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Abstract

The exact mechanism of ethanol’s effects on glucose tolerance has not been well determined. The present study focuses for the first time on

hypoxia and low-grade inflammation in adipose tissue (AT). In the in vivo experiments, twenty-four male Wistar rats were randomly allocated

into control and ethanol feeding groups. Ethanol-treated rats received edible ethanol once a day at a total dosage of 5 g/kg per d, and the

controls received distilled water. Ethanol volumes were adjusted every week. At the end of 8 weeks, we carried out an oral glucose tolerance

test. Blood and AT were collected for measuring hypoxia-inducible factor-1a (HIF-1a), GLUT1, TNF-a, IL-6, leptin and vascular endothelial

growth factor (VEGF). In the in vitro experiments, differentiated OP9 adipocytes were incubated with 100 mM of ethanol for 48 h; the media

and cells were then collected for measuring HIF-1a, GLUT1, TNF-a and IL-6. The results showed that long-term ethanol consumption

impaired glucose tolerance in rats. Ethanol consumption had little influence on body weight, but both epididymal and perirenal AT were

markedly enlarged in the ethanol-treated rats as compared to the controls. Visceral adipose tissue (VAT) had accumulated, and the protein

levels of HIF-1a and GLUT1, the indicators of hypoxia in rat epididymal AT and OP9 adipocytes, were elevated. Secondary to the AT hypoxia,

the levels of inflammation-related adipokines, such as TNF-a, IL-6, leptin and VEGF, were increased. Based on these findings, we conclude

that VAT hypoxia and low-grade inflammation might be a new mechanism in the treatment of ethanol-related diabetes.
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Alcohol consumption is one of the most important – and

potentially one of the most avoidable – risk factors for chronic

disease and injury, but it is increasingly becoming a serious

problem worldwide. It has been documented that chronic

heavy ethanol consumption directly impairs glucose tolerance

and insulin sensitivity, which are the major pathogenic

features of type 2 diabetes mellitus (T2DM)(1,2). This is also

verified by our previous study(3). Although the precise mech-

anism or mechanisms underlying the effect of alcohol on the

pathogenesis of T2DM has not been well elucidated as of

yet, recent findings indicate that there is a clear link between

T2DM and the alcohol-elicited dysfunction of white adipose

tissue (WAT)(4).

Traditionally, WAT has been considered only a passive

reservoir for energy storage, but the discovery of a number of

adipokines(5–9) has led to a modern conception of WAT as

the largest endocrine organ. Therefore, it is conceivable that

the dysfunction of WAT might be attributable to the pathophy-

siology of a variety of metabolic diseases. Indeed, research has

shown that during the development of obesity, adipocytes

become hypertrophic and can increase in size to 200mm in

diameter(10), but the diffusion limit of oxygen is at most

100mm(11). In this regard, hypertrophic adipocytes might

endure hypoxia. Of note, hypoxia-inducible factor-1a

(HIF-1a) and GLUT1, which play a pivotal role in the response

to hypoxia(12), are regarded as the master regulators of O2
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homoeostasis. Increasing evidence suggests that hypoxia in

adipose tissue (AT) leads to chronic inflammation within the

tissue(5), which subsequently results in the dysregulation of the

production of inflammation-related adipokines, such as leptin,

adiponectin, TNF-a, IL-6 and vascular endothelial growth

factor (VEGF)(13,14), which are viewed as central to the develop-

ment of insulin resistance and metabolic syndrome(7,9,15).

Previously, we found that rats who consumed ethanol for a

long period of time exhibited an expansion in visceral adipose

tissue (VAT) mass and hypertrophic adipocytes(3). This finding

prompted us to explore whether chronic ethanol consumption

leads to AT hypoxia and, consequently, the occurrence of

low-grade inflammation. Therefore, the present study was

designed to measure the expression of HIF-1a and GLUT1

as well as leptin, TNF-a, IL-6 and VEGF in both epididymal

AT and OP9 adipocytes in response to ethanol consumption.

The goal of the project was to gain new insight into the

molecular mechanism responsible for ethanol’s effects on

glucose metabolism.

Materials and methods

Animal feeding

A total of twenty-four male Wistar rats (weight, 160–180 g;

age, 4–6 weeks) were purchased from the Laboratory

Animal Center at Shandong University. After 1 week of

acclimatisation, the rats were randomly assigned to either

the control group or the ethanol feeding group, with twelve

subjects in each group. The diets were purchased from the

Laboratory Animal Center. In terms of energy, the diet con-

tained 10 % fat, 70 % carbohydrates and 20 % protein (total

17·74 kJ/g (4·24 kcal/g)). Rats in the ethanol feeding group

received edible ethanol (Beijing erguotou; Beijing Erguotou

Company) once a day at a dosage of 5 g/kg per d, and rats

in the control group received distilled water by gastric tubes.

Body weights were monitored, and ethanol volumes were

adjusted every week. All of the treatments lasted for 8 weeks.

During the period of treatment, rats were housed in individ-

ual cages in a temperature-controlled room (248C) and were

exposed to a 12 h light–12 h dark cycle. Water was available

ad libitum. The study was approved by the Shandong Univer-

sity Institutional Animal Care and Use Committee.

Oral glucose tolerance test

An oral glucose tolerance test (OGTT) was carried out after

the 8-week treatment was complete. Rats were fasted over-

night, and then their blood glucose was measured in samples

that were obtained by tail bleeding both before glucose

administration (2 g/kg body weight) and 30, 60 and 120 min

after glucose load. Blood glucose (BG) concentrations were

determined using a One Touch SureStep Meter (LifeScan,

Inc.). AUC was calculated to assess glucose tolerance using

the following formula:

AUC ¼ 1=4BGð0 minÞ þ 1=2BGð30 minÞ þ 3=4BGð60 minÞ

þ 1=2BGð120 minÞ:

Tissue collection

All of the rats were allowed to recover from the OGTT for 3 d

before they were killed. Rats were anaesthetised by an intraper-

itoneal injection of sodium pentobarbital (0·1 ml/100 g body

weight) after a 10 h fast. Blood samples and epididymal and

perirenal fat pads were obtained as described previously(16).

Biochemical analysis and evaluation of insulin sensitivity

Plasma glucose was measured using the glucose oxidase

method. Insulin was measured by RIA (Northern Bioengineer-

ing Institute). The homeostasis model assessment of insulin

resistance (HOMA-IR) was calculated using the following

formula:

Fasting plasma glucose ðmmol=lÞ £ fasting insulin

ðmicrounits=mlÞ=22·5:

Cell culture

The OP9 cell line was established from the calvaria of newborn

mice genetically deficient in a functional macrophage colony

stimulating factor(17) and was used as a pre/mature adipocyte

model(18). The cells had the potential to rapidly differentiate

into adipocytes. The OP9 cells (ATCC) were seeded in a

twelve-well plate and divided into three groups: controls (A);

ethanol (100 mM) supplied during the differentiation (B); and

ethanol (100 mM) supplied 10 d after differentiation was initiated

(C). OP9 cells were cultured in minimum essential medium

(MEM)-a (Invitrogen) containing 20 % (v/v) fetal bovine

serum (Invitrogen) and 1 % penicillin–streptomycin (Sigma) at

378C under 10 % CO2. At confluence, differentiation was

induced by exposing the cells to a cocktail containing

0·5 mM-3-isobutyl-1-methylxanthine (IBMX) (Sigma), 1mM-

dexamethasone (Sigma) and 20 % fetal bovine serum in

Dulbecco’s minimum essential medium a (DMEM-a) for 3 d.

The medium was replaced with DMEM-a supplemented with

20 % fetal bovine serum and 1mg/ml insulin for an additional

2 d. Afterwards, the medium was changed every 2 d with

DMEM-a supplemented 20 % fetal bovine serum and antibiotics.

Ethanol was supplemented to group B each time the medium

was changed. The images of adipocytes in group B were

acquired using a microscope 10 d after differentiation was

initiated, and the percentage of differentiated adipocytes was

calculated. Adipocytes in group C were incubated in ethanol

for 48 h at a concentration of 100 mM 10 d after differentiation

was initiated. Then the medium was used to measure adipo-

kines, and the cells were used for protein analysis.

Western blot analysis

Western blot analysis was performed as described previously(16).

Total proteins were extracted from the AT and adipocytes by

using a radioimmunoprecipitation assay lysis buffer sup-

plemented with 1mM-phenylmethanesulfonyl fluoride. HIF-1a

primary antibody was bought from Cell Signaling Company.

GLUT1, leptin, TNF-a, IL-6 and VEGF primary antibodies were
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bought from Santa Cruz Biotechnology, Inc. The expression of

b-actin, as an internal control, was verified by reblotting

the same membranes with mice anti-rat b-actin monoclonal

antibody (AbcamLtd.).The relative targetprotein levelswerenor-

malised with b-actin.

Adipokines analysis

The concentration of TNF-a and IL-6 in serum and conditioned

media was measured using mouse-specific ELISA kits (R&D

Systems) according to the manufacturer’s instructions.

Statistical analysis

All of the results were expressed as means with their standard

errors. Data were analysed by GraphPad Prism version 6

(GraphPad Software, Inc.). The statistical significance of differ-

ences between the groups was determined by a t test. The

results were considered to be significant when the P value

was ,0·05.

Results

Chronic heavy ethanol feeding impaired glucose tolerance
and insulin sensitivity

To determine the effects of long-term ethanol consumption

on glucose metabolism and insulin sensitivity, we performed

OGTT on the rats and calculated HOMA-IR. The results

showed that the glucose levels 30 min after glucose adminis-

tration in the ethanol-treated group were much higher than

those in the control group (Fig. 1(a), P,0·05), and they

were then reduced to normal levels at 60 and 120 min after

glucose load (Fig. 1(a)). The OGTT AUC of ethanol-fed rats

was significantly increased relative to the rats in the control

group (Fig. 1(b)). The HOMA-IR was elevated by 40·6 % in

the ethanol-treated group (Fig. 1(c), P,0·05). These results

indicate that 8 weeks of ethanol consumption impaired

glucose tolerance and insulin sensitivity in rats.

Chronic heavy ethanol feeding led to visceral adipose
tissue accumulation

The body weights of rats were monitored every week. Body

weights at the end of final week are not shown because of

the 10 h of fasting before the OGTT. In the ethanol-treated

group, the rats’ body weights showed a slight decrease at

the end of 2nd week, but they subsequently recovered to

the same level as the control group (Fig. 2(a)). At the end of

the treatment, the body weights in both groups showed no

significant differences. However, both the epididymal and

perirenal AT weights were markedly increased in the ethanol-

treated group as compared to the control group (Fig. 2(b),

P,0·05, P,0·05, respectively), which indicates that long-term

ethanol treatment led to a deposit of VAT regardless of

body weight.

Ethanol treatment induced adipocytes differentiation
and increased lipid accumulation

The images of adipocytes were acquired 10 d after differen-

tiation was initiated to evaluate the effect of ethanol on

adipocytes differentiation. The results showed that both the

cells and the lipid droplet sizes after ethanol treatment were

larger than those in the controls (Fig. 3(a)–(d)); moreover,

the differentiation rate in the ethanol group was much
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Fig. 1. Chronic ethanol consumption impaired rat glucose tolerance. After

8 weeks of ethanol feeding (5 g/kg per d), an oral glucose tolerance test

(OGTT) was carried out. Rats were fasted overnight, and then their blood

glucose (BG) was measured by tail bleeding both before glucose adminis-

tration (2 g/kg body weight) and 30, 60 and 120 min after glucose load (a).

, Control; , ethanol. AUC was calculated using the following formula

(b): AUC ¼ 1/4BG (0 min) þ 1/2BG (30 min) þ 3/4BG (60 min) þ 1/2BG

(120 min). Fasting plasma glucose and insulin were measured after the rats

were killed. The homeostasis model assessment of insulin resistance

(HOMA-IR) was calculated using the following formula: fasting plasma glu-

cose (mmol/l) £ fasting insulin (microunits/ml)/22·5. Values are means, with

their standard errors represented by vertical bars. * Mean value was signifi-

cantly different from that of the control group (P , 0·05).

Ethanol leads to adipose tissue hypoxia 1357

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n
https://doi.org/10.1017/S000711451500077X  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/S000711451500077X


higher than that in control group (Fig. 3(e), P,0·01). These

results suggest that ethanol induced adipocytes differentiation

and increased lipid accumulation in adipocytes.

Ethanol increased hypoxia-inducible factor-1a and GLUT1
expression in adipocytes

With the enlargement of VAT mass in ethanol-treated rats,

we speculated that hypoxia might be observed in AT. We

measured the expression of HIF-1a and GLUT1, the key

hypoxia marker genes. As we hypothesised, the rats that

were exposed to ethanol showed increased HIF-1a protein

expression in epididymal AT (Fig. 4(a), P,0·05). Consistent

with the results we observed in vivo, the expression of

HIF-1a in OP9 adipocytes exposed to 100 mM of ethanol

was also elevated significantly as compared to the control

group (Fig. 4(b), P,0·05). Simultaneously, chronic ethanol

feeding led to a 25·9 and 95 % increase of GLUT1 in epididy-

mal AT and OP9 adipocytes, respectively, as compared to the

control group (Fig. 4(c) and (d), P,0·01). These data indicate

that hypoxia occurred in adipocytes after long-term ethanol

exposure.

Ethanol increased inflammation-related adipokines levels
in vivo and in vitro

Given the important role of chronic, low-grade inflammation

in the development of insulin resistance(15,19), we measured

the effect of ethanol on the inflammation-related adipokines

TNF-a and IL-6. As shown in Fig. 5(a)–(d), ethanol treatment

increased TNF-a and IL-6 protein expression significantly

(P,0·01 for Fig. 5(a) and (c), P,0·05 for Fig. 5(b) and (d))

both in vivo and in vitro. Both TNF-a and IL-6 in rat serum

(Fig. 5(e) and (g), P,0·01 and P,0·05, respectively) and

OP9 cell culture medium (Fig. 5(f) and (h), P,0·01

and P,0·05, respectively) were markedly increased after

long-term ethanol administration (5 g/kg per d) and ethanol

treatment (100 mM). These results indicate that chronic inflam-

mation occurred after ethanol treatment, and this is the most

probable mechanism for insulin resistance.

Chronic ethanol feeding increased leptin and vascular
endothelial growth factor expression in epididymal
adipose tissue

To confirm the inflammation within VAT, we next measured

the expression of leptin and VEGF, the key inflammation-

related adipokines whose expression was hypoxia-sensitive

via HIF-1a. Consistent with the changes in HIF-1a, leptin

expression in ethanol-fed rat AT was increased by 133·4 %

relative to the control group (Fig. 6(a), P,0·01). Simul-

taneously, VEGF expression was also increased by 52·9 % as

compared to the control group (Fig. 6(b), P,0·01). This

further confirmed our supposition that low-grade inflam-

mation occurred within VAT after ethanol consumption.

Discussion

The present study is the first to provide evidence that chronic

ethanol consumption impaired glucose tolerance and resulted

in VAT accumulation. In addition, we found that the

expression of HIF-1a and GLUT1 increased significantly

both in epididymal AT and OP9 adipocytes after ethanol treat-

ment, which indicates hypoxia within the tissue. As a result of

hypoxia, the secretion of inflammation-related adipokines,

such as leptin, TNF-a, IL-6 and VEGF, was subsequently
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Fig. 2. Chronic ethanol consumption led to rat visceral adipose tissue (AT)

accumulation without influencing body weight. A total of twenty-four male

Wistar rats received edible ethanol once a day at a total dosage of 5 g/kg per

d (ethanol: (a) , (b) ) or distilled water by gastric tubes (control: (a) ,

(b) ). Body weights were monitored every week (a). At the end of 8 weeks,

epididymal and perirenal AT were collected and weighed (b). Values are
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increased, and this might be one possible mechanism under-

pinning ethanol-related diabetes.

Epidemiological studies suggest that the effects of ethanol

are biphasic, that is, chronic light or heavy ethanol consump-

tion leads to insulin resistance, whereas moderate ethanol

consumption results in increased insulin sensitivity(20–24).

However, the definitions of ethanol dosage as light, moderate

or heavy are not uniform. We previously reported blood etha-

nol concentrations of 870 mg/l in rats using this paradigm(3).

In the present study, after referring to several earlier

studies(3,25–32), we adopted 5 g/kg per d in vivo and 100 mM

in vitro as heavy ethanol dosages.

Under the ethanol challenge of such a concentration, the

results from the OGTT exhibited marked differences between

the ethanol-treated rats and the control rats after 8 weeks,

which suggests that chronic heavy ethanol consumption

leads to glucose intolerance in rats (Fig. 1).

With the present in vitro study, OP9 cells, but not 3T3-L1

cells, were employed to observe the adipocytes’ response to

ethanol. Although both cells have the potential to differentiate

into mature adipocytes, they have quite different charac-

teristics. 3T3-L1 cells have several limitations, including a

requirement of 2 weeks to generate adipocytes and the

waning of their adipogenic potential in culture. On the other

hand, when OP9 cells are given any one of three adipogenic

stimuli, they rapidly accumulate TAG, assume adipocyte mor-

phology and express adipocyte late marker proteins. Thus,

OP9 cells can differentiate into adipocytes within 2 d(18).

Based on the characteristics of the two cell lines, we preferred

to use OP9 cells instead of 3T3-L1 cells.

Up until now, the mechanism responsible for the alcohol-

attributable development of diabetes has still not been fully

elucidated. WAT – in particular VAT, which is increasingly

considered to be a functional endocrine organ(33–36) – plays

an important role in regulating whole organism-level insulin

sensitivity(37–39). In the present study, we demonstrated that

both epididymal and perirenal AT weights significantly

increased in ethanol-treated rats as compared to the control
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measure adipokines with Western blot analysis and ELISA (b, d, f and h). The in vitro experiments were performed at least three different times. Values are

means, with their standard errors represented by vertical bars. Mean value was significantly different from that of the control group: * P , 0·05, ** P , 0·01.

Z. He et al.1360

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n
https://doi.org/10.1017/S000711451500077X  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/S000711451500077X


group. This finding, together with our previous data(15), con-

firms that the occurrence of diabetes after long-term heavy

ethanol consumption is firmly correlated with VAT deposition

(Fig. 2), and this concurs with other studies that have investi-

gated human subjects(40–44).

It has been reported that abdominal obesity is a consider-

able risk factor for developing insulin resistance and

T2DM(39,45–47). In the present work, we revealed that ethanol

treatment induced adipocyte differentiation and increased

lipid droplet accumulation (Fig. 3), which is most probably a

mechanism for VAT accumulation after ethanol consumption.

However, Greenfield et al.(48) reported that a smaller waist

circumference was related to high alcohol consumption in

healthy female twins. The discrepancy might be explained

by the differences in total ethanol consumption.

Next, we investigated whether hypoxia occurs in alcohol-

induced accumulated VAT or OP9 cells. First, we measured

HIF-1a and found a 39·1 and 16·5 % increase in ethanol-fed

rats’ AT and ethanol-treated OP9 cells, respectively. The

small difference in HIF-1a between the two groups might be

the result of individual animal variation per se. In addition,

the HIF-1a protein is not always a perfect marker of hypoxia.

To further confirm hypoxia within the AT, we then measured

another key marker of hypoxia, GLUT1. GLUT1 was also

significantly increased after ethanol treatment (Fig. 4(c) and

(d)), which indicates that long-term ethanol exposure indeed

results in the occurrence of hypoxia in adipocytes. On the

basis of these findings, we believe that AT hypoxia after

ethanol treatment contributes to glucose intolerance in rats.

To our knowledge, the present study is the first study to

focus on AT hypoxia as the mechanism that underlies the

action of ethanol on diabetes. Hitherto, the precise mechanism

of hypoxia has not been well elucidated. One possible mech-

anism is that has been suggested involves the enlargement of

adipocytes after ethanol treatment(3); the hypertrophic adipo-

cytes can increase in size to 200mm in diameter(10), but the

maximum diffusion of oxygen is only 100mm(11). Hodson

et al.(49), however, possessed the completely opposite

opinion: they thought that although delivery of O2 to the

obese AT is reduced, VO2 is low and the metabolic signatures

of human AT do not support the notion of a hypoxic state in

obesity. Further research needs to be carried out on this issue.

AT hypoxia is the deprivation of adequate oxygen from AT,

which then results in widespread systemic inflammation(35);

this inflammation is characterised by the secretion of numer-

ous proinflammatory cytokines(49,50). Of these, IL-6 and

TNF-a play a leading role in the development of insulin

resistance and diabetes(51–54). TNF-a can modulate insulin

signalling and induce insulin resistance in adipocytes(55).

Moreover, membrane-associated TNF-a is an autocrine reg-

ulator of IL-6 and thus is an amplifier of signals during the

development of insulin resistance(56). AT expression and

serum levels of IL-6 are closely related not only to glucose

tolerance and insulin resistance but also to an increased

incidence of type 2 diabetes(51). In the present study, we

demonstrated that the levels of TNF-a and IL-6 in VAT and cul-

tured adipocytes were dramatically increased after ethanol

treatment, and their circulating levels were subsequently elev-

ated (Fig. 5). This might indicate that low-grade inflammation

occurred in ethanol-treated rats and cultured adipocytes,

which can then result in diabetes. The present findings are

partly consistent with previous reports(57,58).

The findings show that chronic ethanol treatment induced

inflammation within AT by increasing the expression of

TNF-a and IL-6. However, TNF-a production was not directly

stimulated by hypoxia, and IL-6 expression as a result of low

oxygen occurred through an HIF-1 independent pathway. To

verify whether AT inflammation was associated with changes

in HIF-a after the ethanol treatment, we then measured the

expression of leptin and VEGF, the key inflammation-related

adipokines, whose expression was hypoxia-sensitive via

HIF-1a(59–61). Leptin is also considered to up-regulate pro-

inflammatory cytokines, such as TNF-a and IL-6, which

are associated with insulin resistance and T2DM(62). As we

expected, the expressions of both leptin and VEGF in rat epi-

didymal AT were elevated after the ethanol treatment (Fig. 6).
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Fig. 6. Chronic ethanol feeding increased leptin and vascular endothelial

growth factor (VEGF) expression in epididymal adipose tissue (AT). A total of

twenty-four male Wistar rats were fed with or without ethanol (5 g/kg per d)

for 8 weeks. Then epididymal AT was obtained for measuring leptin and

VEGF protein expression (a and b). Values are means, with their standard

errors represented by vertical bars. ** Mean value was significantly different

from that of the control group (P , 0·01).
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These results imply that the occurrence of inflammation within

AT might be a secondary effect of hypoxia after long-term

heavy ethanol consumption, and it can eventually lead to

whole-body insulin resistance(63,64).

Lastly, although we considered GLUT1 as a hypoxia marker

gene in the present study, it is most famous as a glucose trans-

porter. The present results showed that the expression of

GLUT1 was increased after ethanol consumption, which

suggests that glucose disposal in VAT should be enhanced.

However, we and others have found that chronic heavy etha-

nol impaired glucose disposal in both skeletal muscle and

AT(3,25,29). The reason for this discrepancy was that the main

GLUT in skeletal muscle and AT is GLUT4, not GLUT1.

GLUT4 expression was dramatically decreased after heavy

ethanol consumption. Furthermore, GLUT1 is only responsible

for basal glucose transport, whereas GLUT4 mainly subserves

the insulin-responsive glucose transport function(65). Thus,

GLUT4 contributes more to glucose disposal in skeletal

muscle and AT than GLUT1 does.

In conclusion, chronic heavy ethanol consumption causes

VAT deposit, which subsequently results in hypoxia and

inflammation within the tissue. This might be a new mechan-

ism for understanding ethanol’s effect on glucose metabolism.
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