of $\nabla_{AA'}$, page 105

- $\Omega\,$ generic three-dimensional conformal factor
- \oplus direct sum
- $\otimes\,$ tensor product between tensors or tensor spaces
- $\overline{\mathcal{A}}$ topological closure of the set \mathcal{A} , page 394

 $\|\mathbf{u}\|_{\mathcal{S},m}$ Sobolev norm of order *m* of a function over \mathcal{S} , page 306

 $\partial \mathbb{H}^n$ boundary of the *n*-dimensional half Euclidean space, page 29 $\partial \mathcal{M}$ boundary of \mathcal{M}

 ϕ unphysical conformally coupled scalar field, page 216

 ϕ_0 radiation field in the asymptotic characteristic problem on a cone, page 500

 $\Phi_{ABA'B'}$ spinorial counterpart of the trace-free Ricci tensor, page 89

 Φ_{ab} trace-free Ricci tensor of a connection ∇_a in abstract index notation, page 48

 $\phi_{AB}\,$ unphysical Maxwell spinor, page 215

 $\Pi\,$ generic distribution, page 55

 $\Pi \mid_p$ hyperplane induced by a distribution at a point $p \in \mathcal{M}$, page 55

 $\pounds_{\boldsymbol{v}}\,$ Lie derivative in the direction of $\boldsymbol{v},$ page 37

 Ψ_{ABCD} Weyl spinor, page 87

 $\rho\,$ boundary-defining function, page 285

 $\rho\,$ polar radial coordinate, page 514

 $\rho^{\alpha}\,$ three-dimensional unit position vector, page 514

 $\rho^{C}_{DAA'BB'}$ reduced spinorial algebraic curvature, page 198

 $\rho^{\boldsymbol{c}}{}_{\boldsymbol{d}\boldsymbol{a}\boldsymbol{b}}$ components of the algebraic curvature, page 195

 $\rho^{AA'}$ spatial spinor used to introduce a 1 + 1 + 2 spinor formalism, page 464

Ric, Ric[g] Ricci tensor of a connection ∇ in index-free notation, page 48

 ${\it Riem}$ Riemann curvature tensor of a connection ${\bf \nabla}$ in index-free notation, page 40

Schouten, Schouten[g] Schouten tensor of a connection ∇ in index-free notation, page 48

 $\sigma\,$ Newman-Penrose spin connection coefficient corresponding to $\Gamma_{\mathbf{01'00}}$

 $\sigma^{\bm{a_{AA'}}},\,\sigma_{\bm{a}}{}^{\bm{AA'}}$ spacetime Infeld-van der Waerden symbols, page 74

- $\Sigma_{\pmb{a}}{}^{\pmb{c}}{}_{\pmb{b}}\,$ components of the torsion tensor with respect to an orthonormal frame, page 53
- $\sigma_i{}^k{}_j$, $\Pi^k{}_{lij}$, π_{klij} components of the three-dimensional torsion, geometric and algebraic curvatures, page 264

 $\sigma_i{}^{\boldsymbol{AB}},\,\sigma^i{}_{\boldsymbol{AB}}$ spatial Infeld-van der Waerden symbols, page 99

 $\Sigma_a {}^c{}_b$ torsion tensor of a connection ∇_a in abstract index notation, page 39

 $\simeq\,$ equality at the conformal boundary

- $\Box\,$ D'Alembertian operator, page 89
- \square_{AB} box commutator, page 89
- $\stackrel{\star}{\simeq}$ equality at a fiduciary cut of null infinity
- $\tau_{AA'}$ privileged timelike spinor inducing a space spinor formalism, page 102
- $\Theta\,$ conformal factor associated to a conformal geodesic, page 132

 $\theta = (\theta^{\mathcal{A}})$ local coordinates on \mathbb{S}^2

- $\Theta_{ABCD}\,$ space spinor counterpart of the components of the Schouten tensor of a Weyl connection, page 373
- $\tilde{\boldsymbol{\eta}}$ Minkowski metric
- $\tilde{\boldsymbol{g}}_{\mathscr{E}}\,$ metric of the anti-de Sitter spacetime, page 159
- $\tilde{\boldsymbol{g}}_{\mathscr{S}}$ metric of the Schwarzschild spacetime, page 163
- $\tilde{\boldsymbol{g}}_{dS}$ metric of the de Sitter spacetime, page 155
- $\tilde{\mathcal{E}}_k$ asymptotic ends of asymptotically Euclidean manifold $\tilde{\mathcal{S}}$, page 272

 $\tilde{\mathcal{F}}_{ab}$ self-dual Faraday tensor, page 213

 $\tilde{\mathcal{M}}$ generic (physical) spacetime manifold

 $\phi\,$ physical conformally coupled scalar field, page 216

 ϕ_{AB} physical Maxwell spinor, page 215

 $\tilde{\varrho}\,$ density of a perfect fluid, page 219

 $\tilde{\varrho}$ energy density, page 254

 F_{ab} physical Faraday tensor, page 213

 j_k energy flux vector, page 254

 $\tilde{p}\,$ pressure of a perfect fluid, page 219

 \tilde{T}_{ab} physical energy-momentum tensor

 $\tilde{u}^a\,$ physical 4-velocity of a perfect fluid, page 219

 \underline{x} spatial coordinates (x^1, x^2, x^3)

 $\Upsilon_a\,$ logarithmic gradient of a conformal factor, page 116

 $\Upsilon_{AA'}$ spinorial counterpart of the logarithmic gradient of a conformal factor, page 123

- φ^* pull-back, page 36
- φ_* push-forward, page 36

 $\varpi_{AA'}$ components of $\varpi_{AA'}$ with respect to a spin basis, page 95

 $\varpi_{AA'}$ Hermitian spinor assocated to a Hermitian inner product, page 95

 $\varrho\,$ conformally rescaled density of a perfect fluid, page 220

 $\varrho\,$ unphysical energy density, page 255

Weyl, Weyl[g] Weyl tensor of a connection ∇ in index-free notation, page 48 $\xi^{A}, \eta_{A}, \ldots$ components of the spinors $\xi^{A}, \eta_{A}, \ldots$ with respect to a spin basis

- ξ^A, η_A, \ldots generic spinors in abstract-index notation
- ξ_{ABCC}, χ_{ABCD} real and imaginary parts of Γ_{ABCD} , page 107
- $\Xi_{ij}, S_i, S_{ij}, H_{kij}$ zero quantities associated to the conformal static field equations, page 511
- $\zeta_0, \ldots \zeta_4$ components of the spin-2 zero-rest mass field ζ_{ABCD} , page 551 ζ_{ABCD} spin-2 zero-rest mass field, page 551
- $\{c_i\}$ global orthonormal frame on \mathbb{S}^3 , page 142
- $\{\boldsymbol{e_a}\}\,$ vector basis in index-free notation, page 31
- $\{\omega^a\}$ covector basis in index-free notation, page 31
- $\{S_t\}_{t\in\mathbb{R}}$ foliation of \mathcal{M} , page 54
- $\{e_i\}$ three-dimensional vector basis in index-free notation, page 59
- $\{e_{AA'}\}$ alternative index-free notation for the Newman-Penrose null tetrad, page 79
- $\{e_{AB}\},\,\{\omega^{AB}\}\,$ three-dimensional basis and cobasis with spin frame indices, page 109
- $\{l, n, m, \bar{m}\}$ Newman-Penrose null tetrad in index-free notation, page 77
- $\{\omega^i\}$ three-dimensional covector basis in index-free notation, page 59
- $\{\boldsymbol{\omega}^{\boldsymbol{A}\boldsymbol{A}'}\}$ soldering form, page 79
- $\{\epsilon_{\pmb{A}}{}^A\},\,\{\epsilon^{\pmb{A}}{}_A\}\,$ alternative abstract index notation for a spin basis and its dual, page 71
- $\{\omega^{\pmb{a}}{}_a\}\,$ covector basis in abstract index notation, page 36
- $\{\omega^{\pmb{i}}_{i}\}\,$ three-dimensional covector basis in index-free notation, page 59
- $\{e_{a}^{a}\}$ vector basis in abstract index notation, page 36
- $\{e_i^i\}$ three-dimensional vector basis in abstract index notation, page 59
- $\{l^a, n^a, m^a, \bar{m}^a\}$ Newman-Penrose null tetrad in abstract index notation, page 77
- $\{m, m_{\alpha}, m_{\alpha_1\alpha_2}, \ldots\}$ sequence of multipole moments of a static spacetime, page 519
- b_{ABCD} Cotton spinor, page 512
- C_p^* characteristic set of a symmetric hyperbolic system at the point p, page 297
- $\tilde{C^{\infty}}$ class of infinitely differentiable (smooth) functions
- $C^{\infty}(\mathbb{R}^3, \mathbb{C}^N)$ space of smooth functions from \mathbb{R}^3 to \mathbb{C}^N , page 306

 C^{c}_{dab} Weyl tensor of a connection ∇_{a} in abstract index notation, page 48

 C^k class of k-times differentiable functions

- $C^k(\mathbb{R}^3, \mathbb{C}^N)$ set of C^k functions from \mathbb{R}^3 to \mathbb{C}^N , page 307
- $C^k([0,T]; H^m(\mathbb{R}^3, \mathbb{C}^N))$ set of C^k functions from [0,T] to $H^m(\mathbb{R}^3, \mathbb{C}^N)$, page 307
- *D* bounded open subset of $H^m(\mathbb{R}^3, \mathbb{C}^N)$ such that for $\mathbf{w} \in D$ the matrix $\mathbf{A}^{0}(0, \mathbf{w}, \mathbf{w})$ is positive definite bounded around from zero by $\delta \geq 0$ for
 - $\mathbf{A}^{0}(0, \underline{x}, \mathbf{w})$ is positive definite bounded away from zero by $\delta > 0$ for all $p \in \mathbb{R}^{3}$, page 309
- $D(\mathcal{R})$ domain of dependence of \mathcal{R} , page 304
- $D, \Delta, \delta, \overline{\delta}$ Newman-Penrose directional covariant derivatives, page 92

 $D^{\pm}(\mathcal{A}), D(\mathcal{A})$ future/past and total domain of dependence of a set \mathcal{A} , page 392

 $d^a{}_{bcd}\,$ rescaled Weyl tensor, page 188

 $d_{\boldsymbol{a}}$ components of the rescaled physical conformal geodesics covector, page 203

 $D_{\boldsymbol{i}}$ three-dimensional directional covariant derivative in the direction of $\boldsymbol{e_i},$ page 59

- D_i generic three-dimensional connection in abstract index notation
- D_{AB} three-dimensional covariant directional derivative, page 109
- $d_{\bm{ij}},\,d_{\bm{ijk}}$ components of the electric and magnetic parts of the rescaled Weyl tensor, page 261
- $D_{AB}\,$ spinorial counterpart of a three-dimensional Levi-Civita connection $\boldsymbol{D},$ page 106

 $F^{a}(x), F^{\mu}(x)$ coordinate gauge source functions, page 339

 $f_{\boldsymbol{a}}$ components of the unphysical conformal geodesics covector, page 203

 $f_a\,$ covector defining a Weyl connection in abstract index notation, page 119

 $F_{AB}(x)$ frame gauge source functions, page 345

 F_{ab} unphysical Faraday tensor, page 214

 $g^{ab}\,$ generic contravariant four-dimensional Lorentzian metric tensor in abstract index notation

 G_{ab} Einstein tensor of a metric g_{ab}

 $g_{ab}\,$ generic four-dimensional Lorentzian metric tensor in abstract index notation

 $H^{\pm}(\mathcal{A}), H(\mathcal{A})$ future/past and total Cauchy horizons of the set \mathcal{A} , page 394 $H^m(\mathbb{R}^3, \mathbb{C}^N)$ Sobolev space of order m of functions from \mathbb{R}^3 to \mathbb{C}^N , page 307 $h_a{}^b$ projector associated to a distribution Π , page 55

 h_{ABCD} components of h_{ABCD} with respect to a spin frame $\{\epsilon_A{}^A\}$, page 99 $h_{AA'}{}^{BB'}$ spinorial counterpart of the projector $h_a{}^b$, page 98

- h_{ABCD} space spinor counterpart of $h_{AA'}{}^{BB'}$ and of a three-dimensional Riemannian metric, page 98
- I generic interval in \mathbb{R}
- i^0 spatial infinity

 i^{\pm} future and, respectively, past timelike infinity

 $I^{\pm}(\mathcal{U})$ chronological future and, respectively, past of a set \mathcal{U} , page 391

 $J^+(o, \mathcal{M}')$ set consisting of o and all points of \mathcal{M}' which can be joined to o by a causal curve in \mathcal{M}' , page 497

 $J^{\pm}(\mathcal{U})$ causal future and, respectively, past of a set \mathcal{U} , page 391

 j_k unphysical flux vector, page 255

 $J_{\boldsymbol{jk}},\,J_{\boldsymbol{j}}\,$ normal components of the rescaled Cotton tensor, page 262

 $K_{ij}\,$ extrinsic curvature tensor of a hypersurface in abstract index notation, page 61

 $L_{ab}\,$ Schouten tensor of a connection ∇_a in abstract index notation, page 48

 l_{ij} three-dimensional Schouten tensor, page 60

 $p\prec\prec q\,$ timelike related points, page 391

p conformally rescaled pressure of a perfect fluid, page 220

 $p\prec q\,$ strictly causally related points, page 391

 $p \preceq q$ causally related points, page 391

 $P^{\pmb{C}}{}_{\pmb{D}\pmb{A}\pmb{A}'\pmb{B}\pmb{B}'}$ reduced spinorial geometric curvature, page 198

 $P^{c}{}_{\boldsymbol{d}\boldsymbol{a}\boldsymbol{b}}$ components of the geometric curvature, page 194

 $P_n^{(\alpha,\beta)}(\tau)$ Jacobi polynomial of degree n with parameters (α,β) , page 553

 $Q_a{}^b{}_c$ transition tensor between connections in abstract index notation, page 42 r three-dimensional Ricci scalar, page 60

R(x) conformal gauge source function, page 348

- R, R[g] Ricci scalar of a connection ∇_a , page 48
- $R^{c}{}_{dab}$ components of the Riemann tensor with respect to an orthonormal frame, page 53
- $R^d{}_{cab}\,$ Riemann curvature tensor of a connection ∇_a in abstract index notation, page 40
- r^{k}_{lij} three-dimensional Riemann curvature tensor in abstract index notation, page 60
- $r_{ABCDEFGH}\,$ spinorial counterpart of the three-dimensional Riemann curvature tensor, page 110
- R_{ab} Ricci tensor of a connection ∇_a in abstract index notation, page 48

 r_{ACEFGH} , r_{ABCE} reduced three-dimensional curvature spinors, page 110

 $R_{CC'DD'AA'BB'}$ spinorial counterpart of the Riemann curvature tensor, page 86

 $R_{CDAA'BB'}$ reduced Riemann curvature spinor, page 86

 r_{ij} three-dimensional Ricci tensor in abstract index notation, page 60

 $s\,$ the Friedrich scalar, page 186

 $s_{ABCD}\,$ spinorial counterpart of the three-dimensional trace-free Ricci tensor, page 110

 s_{ij} three-dimensional trace-free Ricci tensor, page 60

SO(3) three-dimensional special orthogonal group

 $T(\mathcal{M})$ tangent bundle over \mathcal{M} , page 34

 $T \mid_{p} (\mathcal{M})$ tangent space at a point $p \in \mathcal{M}$, page 31

 $T^*(\mathcal{M})$ cotangent bundle over \mathcal{M} , page 34

 $T^* \mid_p (\mathcal{M})$ cotangent space at a point $p \in \mathcal{M}$, page 31

 $T^{\bullet}|_{p}(\mathcal{M})$ tensor algebra at $p \in \mathcal{M}$, page 33

 $T_l^k \mid_p (\mathcal{M})$ space of (k, l)-tensors at the point $p \in \mathcal{M}$, page 33

 $T^{a_1 \cdots a_k}{}_{b_1 \cdots b_l}$ arbitrary (k, l)-tensor in abstract index notation

 T_{ab} unphysical energy-momentum tensor

 T_{cdb} rescaled Cotton tensor, page 189

u retarded time

 $U, X^{\mathcal{A}}, \omega, \xi^{\mathcal{A}}$ components of an adapted frame in the asymptotic characteristic problem, page 482

u, v retarded and, respectively, advanced time coordinates

 $u^{a}, v^{a}, w^{a}, \ldots$ components of the vectors u, v, w with respect to the coframe $\{\omega^{a}\}$, page 51

 u^a unphysical 4-velocity of a perfect fluid, page 220

 $u^a,\,v^a,\,w^a,\,\ldots\,$ generic vectors in abstract index notation

 $v\,$ norm of a static Killing vector, page 504

x(s) alternative notation for a curve with parameter s, page 30

- $X_{CDAB}, Y_{CDA'B'}$ curvature spinors, page 86
- Y[h] Yamabe invariant, page 280
- Y_{abc} four-dimensional Cotton tensor, page 116
- y_{ijk} three-dimensional Cotton tensor, page 118
- y_{ij} three-dimensional Cotton-York tensor, page 118

 $z_{AA'}$, z, $z_{(AB)}$ spacetime and space spinor components of the spinorial counterpart of the deviation vector of a congruence of conformal geodesics, page 383

 $^*F_{ab}$ Hodge dual of an antisymmetric tensor F_{ab} , page 50

 R_{abcd} , R_{abcd}^* left and, respectively, right duals of the tensor R_{abcd} , page 50

 $^+\,$ Hermitian conjugation, page 96

 $^{\dagger},\,^{\ddagger}$ generalised dualisation operations, page 50

 $^{\sharp}, ^{\flat}$ musical operators, page 44

 $_{\alpha}, _{\beta}, _{\gamma}, \ldots$ spatial coordinate indices

A, B, C,... spinor frame indices, page 74

 a, b, \ldots spacetime frame indices ranging $0, \ldots, 3$

- i, j, k, \ldots frame indices ranging either 0, 1, 2 or 1, 2, 3
- \perp perpendicular component

 $\mu, \nu, \lambda, \ldots$ spacetime coordinate indices

 A, B, C, \ldots abstract spinor indices, page 66

 $a, b, c \dots$ abstract spacetime indices

 i, j, k, \ldots abstract spatial indices

 $_{s}Y_{lm}$ spin-weighted spherical harmonics

 $(a_1 \cdots a_l)$ symmetrisation over the indices $a_1 \cdots a_l$, page 36

 $[a_1 \cdots a_l]$ antisymmetrisation over the indices $a_1 \cdots a_l$, page 36

 $\mathcal{A}, \mathcal{B}, \ldots$ arbitrary string of indices

 $\{a_1 \cdots a_l\}$ symmetric trace-free part over the indices $a_1 \cdots a_l$, page 47