
GRAPH-COLOURING AND COMBINATORIAL 
NUMBERS 

A N D R E W SOBCZYK 

1. Introduction. We shall use the term n-configuration for the complete 
graph having n vertices, which we visualize as a regular convex polygon. The 
sides and diagonals will be referred to as edges. A complete sub-configuration 
of p vertices (subset of p vertices with all interconnecting edges) will be called 
a ^-tuple. A 3-tuple will be called a triple or triangle, a 4-tuple a quadruple, 
etc. 

Suppose that all of the edges of an ^-configuration are coloured, in an 
arbitrary way, either red or blue (1). Then the Ramsey combinatorial number 
N(p, q; 2) may be described as the smallest integer such that if n > N(p} q; 2), 
the ^-configuration will certainly contain either a red ^-tuple (a ^>-tuple all 
of whose edges are coloured red) or a blue g-tuple. The theorem of Ramsey 
asserts that the numbers N(p, q; 2), as well as more general but analogous 
numbers N(pu . . . , pt; r), always exist; see (6, pp. 38-43). As indicated in 
(6), up to the year 1963, essentially all of the known exact information con
cerning the numbers N(p,q;2) = N(q,p;2) was derived in (1), and this 
information is the following: iV(4, 4; 2) = 18, N(3, 3; 2) = 6, N(3, 4; 2) = 9 , 
7V(3, 5; 2) = 14, N(3, 6; 2) = 17, 18, or 19. This paper includes a proof that 
N(3, 6; 2) = 18. The referee points out that approximately simultaneously 
with the author, the value iV(3, 6; 2) = 18 was established independently by 
Gerzson Kéry (5), by J. G. Kalbfleisch (1966 Ph.D. dissertation, University of 
Waterloo, Waterloo, Canada), and by J. E. Graver (not yet published). 
Graver has proved also that iV(3, 7; 2) = 23, and found bounds for iV(3, 8; 2) 
and N(3, 9; 2). The author is indebted to the referee for calling his attention 
to the work of Kéry, Kalbfleisch, and Graver. (See (2) and (4).) 

The following "verticial" analogous number to N(p, q\ 2) suggests itself: 
S(p, q; 2) is the smallest integer such that if n > S(p, q\ 2), the ^-configuration 
must contain, for each vertex, either a red £>-tuple containing the vertex or a 
blue q-tuple not containing the vertex. I t is shown in §3, for p > 2, q > 2, that 
necessarily S(p, q\ 2) = oo , i.e., that the number S(p, q; 2) does not exist. 

In this paper, several new kinds of combinatorial numbers, which, like the 
Ramsey numbers, do exist, are introduced, and their values, or bounds for 
their values, are determined. For example, a number K(p, q; 2) is obtained by 
slight modification of the above definition of S(p,q',2): K(p,q\2) is the 
smallest integer such that if n > K(p, q\ 2), then the ^-configuration is sure 
to contain, for each vertex, either a like (red or blue) ^>-tuple containing the 

Received April 22, 1966; revised version received January 18, 1967. 

520 

https://doi.org/10.4153/CJM-1968-054-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-054-x


GRAPH-COLOURING 521 

vertex, or a like g-tuple not containing the vertex. For three colours of edges, 
the number M(p, q — x, x\ 2) is denned to be the smallest integer such that 
if n > M(p, q — x, x\ 2), then the ^-configuration surely contains either a like 
p-tuple, or a j , fe, g-tuple (i.e., a g-tuple in which the edges are of at most two 
different colours). In §5, a three-colour verticial number V(p, q — x, x; 2), 
with, just as in the case of M(p, q — x, x; 2), two rather than three alternatives, 
is introduced, and determinations of its values are made. 

In §4, as a side-product, we obtain the following recurrence inequality for 
iV(3, 5, w;2), 3 < s, 3 < u: 

N(3,s,u;2) < (3g - 1), 

where q = N(s,u\2). Except for iV(3, 3, 3; 2) = 17, as is shown in (1, 
pp. 4-5), this seems to be new. (See the sentence in (6) which ends at the top 
of p. 43.) As far as I know, the lower bound 11 for iV(4, 4; 3), established in 
§2, also is new. (See note added in §2.) 

2. Notation; bounds for iV(4, 4; 3). We use the notation of (6) for the 
Ramsey numbers: N(pi, . . . , pu r) is regarded as referring to an ^-configura
tion (or (n — 1)-dimensional simplex), in which each r-tuple (or (r — 1)-
dimensional simplicial face) is coloured one of / colours Ci, c2, • . • , or ct. A 
p-tuple, p > r, is of colour ct if all of its r-subtuples are of colour c{. Always 
n > r, and pt > r for i = 1, . . . , t. In accordance with the theorem of Ramsey 
(6), if n > N(pi, . . . , pt',r), then no matter how the r-tuples of the ^-con
figuration are coloured with the t colours, necessarily at least one of the follow
ing alternatives holds: the configuration contains a £i-tuple of colour ci, or 
a£>2-tupleof colourc2j . . . , o r a £ r t u p l e o f colour ct. Forn < N(pit . . . , pt; r), 
we say that an ^-configuration, with a particular /-colouration of its r-tuples, 
is non-degenerate with respect to N(pi, . . . , pt\ r) if none of the alternatives 
is true. 

THEOREM 2.1. We have 11 < iV(4, 4; 3) < 19. 

Proof. Assume that there exists a 19-configuration which is non-degenerate 
with respect to iV(4, 4; 3). Consider the 18-configuration of the other ends of 
the edges from any fixed vertex v of the 19-configuration. In the 18-configura
tion, colour edge ij red if the 3-tuple vij of the 19-configuration is coloured red; 
colour edge ij blue if the 3-tuple vij is coloured blue. Since iV(4, 4; 2) = 18, the 
18-configuration must contain either a red 4-tuple or a blue 4-tuple. The 
3-tuples of the 4-tuple whose edges are all of one colour must be coloured all 
of the opposite colour, in order to avoid a 4-tuple including v having 3-tuples 
all of one colour. Therefore the 19-configuration is degenerate, contrary to our 
assumption. This establishes thatiVY4, 4; 3) < 19. 

A 9-configuration which is non-degenerate with respect to iV(4, 4; 3) may 
be constructed as follows. Number the vertices 1 to 9. The triangles 123, 456, 
789, 174, 258, 369, 159, 267, 348, 186, 924, 357; 125, 379, 468, 134, 578, 269, 
167, 594, 238, 189, 247, 356; 128, 374, 569, 179, 358, 246, 136, 489, 257, 145, 
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239, 678 are three disjoint Steiner systems of triangles. Colour red all of these 
triangles, except 136 of the third system; and also colour red 169, 234, 679, 
and 137, for a total of 39 red triangles. Colour the remaining 45 triangles blue. 

Let a 10th vertex 0 be added to the 9-configuration. By digital enumeration 
and checking, it may be seen that red and blue colourations of the 36 new 
triangles involving vertex 0 are possible, such that none of the 4-tuples contain
ing vertex 0 fails to have 3-tuples of both colours. Therefore we have 
iV(4,4;3) > 10, as required.* 

Following is an interesting problem on the connection between iV(4, 4; 3) 
and the Euclidean geometry of an (n — 1)-simplex. A Euclidean triangle may 
have at most one obtuse (>90°) angle; call such a triangle obtuse. Call a 
Euclidean triangle in which all three angles are acute (<90°), an acute 
triangle. Call a tetrahedron obtuse if all of its triangular faces are obtuse; acute 
if all its faces are acute; otherwise normal. What is the largest n for which a 
Euclidean (n — 1)-simplex exists, in which all of the tetrahedral faces are 
normal? Clearly n < iV(4,4; 3), and because of the geometrical (and 
symmetrical!) constraint, one would expect that n < iV(4, 4; 3) — 1. 

Hereafter in this paper, except in the first statement of Theorem 4.6, r will 
always be 2; i.e., 2-tuples or edges will be coloured, with the number of colours 
t being 2 or 3. 

3. Verticial numbers. As an example, we establish the well-known result 
that N(3, 3; 2) = 6. A pentagon with outer edges red and with blue diagonals 
contains neither a red triangle nor a blue triangle. We say accordingly that 
this 5-configuration is non-degenerate with respect to N(3, 3; 2), and its existence 
proves that 7V(3, 3; 2) > 5. 

The following argument establishes that iV(3, 3; 2) < 6. Of the five edges 
issuing from any vertex of a 6-configuration with edges of two colours, at least 
three must be of the same colour, say red. Consider the triangle which has for 
its vertices the three other ends of the three red edges from the vertex. If the 
sides of this triangle are all blue, the 6-configuration contains a blue triangle; 
otherwise it contains a red triangle involving the original vertex. Combining 
this with the preceding paragraph, we have shown that iV(3, 3; 2) = 6 . 

The definitions of S(p,q;2) and K(p,q;2), which were given in §1, 
obviously are suggested by the fact that the above sort of argument applies at 
each vertex of any configuration. 

THEOREM 3.1. For all p > 2, q > 2, we have that S(py q\ 2) = œ ; i.e., for 
arbitrarily large n, there exists an n-configuration with a vertex for which there is 
neither a red p-tuple containing the vertex nor a blue q-tuple not containing the 
vertex. 

*Note added in proof. In his dissertation, Kalbfleisch established that iV(4, 4 ; 3) > 11. I now 
have examples showing that the Euclidean n described below is greater than 6, and that the 
corresponding metric n is greater than 8. 
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Proof. To show that 5(3, 2; 2) = oo, at one vertex of an ^-configuration, 
with n arbitrarily large, assign one edge from the vertex to be red, and let all 
other edges from the vertex be blue. Let all other edges of the ^-configuration 
be red. Then, as required, there is neither a red triangle containing the vertex 
nor a blue edge not containing the vertex. To show that S(2, q; 2) = oo for 
q > 2, let all edges from the vertex be blue and all other edges red. Then, 
as required, there is neither a red 2-tuple containing the vertex nor a blue 
g-tuple not containing the vertex. Finally, to show that S(p, q; 2) = œ for 
P > 3, q > 3, let (p — 1) edges from the vertex be red, and let the remaining 
edges from the vertex be blue. Let one edge joining other ends of the (p — 1) 
red edges be blue, and let all other edges of the ^-configuration be red. Then, 
as required, the ^-configuration contains neither a red ^-tuple containing the 
vertex nor a blue q-tup\e not containing the vertex. 

THEOREM 3.2. WehaveK(3, q; 2) < 2g. 

Proof. For any configuration with n > 2q vertices, since there are at least 
<Z + (<Z — 1) edges from each vertex, we see that at least q edges from the 
vertex must be alike (say red). Consider the g-sub-configuration formed by the 
vertices at the other ends of the q like edges. Either it is a like g-tuple (all edges 
say blue), or there is a like triangle (all edges say red) containing the vertex, 
as required. 

Let an w-configuration be called non-degenerate with respect to K(p, q; 2) if 
there is some vertex for which there is neither a like p-tup\e containing the 
vertex nor a like g-tuple not containing the vertex. For non-degeneracy, it is 
necessary that m < K(p, q\ 2). Similarly, with respect to N(p, q; 2), call the 
configuration non-degenerate if the configuration contains neither a red p- tuple 
nor a blue g-tuple. (For p < q, a configuration non-degenerate with respect 
to N(p, q; 2) might contain a blue ^-tuple.) 

THEOREM 3.3. With respect to K(3, 3; 2) or N(3, 3; 2), a ^-configuration is 
non-degenerate if, and only if, it consists of a cycle {closed polygon) of five red 
edges and of a (complementary) cycle of five blue edges. 

Proof. The example, mentioned at the beginning of this section, of the 
5-configuration which is non-degenerate with respect to iV(3, 3; 2), clearly 
also is non-degenerate with respect to K(3, 3: 2) ; this shows the sufficiency. 

To show necessity, call the red number of a vertex the number of red edges 
which issue from the vertex. In consequence of the edge-argument given at 
the beginning of this section, it is clear that in order that a 5-configuration not 
contain a like triangle, the red number of each vertex must be exactly 2. This 
implies that the vertices may be arranged in order so that the red edges are 
the outer edges of the pentagon, with the diagonals blue. The five-pointed star 
formed by the diagonals is a blue 5-cycle. 
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THEOREM 3.4. We have the following table of exactly determined values of 
K(p,q; 2) for some p, q, and the following equation and inequalities for other p, q. 
For all q > 3, we have K(q, q; 2) = N(q,q\ 2); for p > q, K(p, q; 2) < 
N(q, q; 2) + 1; and for 3 < p < q, K(p, q; 2) > K(p - 1, q; 2) + 1, which 
implies that K(p, q\ 2) > 2q + p — 3. 

DETERMINED VALUES OF THE NUMBER K(p, q; 2) 

/> \ q 3 4 5 . . . 5 

3 6 8 10 2q 
4 7 18 
5 7 

P J 7 

Proof. Since a non-degenerate pentagonal configuration exists, by Theorem 
3.2wehaveX(3, 3; 2) = JV(3, 3; 2) = 6. Also by Theorem 3.2, K (3, 4; 2) < 8. 
In a 6-configuration, with vertices 1, 2, 3, 4, 5, 6, let the eight edges 13, 14, 15, 
16, 25, 26, 35, 56 be red and the remaining seven edges blue. The 6-configura
tion contains no like 4-tuple. Consider the 7-configuration which is formed 
from the 6-configuration by addition of a vertex 7, with red edges 27, 37, 47 
and blue edges 17, 57, 67. Then, for vertex 7, there is neither a like triangle 
containing the vertex nor a like 4-tuple not containing the vertex. Therefore 
this 7-configuration is non-degenerate with respect to K(3, 4; 2), and it is estab
lished that K (3, 4; 2) = 8. 

Again in a 6-configuration, let the 5-cycle of edges 23, 34, 45, 56, 62 be blue 
and the remaining 10 edges red. With respect to i£(4, 3; 2), this 6-configuration 
is non-degenerate; for the configuration of the five vertices other than 1 is the 
pentagonal configuration which contains no like triangle, and therefore there 
is neither a like 4-tuple containing 1 nor a like triangle not containing 1. On 
the other hand, for each vertex of any 7-configuration, since N(3, 3; 2) = 6, we 
have that the configuration of the other six vertices contains a like triangle. 
Thus K(4, 3; 2) = 7. Similarly K(p, 3; 2) =7 for all p > 4, and for p > q > 3, 
K(p,q;2) <N(q,q;2) + l. 

By Theorem 3.2, we have that K(3, q;2) < 2q. For q > 5, with respect to 
K(3y q\ 2), the following (2g — 1)-configuration is non-degenerate. The 
configuration contains a (q — 1)-tuple, with vertices 1, . . . , (q — 1), which 
has all sides red; and a (q — l)-tuple, with vertices q} (q + 1), . . . , (2q — 2), 
which has all sides blue. The edges from the vertex (2q — l ) t o l , . . . , ( g — 1) 
are all blue; and those from (2q — 1) to q, . . . , (2q — 2) are all red. Thus there 
is no like triangle at vertex (2q — 1). For any q-tuple to have all sides red, it is 
necessary that it include 1, . . . , (q — 1), and for it to have all sides blue, it is 
necessary that it include q, . . . , (2q — 2). Therefore in order to obtain the 
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desired conclusion that K(3, g; 2) = 2g, we assign the following alternating 
cycle of edges: 1 to g is red, g to 2 is blue, 2 to (q + 1) is red, . . . , (g — 1) to 
(2q — 2) is red, (2g — 2) to 1 is blue. The other edges between 1, . . . , (g — 1) 
and g, . . . , (2g — 2) may be assigned arbitrarily to be red or blue. Thus each 
g-tuple must contain both a red edge and a blue edge, as required for the 
conclusion. Accordingly we have i£(3, g; 2) = 2g for all q > 3. 

Since iV(4, 4; 2) = 18, we have that for n = 17, there exists a configuration 
which contains neither a 4-tuple with all sides red nor a 4-tuple with all sides 
blue. For this configuration, it is true that for each vertex, there is neither a like 
4-tuple containing the vertex nor a like 4-tuple not containing the vertex. 
Therefore i£(4, 4; 2) > 17. For n = 18, however, any configuration must 
contain a like 4-tuple. For each vertex of the 4-tuple, there is a like 4-tuple 
containing the vertex. For every other vertex, the same like 4-tuple is a like 
4-tuple not containing the vertex. Therefore i£(4, 4; 2) = 18. Similarly 
K(p, p\ 2) = N(p, p; 2) for p > 4. 

Finally for 3 < p < q, to show that K(p, q: 2) > K(p - 1, q\ 2) + 1, 
consider a configuration with n = K(p — 1, g; 2) — 1 which is such that there 
is an exceptional vertex, for which there is neither a like (p — 1)-tuple con
taining the vertex nor a like g-tuple not containing the vertex. Then for any 
new configuration including this configuration and one additional vertex, there 
cannot be a like p-tuple containing the exceptional vertex: such a p-tuple 
would have to contain a like (p — 1)-tuple containing the exceptional vertex. 
The set of vertices of the original configuration, other than the exceptional 
vertex, which are vertices of (g — 1)-tuples with all sides red, and the similar 
set of vertices of (g — 1)-tuples with all sides blue, have at most one vertex in 
common. Assign each edge from the new vertex to the vertices of the first set 
to be blue, and each edge to the vertices of the second set, except the common 
vertex if there is one, to be red. Then the exceptional vertex is still exceptional 
in the new configuration, i.e., there is neither a like ^-tuple containing it nor 
a like g-tuple not containing it. Thus the new configuration is non-degenerate 
with respect to K(p, q; 2), as required. 

4. Three-colour combinatorial numbers. We turn now to configurations 
with three colours of edges, with however two rather than three alternative 
sub-configurations. 

Definition 4.1. The number M(p, q — x, x; 2) is the smallest integer such 
that if n > M(p, q — x,x;2), then any ^-configuration is certain to contain 
either a £-tuple with all sides of one colour or a g-tuple with at most two colours 
of sides (which will be called a j , k g-tuple). 

Definition 4.2. The number V(p, q — x, x ; 2) is the smallest integer such 
that if n > V(p, q — x,x;2), then for each vertex of any ^-configuration, 
there must be either a like ^-tuple containing the vertex, or a j , k g-tuple not 
containing the vertex. 
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Let the three colours be red, green, and violet. Then by grouping say green 
and violet edges as blue, we see that M(p, q — x, x; 2) < N(p, q\ 2). Also, it 
is evident that M(p, q — x, x; 2) < V(p, q — x, x; 2), and that for each 
<Z> Via* q — x,x;2) is either M(q, q — x, x; 2) or M(q, q — x, x; 2) + 1. For 
at each vertex of a configuration with n = M(q, q — x, x; 2) + 1, the sub-
configuration obtained by omitting the vertex contains either a j , k q-tuple or a 
like g-tuple (which qualifies as a j , k g-tuple). 

THEOREM 4.3. For p > 3, we have M(p, 3 — x, x\ 2) = 5. Also 
Af(3,4 - x,x;2) = 8, while N(3, 4; 2) = 9. 

Proof. A square with horizontal sides red, vertical sides green, and diagonals 
violet contains neither a like triangle nor a j , k triangle; therefore M(3, 3 — x, 
X] 2) > 4. Four edges issue from each vertex of any 5-configuration, of which 
two must be alike ; the two are edges of either a like triangle or a j , k triangle, as 
required for degeneracy of the configuration with respect to Af (3, 3 — x, x; 2). 
Therefore Af (3, 3 - x, x; 2) = 5 . Similarly for p > 3, we have M(p, 3 - x, 
x; 2) = 5 . (Recall that a like triangle, or triangle with only one colour j of 
sides, qualifies as a j , k triangle.) 

To show that M(3, 4 — x, x; 2) > 8, we construct a non-degenerate 
7-configuration, as follows. In the Steiner triple system on seven elements (3, 
p. 82, or 6, p. 100), the 4-tuple 1346 contains one edge of each of six of the 
seven Steiner triangles. The Steiner triangles which contain edges 16 and 34 
have 7 as common vertex; the Steiner triangles which contain 13 and 46 have 
2 as common vertex; and the Steiner triangles which contain the diagonals 14 
and 36 have 5 as a common vertex. The seventh Steiner triangle is 257. This 
Steiner system (3, p. 82) also may be described as follows: Let equally spaced 
points on a circle be numbered in order as 1243675. Then the seven Steiner 
triangles are 123 and the six further triangles obtained by rigid rotations of 123. 
Assign edge 12 to be red, 23 to be green, and 31 to be violet; and preserve the 
same edge assignments for the six rigid isomorphs of 123. This assigns all 
edges of the 7-cycle 12436751 as red, all edges of the 7-cycle 14652371 as green, 
and all of the 7-cycle 13547261 as violet. Clearly any triangle of the 7-con
figuration must have its sides contained in either two or three of the 7-cycles; 
therefore there is no like triangle. Of the thirty-five 4-tuples, twenty-eight 
contain Steiner triangles which are three-colour triangles. The remaining 
seven 4-tuples, namely 1247, 1256, 1346, 1357, 2345, 2367, 4567, each contain 
edges of all three colours. Therefore there is also no j , k, 4-tuple in the 7-con
figuration; thus the configuration is non-degenerate. Since M(3, 4 — x, x; 2) < 
iV(3, 4; 2) = 9 , so far we have established that Af (3, 4 — x, x; 2) is either 
8 or 9. (Less symmetric non-degenerate 7-configurations also exist.) 

To show that necessarily M(3, 4 — x, x; 2) = 8, we note first that in any 
8-configuration which is non-degenerate with respect to iV(3, 4; 2), the red 
number of each vertex must be 2 or 3. For if the red number of some vertex 
were > 4 , either the configuration of the four other ends of the four red edges 
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would be a blue 4-tuple or there would be a red triangle involving the vertex, 
contrary to non-degeneracy of the 8-configuration with respect to iV(3, 4; 2). 
Similarly, if the red number of some vertex were <2 , there would be six blue 
edges from the vertex, and thus since iV(3, 3; 2) = 6, the 8-configuration 
would have to contain either a blue 4-tuple involving the vertex or a red 
triangle. 

LEMMA 4.4. In any ^-configuration which is non-degenerate with respect to 
iV(3, 4; 2), necessarily the red number is 3 for at least four of the eight vertices of 
the configuration. 

Proof. If p vertices are 3-red, and the remainder 2-red, then the total 
number of red edges is [Sp + 2(8 — p)]/2, whence p must be even. There 
obviously are blue quadruples if all eight vertices have red number 2 (cases 
having no red triangle: an 8-cycle, or two 4-cycles, of red edges). We consider 
all possible red colourations, having no red triangle, with two 3-red and six 
2-red vertices. All cases are covered under the headings 1 to 5 below. Let edges 
of the 8-configuration be classified as follows: outer edges 12, 23, . . . , 78, 81 are 
skip-0 edges; edges 13, 24, . . . are skip-l edges; . . . ; edges joining vertices 
with k vertices in between are skip-k edges. 

1. The outer 8-cycle of skip-0 edges are red, and there is a skip-2 or skip-3 
red edge, say 14 or 15. In either case, quadruple 2468 is blue. 

2. There is a 7-cycle 23456782 of red edges, and edges 21, 14, or 21, 15, are 
red. In either case, quadruple 1368 is blue. 

3. There is a 6-cycle 3456783 of red edges, and edges 81, 12, and 25 are red. 
In this case quadruple 1357 is blue. 

4. If there is a 5-cycle of red edges, there must also be a 6-, 7-, or 8-cycle. 
The latter cases are already covered. 

5. There are two 4-cycles, 12341, 56785, of red edges, and edge 25 is red. In 
this case quadruple 1368 is blue. 

Now to return to the proof that M(3, 4 — x, x; 2) = 8, in any 8-configura
tion which is allegedly non-degenerate with respect to M (3, 4 — x, x; 2), by 
grouping green and violet edges as blue, we see by Lemma 4.4 that the red 
number of four of the eight vertices must be 3. Similarly, by grouping red and 
violet edges together, we see that the green number of four of the eight vertices 
must be 3; and by grouping red and green edges, that the violet number of 
four of the eight vertices must be 3. But with only eight vertices, since there 
are 2 + 2 + 3 = 7 edges from each vertex, it is not possible to have simul
taneously four 3-red, four 3-green, and four 3-violet vertices. Therefore any 
8-configuration necessarily is degenerate with respect to M (3, 4 — x, x; 2), 
and it is established that M(3, 4 — x, x; 2) = 8 . 

THEOREM 4.5. We have ikf(3, 5 - x, x; 2) = iV(3, 5; 2) = 14, while M (3, 
6 - x, x;2) = 17, iV(3, 6; 2) = 18. 

Proof. We shall show that the following 13-configuration is non-degenerate 
with respect to M(3, 5 — x, x; 2). Let the skip-0 and skip-4 edges be red, the 
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skip-1 and skip-2 edges green, and the skip-3 and skip-5 edges violet. Note that 
in a 13-configuration, the kinds of edges of the following pairs are really the 
same: skip-1, skip-10; skip-2, skip-9; . . . ; skip-5, skip-6. The condition for 
skip-a, skip-fr, and skip-c edges to be sides of a triangle is 

(1) a + b + c = 10. 

No combination of three skip-0, skip-ll, skip-4, skip-7 edges can satisfy (1); 
therefore there is no red triangle. Similarly, no combination of three skip-1, 
skip-10, skip-2, skip-9 edges can satisfy (1); and no combination of three 
skip-3, skip-8, skip-5, skip-6 edges can satisfy (1); therefore there is no green 
or violet triangle. 

The condition for five edges to be outer edges of a 5-tuple is 

(2) a + b + c + d + e = 8, 

where a, . . . , e are the respective skips of the edges. The possible integral 
solutions a, . . . , e of (2) are the permutations of the following: 80000, 71000, 
62000, 53000, 44000, 61100, 52100, 43100, 42200, 33200, 51110, 42110, 33110, 
22220, 41111, 32111, 22211. All except 80000, 71000, 53000, 44000, 42200, 
42110, 22220, 41111, 32111, 22211 have three colours of outer edges. I t may be 
seen that the 5-tuples 80000, 22220, 41111, as well as all permutations of 
71000, 53000, 44000, 42200, 42110, 32111, 22211, contain edges of all three 
colours. Thus the census of 5-tuples is complete, and it is verified that there 
is no two-coloured 5-tuple. As was observed immediately following Definition 
4.2, M(p, q — x, x\ 2) < N(p, q; 2). Since we have just shown that M(3, 
5 — x, x; 2) > 13, and since N (3, 5: 2) = 14, it follows that M (3, 5 - x,x;2) = 
N(3, 5; 2) = 14. 

For each vertex of any 17-configuration, since 16 = 5 + 5 + 6, there must 
be six edges of one colour issuing from the vertex. If the 6-tuple formed by the 
other ends of the six edges is three-coloured, then there is a like triangle 
involving the vertex. Therefore M(3, 6 — x, x\ 2) < 17. 

I t is shown on pages 4-5 of (1) that N(S, 3, 3; 2) = 17. Consider the 
16-configuration, non-degenerate with respect to iV(3, 3, 3; 2), which is 
described there. This 16-configuration also is non-degenerate with respect to 
ikf(3, 6 — x, x; 2). For suppose it were degenerate; then it would have to 
contain a two-coloured 6-tuple. Since iV(3, 3; 2) = 6 and since the 16-con
figuration contains no red triangle, and no like triangle, the 6-tuple must be 
green-violet. Again since iV(3, 3; 2) = 6 , the 6-tuple must contain a green or a 
violet triangle, contrary to non-degeneracy of the 16-configuration with 
respect to iV(3, 3, 3 ; 2). Therefore we have M(3, 6 — x, x\ 2) > 17 ; combining 
this with the preceding paragraph, it is established that M(3, 6 — x, x; 2) = 17. 

A 19-configuration, non-degenerate with respect to N(S, 6; 2), cannot have 
six red edges from a vertex. The number of ends of red edges cannot be odd; 
therefore it is impossible for the red number to be 5 at all vertices; it must be 
4 at one vertex. But then the configuration has 14 blue edges from that vertex, 
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and since iV(3, 5; 2) = 14, either there is a red triangle in the 14-configuration 
of the other ends, or there is a blue 6-tuple involving the vertex. Thus every 
19-configuration is degenerate with respect to N(3, 6; 2), i.e., iV(3, 6; 2) < 19. 

We defer the proof that iV(3, 6; 2) is less than 19 to §6. We show now that 
^ ( 3 , 6; 2) > 17, by constructing a 17-configuration which is non-degenerate 
with respect to N(3, 6; 2). Consider first the following 13-configuration which 
is non-degenerate with respect to iV(3, 5; 2): the skip-0 and skip-4 edges 
are red, all others blue. Let ^-tuples be specified by the skips of their outer 
edges. The blue 4-tuples in the 13-configuration are of the forms 1323, 2223, 
1116. Let the outer edges of a square, with vertices a, 0, 7, <5, be red, and the 
diagonals blue. Red-connect a to vertices 3, 5, 7; fi to vertices 2, 9, 11; 7 to 
vertices 4, 6, 8; and <5 to vertices 1, 10, 12. Blue-colour all other edges. In the 
resulting 17-configuration, there are no red triangles, and a blue 6-tuple 
exists only if one of the blue diagonals ay or (38 is entirely blue-connected to 
one of the already mentioned 4-tuples 1323, 2223, or 1116. By rotation of 
trapezoids corresponding to 1323, 2223, around a 13-sided polygon, it is easily 
verified that such is not the case for those two 4-tuples: each candidate for an 
entirely blue 6-tuple contains a red edge (e.g., a3, /39, etc.). However, the 
6-tuple involving the 4-tuple of type 1116 which has vertices 2, 9, 11, 13 is blue; 
the 6-tuples involving all other 4-tuples 1116 contain a red edge. To remedy 
the situation with respect to 4-tuple 2, 9, 11, 13, recolour edge 12 blue, and 
recolour edge 2-13 red. None of the blue 5-tuples so formed in the 13-con
figuration is entirely blue-connected to any vertex a, /3, 7 or 8. In this way we 
accomplish the construction of a 17-configuration which is non-degenerate 
with respect to iV(3, 6; 2), as required. Vertices 2 through 13 are 5-red; 
vertex 1 is 4-red; and vertices a, /3, 7, ô are 5-red. 

The proof of the following theorem involves a generalization of the above 
demonstration that 17 > M (3, 6 - x, x; 2) > N(3, 3, 3; 2). 

THEOREM 4.6. Any n-configuration, which is non-degenerate with respect to 
N(p, s, u; r), p < s, p < u, also is non-degenerate with respect to M(p, q — x, 
x;r), where q = N(s,u;r). In particular, we have 

(3q - 1) > M(3, q - x, x; 2) > N(3, s, u; 2). 

Proof. If the configuration were degenerate with respect to M(p, q — x, x; r), 
then since it does not contain a red ^-tuple, it would contain a two-coloured 
g-tuple. But since q = N(s, u\ r) and 5 > p,u > p, by symmetry in s, u of 
N(s, u; r) and of N(pf s, u; r), the g-tuple must be green-violet. I t then must 
contain either a green s-tuple, or a violet w-tuple, contrary to non-degeneracy 
with respect to N(p, s, u; r). 

Any (3q — 1)-configuration has (3q — 2) = (g — 1) + (q — 1) -\- q edges 
from each vertex, of which at least q must be of one colour. Thus there is either 
a triangle of that colour or a g-tuple of the other two colours. Therefore 
(3g - 1) > M(3,s,u;2). 
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THEOREM 4.7. We have 10 < Af(4, 4 - x, x; 2) < 17 < iV(4, 4; 2) = 18. 

Proof. At any vertex of a 17-configuration, since 5 + 5 + 6 = 16, six of the 
16 edges issuing from the vertex must be of one colour, say red. Since iV(3, 3 ; 2) 
= 6, the configuration of the six other ends must contain either a red-green 
triangle, or a violet triangle. In either case, the configuration contains a j , k 
4-tuple involving the vertex. Therefore the configuration is degenerate with 
respect to M(4, 4 — x, x; 2), and it is established that M(4, 4 — x, x; 2) < 17. 

We now construct a non-degenerate 9-configuration by use of the Steiner 
triple system on nine elements (3, p. 82). Let all sides of the four Steiner 
triangles 467, 589, 123, 249 be coloured red. Let all sides of the Steiner triangles 
145, 278, 369, 375 be coloured green; and let all sides of the remaining Steiner 
triangles 168, 179, 256, 348 be coloured violet. Using symmetry, it is easy to 
verify in turn that no 4-tuple of the 9-configuration fails to contain a red edge, 
that none fails to contain a green edge, and that none fails to contain a violet 
edge. Therefore, each 4-tuple contains edges of all three colours, and we have 
shown that Af (4, 4 - x, x; 2) > 10. 

5. A three-colour verticial number. The number V(p, q — x, x; 2) was 
the subject of Definition 4.2, and preliminary comparisons of V(p, q — x, x; 2) 
with M(p> q — x, x; 2) were made in the paragraph which precedes Theorem 
4.3. I t may be seen further that for any p, we have V(p, q — x, x\ 2) < 
M(q, q — x, x] 2) + 1. For p > q, we have M(q, q — x, x\ 2) < M(p, q — x, 
x; 2) and M(q, q — x, x; 2) < V(p, q — x, x; 2). Also, for p > q, V(q, q — x, 
x',2) < V(p, q — x, x\ 2). Finally, let W(q, p — x, x; 2) be defined as the 
smallest integer such that if n > W(q, p — x, x; 2), then for each vertex the 
configuration is sure to contain either a j , k g-tuple containing the vertex or a 
like ^-tuple not containing the vertex. We notice that W(q, p — x, x; 2) = 
V(p,q - x, x ;2 ) . 

THEOREM 5.1. For p > 3, we have V(p, 3 — x, x; 2) = 6. For 3 < q, we have 
7(3, q - x, x: 2) < (Sq - 1) and 7(3, 4 - x, x; 2) = 10 or 11. 

Proof. In a square (a 4-tuple), colour the horizontal sides green, the vertical 
sides violet, and the diagonals red. Abbreviate the respective colours as g, v, r, 
and refer to such a square as a g, v> r square. All sub-triangles of the square are 
three-coloured. 

A 5-configuration consisting of a g, v, r square, with suitably assigned edges 
g, g, r, v, from the fifth vertex to the vertices of the square, is non-degenerate 
with respect to V(p, 3 — x, x; 2) for p > 3; therefore V(p, 3 — x, x; 2) > 6. 
But for each vertex of any 6-configuration, since M(3, 3 — x, x; 2) = 5 , the 
sub-5-configuration obtained by omitting the vertex contains either a j , k 
triangle or a like triangle (qualifies as a j , k triangle). Therefore any 6-con
figuration is degenerate with respect to V(p, 3 — x, x ; 2) for all p > 3. 

In any (Sq — 1)-configuration, (q — l ) + ( g — 1) + q edges issue from 
each vertex, of which some q must be alike. The sub-g-configuration of the 

https://doi.org/10.4153/CJM-1968-054-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-054-x


GRAPH-COLOURING 531 

other ends of the q like edges is either a j , k g-tuple or there is a like triangle 
containing the vertex. Therefore for q > 3, we have 7(3, q — x, x ; 2) < 
(3<Z-1). 

Consider a 9-configuration, consisting of the eight vertices of a cube, and a 
ninth vertex. Let three vertices of the top face of the cube be coloured r, 
representing three edges coloured r from the ninth vertex. Similarly let three 
vertices of the bottom face be coloured g and the two remaining vertices v. 
Some edges and diagonals of the cube are then coloured in such a way as to 
avoid like triangles at the ninth vertex. Then passing to an octagonal con
figuration, it may be seen that it is possible to complete the colouring of the 
edges in such a way that all 4-tuples of the 8-configuration are r, g, v 4-tuples. 
This establishes that 7(3, 4 — x, x; 2) > 10. (An alternative construction of 
a non-degenerate 9-configuration uses two g, v, r squares with a common 
vertex, and two additional vertices.) 

As to comparison of V(p, q — x, x\ 2) with the Ramsey number N(p, q; 2), 
the first would be expected to be larger than the second for the reason that it 
involves a requirement at each vertex, but also it would be expected to be 
smaller for the reason that the requirement of a like ^-tuple or a j , k g-tuple is 
less stringent than the requirement of a definitely red ^-tuple or a definitely 
blue g-tuple. The first reason predominates for p = 3, q = 4: 7(3, 4 — x, 
X) 2) > N(3, 4; 2). However 7(3, 5 - x, x; 2) < 14 = N(3, 5; 2), 7(3, 6 - x, 
x; 2) < 17 < N(3, 6; 2) = 18, 7(3, 7 - x, x; 2) < 20 < N(3, 7; 2) = 23. 
Apparently the second reason predominates also for the case p — q — 4. 

THEOREM 5.2. We have that 11 < 7(4, 4 - x, x; 2) < 18 = iV(4, 4; 2). 

Proof. Given any 18-configuration, by Theorem 4.7 each 17-subconfiguration 
contains a j , k 4-tuple. Thus the subconfigurations obtained by omitting each 
vertex in turn all contain j , k 4-tuples, which implies that the 18-configuration 
is degenerate with respect to 7(4, 4 — x, x; 2). Therefore 7(4, 4 — x, x; 2) < 
18. 

To the 9-configuration, in the proof of Theorem 4.7, which is non-degenerate 
with respect to ikf(4, 4 — x, x; 2), add a 10th vertex v. There is then no j , k 
4-tuple not containing v. Colour edges vl, v7, v8 red; edges v2, v4c, v6 green; and 
the remaining edges, v3, z/5, z>9, violet. With this colouration, there is no like 
4-tuple containing the vertex v. (There is not even a like triangle containing v.) 
Therefore the 10-configuration is non-degenerate with respect to 7(4, 4 — x, 
x; 2), and it is established that 11 < 7(4, 4 — x, x; 2). 

6. Proof that N(3, 6; 2) < 19. Besides Lemma 4.4, we require two similar 
lemmas concerning classification of 13- and 12-configurations which are non-
degenerate with respect to iV(3, 5; 2). 

LEMMA 6.1. A 13-configuration, non-degenerate with respect to iV(3, 5; 2), 
must be exactly 4:-red at each vertex. 
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Proof. If there are nine blue edges issuing from a vertex, then since iV(3, 4; 
2) = 9, there is either a red triangle in the configuration of the nine other ends, 
or a blue 4-tuple, and thus in the 13-configuration, a blue 5-tuple which includes 
the vertex. Therefore the number of red edges from the vertex must be greater 
than three. If there are five red edges from the vertex, then there is either a red 
triangle containing the vertex, or the configuration of the five other ends is a 
blue 5-tuple. 

THEOREM 6.2. An 18-configuration, which is allegedly non-degenerate with 
respect to iV(3, 6; 2), must be exactly 5-red at each vertex. 

Proof. Since iV(3, 5; 2) = 14, there cannot be 14 blue edges from a vertex; 
therefore the red number at the vertex is at least 4. There cannot be six red 
edges, since if so either there would be a red triangle, or the configuration of the 
six other ends would be a blue 6-tuple. Therefore the red number at each 
vertex must be either 4 or 5. 

Suppose that there is a 4-red vertex. Then the remaining red edges from the 
four other ends issue to the configuration formed by the remaining 13 vertices 
of the 18-configuration; the original vertex is blue-connected to each of these 
13 vertices. If the 13-configuration contains a blue 5-tuple, then the 18-
configuration contains a blue 6-tuple involving the original vertex. Since the 
red number of each vertex is 4 or 5, there must be at least 12 remaining red 
edges from the four other ends, and by Lemma 6.1, there cannot be more than 
13 such edges. In the former case, by the lemma there must be twelve 5-red 
vertices in the 13-configuration; and in the latter case, all 13 vertices of the 
13-configuration, and one of the four other ends, must be 5-red. Thus, for 
non-degeneracy, any 4-red vertex must be blue-connected to at least twelve 
5-red vertices. 

Consider one of the (three or four) 4-red vertices among the four other ends 
of the red edges from the original 4-red vertex. I t is blue-connected to the 
remaining three of the four other ends; therefore there are only 10 blue edges 
from it to the 13-configuration, and it is joined by blue edges to at most eleven 
5-red vertices. But, as just shown, 12 are necessary for non-degeneracy. 
Therefore, as required for the theorem, all vertices of the allegedly non-
degenerate 18-configuration necessarily are 5-red. 

LEMMA 6.3. A 12-configuration, non-degenerate with respect to N(3, 5; 2), 
must be 3-red or 4:-red at each vertex. Any non-degenerate 12-configuration in 
which four vertices are 4-red, and the remaining eight 3-red, necessarily is of the 
following form: the red sub-configuration of the S-red vertices 1, . . . , 8 is an 
8-cycle; the red sub-configuration of the 4-red vertices a, fi, y, ô is a 4-cycle; a is 
red-connected to 1, 4; /3 to 3, 6; y to 5, 8; and ô to 2, 7. (This is case (1) below.) 

Proof. If the red number at a vertex is less than 3, then there are nine blue 
edges from the vertex; since N(3, 4; 2) = 9, the 12-configuration contains 
either a red triangle or a blue 5-tuple. If there are five red edges from a vertex, 
the same is true. Therefore the red number of each vertex must be 3 or 4. 
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Next consider the case that a 3-red vertex is red-connected to at least two 
4-red vertices. Then in the 8-configuration of the other ends of the blue edges 
from the 3-red vertex, there are one or two 4-red vertices. If there is one, then 
there are nine red edges into the 8-configuration, issuing from the other ends 
of the red edges from the original 3-red vertex. By Lemma 4.4, two of the nine 
must go to the 4-red vertex, and one to each of the seven 3-red vertices. But 
then within the 8-configuration, all edges are 2-red, so by Lemma 4.4 that 
configuration contains a blue 4-tuple. This 4-tuple, and the original 3-red 
vertex, then form a blue 5-tuple in the 12-configuration. Similarly, if there are 
two 4-red vertices in the 8-configuration, then within that configuration, only 
two of the vertices are 3-red, and again by Lemma 4.4, there is a blue 5-tuple 
in the 12-configuration. 

The remaining case is that each 3-red vertex is red-connected to at most 
one 4-red vertex. Assuming that there is no red triangle, there must be at 
least eight red edges issuing from the 4-sub-configuration of the four 4-red 
vertices. If one 3-red vertex were red-connected to no 4-red vertex, then one 
of the remaining seven would be red-connected to two 4-red vertices, contrary 
to hypothesis. Thus each of the eight 3-red vertices is red-connected to exactly 
one 4-red vertex, and the four 4-red vertices are vertices of a red 4-cycle. 
Within the 8-sub-configuration of the 3-red vertices, each vertex is 2-red. The 
only two possibilities in the 8-sub-configuration are: (1) there is an 8-cycle 
of red edges; (2) there are two disjoint 4-cycles of red edges. 

Denote the 3-red vertices by the numerals 1, . . . , 8, and the 4-red vertices 
by the letters a, . . . , 8. In subcase (1), the configuration is non-degenerate 
if and only if it is as described in the statement of the lemma. Under subcase 
(2), if the two red 4-cycles are 13571 and 24682, it may be verified that regard
less of how the remaining eight red edges connect 1, . . . , 8 to a, . . . , <5, if there 
is no red triangle, then we have that there is a blue 5-tuple, of a form like 
ay 145, 05145, «7348, in the 12-configuration. All cases are covered, and thus 
the second statement of Lemma 6.3 is established. 

THEOREM 6.4. The Ramsey number N(3, 6; 2) is 18. 

Proof. In §4 it was proved that necessarily N(3, 6; 2) > 18. By Theorem 6.2, 
for a non-degenerate 18-configuration, it is necessary that the red number of 
each vertex be 5. Consider the 12-sub-configuration of the 12 vertices which are 
blue-connected to a vertex 0. There are 20 red edges to the 12-sub-configura
tion, from the five other ends 1', . . . , 5' of the five red edges which issue from 0. 
By Lemma 6.3, we see that eight vertices, say 1, . . . , 8, within the 12-con
figuration must be 3-red (sending two red edges each to the set 1', . . . , 5'), 
and that the remaining four vertices, say a, 0, 7, <5, must be 4-red (sending one 
red edge each to the set 1', . . . , 5')- Also by Lemma 6.3, unless the 12-con
figuration is the exceptional case (1), if there is no red triangle, then the 12-
configuration must contain a blue 5-tuple. Thus the 6-tuple, which is formed 
by the original vertex and the 5-tuple of the 12-configuration, is blue. Therefore 
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unless the blue-connected 12-configuration for each vertex of the 18-configura-
tion is the exceptional case (1), necessarily the 18-configuration is degenerate. 

The form of case (1) of the 12-configuration, with vertices labelled as above, 
dictates, to within symmetries, that the red-connected edges are the 8-cycle 
1, . . . , 8, the 4-cycle a, . . . , <5, and al, «6, 03, 08, T2 , 7 5 , 54, <57. Also a l ' , $2', 
73', 54'; 15', 35', 55', 75', are red. Now on interchange of 5' and 0, by the 
remarks above, 5' must play the same role as 0; 1, 3, 5, 7, 0 the same roles as 
1', 2', 3', 4', 5', respectively; and 1', 2', 3', 4', 2, 4, 6, 8, a, 0, 7, ô must be the 
vertices of a 12-configuration of the type under case (1). Enumeration, taking 
advantage of symmetries, is not difficult, and shows that there is no red 8-cycle 
among the 12 vertices last named. But for case (1), a red 8-cycle is required. 
Therefore by Lemma 6.3, the 18-configuration must be degenerate, and 
Theorem 6.4 is proved. 

The following lemma was superfluous for the present purpose of establishing 
that N(3, 6; 2) < 19, but seems to be of interest, and therefore it is included 
here. I t should be helpful for the problem of determining and classifying all 
possible configurations which are non-degenerate with respect to AT"(3, 6; 2). 

LEMMA 6.5. For n > 16, any n-configuration in which there is a vertex which 
is red-connected to three 3-red vertices necessarily is degenerate with respect to 
N% 6; 2). 

Proof. By hypothesis, if there is no red triangle, then the triangle formed by 
the three 3-red vertices is blue. The three 3-red vertices are red-connected to at 
most six vertices besides the given vertex (which is red-connected to the three 
3-red vertices). Since n > 16, there are six further vertices which are entirely 
blue-connected to the blue triangle formed by the three 3-red vertices. Since 
iV(3, 3; 2) = 6 and since there is no red triangle, the 6-configuration formed 
by the six further vertices contains a blue triangle. The two entirely blue-
connected triangles constitute a blue 6-tuple, and the lemma is proved. Of 
course, if the three 3-red vertices are red-connected to k vertices, with k < 6, 
then the lower bound 16 for n may be reduced to 10 + k. 
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