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COMPLETE ENDOMORPHISMS OF THE LATTICE OF
PSEUDOVARIETIES OF FINITE SEMIGROUPS

NORMAN R.REILLY AND SHUHUA ZHANG

The main result establishes that the mapping V - t V n W ( v e £(F) ) is a
complete endomorphism of the lattice £(F) of pseudovarieties of finite semigroups
for certain particular pseudovarieties W, including the pseudovariety of bands.

1. INTRODUCTION

In a series of recent papers, certain techniques that have proved valuable in the
study of the lattice of varieties of completely regular semigroups (see Pastijn [12],
Polak [20], Petrich and Reilly [16, 17]) involving the existence of certain complete
congruences have been extended, first to the lattice of e-varieties of regular semigroups
(Reilly and Zhang [24]) and then to the study of the lattice £(F) of pseudovarieties of
finite semigroups (Auinger, Hall, Reilly and Zhang [4]). In particular, it is shown in [4]
that there exists a family of complete congruences of the form:

U 0 P V <̂ => P o U = P o V (U,V(E£(F))

where o denotes the Mal'cev product and P is any one of the eight pseudovarieties
N,LZ o N,RZ o N,RB o N ,G o N,LG o N,RG o N o r C S o N . This introduces an
interesting interplay between the lattice theoretic structure of £(F) and the Mal'cev
product and leads naturally to the study of operators on £(F) of the form V —> P o V.
This study was pursued by the present authors in [25]. Operators on £(F) of the
form V->Vf l W, for certain special pseudovarieties W, such as the pseudovariety of
groups, bands, et cetera also play an important role in the study of £(F) and are the
main focus of this paper.

In the main result, in Section 3, we show that the mapping

v —> v n w (ve£(F))

is a complete endomorphism of £(F) for a certain family of pseudovarieties W, the
most interesting of which is, perhaps, the pseudovariety of bands. It is also shown that
the mapping

v —» v n CR
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208 N.R. Reilly and S. Zhang [2]

is a complete endomorphism on the sublattice of £(F) consisting of those pseudova-
rieties in which the union of the subgroups of any member is a subsemigroup. These
observations will be used by the authors in a subsequent paper to study the operators
of the form V ^ P o V referred to above.

2. PRELIMINARIES

All semigroups considered in this paper are finite. We denote by F the class of all
finite semigroups. A pseudovariety is a class of finite semigroups which is closed under
taking finite direct products, subsemigroups and homomorphic images. For elementary
notions and results on semigroups and pseudovarieties, the reader is referred to the
books of Almeida [2], Clifford and Preston [5], Eilenberg [6], Howie [9] and Pin [19].
For basic information on lattices, the reader is referred to Gratzer [7].

Let 5 e F . For x £ S (respectively, X C 5 ) we denote by (x) (respectively, (X))

the subsemigroup of S generated by x (respectively, X). We denote by E(S) the set

of all idempotents of S.

Since J — D in any finite semigroup (see Howie [9, Proposition II.1.5]), we shaU

always write J in preference to T>.

A semigroup 5 is a completely regular semigroup if it is a union of groups, equiva-

lently, if each W-class of S is a group. A completely regular semigroup for which E(S)

forms a subsemigroup is an orthogroup and a completely regular semigroup for which

H is a congruence is a cryptogroup. If 5 is both an orthogroup and a cryptogroup then

it is an orthocryptogroup.

In a completely regular semigroup S, we use the following notation. If x E 5 , then

x~l is the inverse of 5 in the maximal subgroup of 5 containing x. In addition, let

x° = XX'1 .

For any nonempty subclass A of F, we shall denote by (A) the pseudovariety

generated by A. In the case A = { 5 } , where S 6 F, we simply write (5) instead of

{{S}).

For any pseudovariety U of finite semigroups, the class of all subpseudovarieties

of U forms a complete lattice under inclusion, and is denoted by £(U). In particular,

£(F) is a complete lattice under inclusion (see Eilenberg [6] or Pin [19]).

The concepts of implicit operations and pseudoidentities are important tools in

the study of pseudovarieties. We refer the reader to Almeida [2] and Pin [19] for their

basic properties and for a discussion of Reiterman's Theorem [26] which states that

every pseudovariety is uniquely determined by the pseudoidentities that it satisfies.

One implicit operation of particular importance is the operation
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where xu denotes the unique idempotent in (x). We also write xu+1 = xux — xxu

and i " " 1 = (a;""1"1)"1, the inverse of xu+l in the group kernel of (x).

We list some pseudovarieties of finite semigroups that will be used in this paper:

T — trivial semigroups

LZ — left zero semigroups

RZ — right zero semigroups

RB — rectangular bands

S — semilattices

B — bands

AG — Abelian groups

G — groups

LG — left groups

RG — right groups

CS(AG) — completely simple semigroups with Abelian subgroups

CS — completely simple semigroups

SG — semilattices of groups

OBG — orthocryptogroups

BG — cryptogroups

OG — orthogroups

CR — completely regular semigroups

N — nilpotent semigroups

The reader is referred to Almeida [2], Eilenberg [6], Howie [9], Pin [19], Hall and Jones
[8] and Petrich and Reilly [18] for some well-known relationships among the above listed
pseudovarieties, such as SG = S V G, OBG = G V B .

We introduce an operator L on C(F) as follows. For any U 6 £(F), let

LU = { S £ F | eSe £ U for all e e E(S) }

Equivalently, i U consists of those finite semigroups 5 all of whose submonoids are in
U. By Eilenberg [6, Section V.I], i U e £(F).

The following technical lemma, due to Krohn, Rhodes and Tilson [3, Fact 2.1 in
Chapter 7], will be needed in the sequel.

LEMMA 2 . 1 . Let S, T 6 F and (p : S —> T be a surjective homomorphism.
Let J2 be a J -class of T and J\ be a minimal J-class (in the J -class ordering) of S
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contained in J2<p~1 • Then

(i) Jiy> = J 2 ;
(ii) Ji is regular if and only if Jz is regular.

Another well-known fact about complete congruences on a complete lattice that is
of considerable utility, due to Pastijn and Petrich [14, Lemma 4.12], is the following:

LEMMA 2 . 2 . Let 0 be an equivalence relation on the complete lattice L such that

each 0-class xO is a bounded interval x6 = [xe,x0]. Then 8 is a complete congruence

if and only if for all x,y G L, x ^ y implies xg ^ yg and x° ^ y°.

3. SOME COMPLETE ENDOMORPHISMS OF £(F)

In this section we shall show that some mappings induced by taking intersection
with subpseudovarieties are complete endomorphisms of £(F). We shall require some
preparation.

LEMMA 3 . 1 . [7, Theorem III.2.2] Let L be a lattice and a G L. Then the

following are equivalent:

(a) Tie mapping

Xa • x —» a Ax ( x G L)

is an endomorphism of L;

(b) The binary relation Qa on L deSned by

(x,y) £ 0O <=> a Ax = a Ay

is a congruence relation on L.

LEMMA 3 . 2 . Let U e £(F)> and let xv and 0 u be defined as in Lemma 3.1.

Then the following statements are equivalent:

(a) Xu is an endomorphism of £(F) ;
(b) ©u is a complete congruence on C(F);
(c) xu is a complete endomorphism of C(F).

PROOF: (a) => (b). By Lemma 3.1, ©u is a congruence on £(F). To see that
©u is a complete congruence, we let W e u = { 5 G F | (5> D U C W } for each
W G £(F) . Let W G £(F) . It is clear from the definition that W e u is closed under
taking subsemigroups and homomorphic images. Since, by the hypothesis,

(SxT)nu = ((S)v(T))nu
= ((S)nu)v«r)nu),
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it follows that W ® u is also closed under taking finite direct products. Hence W @ u G
£(F).

Let W G £(F). Since W C W e u and W e u n U = WDU, it follows that [WnU,
W e u ] C W 0 u • On the other hand, if V G £(F) and V G W 0 o , then VnU = WnU
and V 0 u C W e u , so that V G [W D U, W e u ]. Hence W 0 u = [W D U, W e " ]. It is
now clear that ©u satisfies the conditions in Lemma 2.2, and hence 0 u is a complete
congruence on £(F).

(b) => (c). It is clear from the definition that Xu is a complete A-endomorphism
of £(F). Let {Wa}Qe.4 be any family of members of C(F). For each a £ A, since
WQ n U = (WQ n U) n U, we have WQ 0u (Wa D U), so that by (b),

V w « 0u v ( w ° n u)-

By the definition of ©u, we get

( V w«) nu-
a£A aeA

= V (w.nu),
aeA

so that x u is also a complete V-endomorphism of £ ( F ) . Hence x u is a complete
endomorphism of £ ( F ) .

(c) => (a). Obvious. D

For any U, V G £ ( F ) , the Mal'cev product of U and V is

U o V = { 5 e F | there exists a congruence p on S with

(i) S/p G V and (ii) ap G U for all

idempotent p-classes ap } .

In particular, if U, V G £ ( C R ) , we let U O C R V = ( U o V ) n C R . In general, U o V
is not a pseudovariety (see [11]).

In [13], F. Pastijn established the analogue of Polak's Theorem (see [20]) for
pseudovarieties of finite completely regular semigroups. Define relations K and T

on £ ( C R ) by

U K V <=> RB oC R (U V S) = RB o c a (V V S)

and

U T V <^=> G oca U = G o c a V.
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LEMMA 3 . 3 . [13]

(i) K and T are complete congruences on £(CR);
(ii) K D T = i, the identity relation.

Since K and T are complete congruences on £(CR) it follows that the K- and
T-classes are intervals. For any V 6 £(CR), we write:

VK=[VK,VK] and V T = [ V T , V T ] .

From the standard methods for completely regular semigrouijs (see Hall-Jones [8],
Pastijn-Trotter [15], Polak [20], Petrich-Reilly [17] and Reilly [21]) we have:

LEMMA 3 . 4 . Let V e £ ( C R ) . Then

(i) VK = RB o c a (V V S) and V r = G oCR V;
(ii) ^

The particular instance of Lemma 3.4 that we are interested in occurs when V =
R B . Then

R B * = B, R B T = CS,

B T = BG, CS* = I(OG) n CR,

so that

CS V B = RBT V R B *

= RB T * n R B * T

= I (OG)nBG

= Z(OBG)nCR.

As in [7], an element a in a lattice L is neutral if the mapping

x —> (x A a, x V a)

is a monomorphism of L onto a subdirect product of (a] and [a), where (a] and [a)
denote the ideal and filter of L, respectively, generated by a.

LEMMA 3 . 5 . [7, Theorem III.2.6] Let L be a modular lattice and a e L. Then
the following statements are equivalent:

(a) a is neutral in L;

(b) Tie mapping

Xo : x—> o A i (z G L)
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is an endomorphism of L;

(c) T i e mapping

ij>a '• x — • aW x (x G L)

is an endomorphism of L.

In [10], Jones showed that every variety of normal bands is neutral in the lattice
£O(CR) of all varieties of completely regular semigroups. With the assistance of Polak's
representation of £B(CR) (see [20]), Pastijn established the modularity of £,(CR) in
[12] (see also [18]). The first author [22] and Trotter [27] then established the neutrality
of many varieties in £,,(CR). The modularity of the lattice £(CR) of pseudovarieties
of finite completely regular semigroups was established by F. Pastijn in [13]. The
discussion of neutral elements of £O(CR) in [22] and [27] then carries over with few
changes to £(CR). In this way we obtain

LEMMA 3 . 6 .

(a) Every element of £(B V CS(AG)) is neutral in £(CR);
(b) The set (B] U { G, CS, OG } generates a sublattice of neutral elements of

£(CR);
(c) If V 6 £(CR) is neutral in £(CR), then so is VK.

As an analogue of [8, Corollary 5.7] for pseudovarieties, we have

LEMMA 3 . 7 . Tie mappings

v —> (vncs.vnB), (u,w) —-> uvw

are mutually inverse isomorphisms between [RB,£(OG) H BG] and [RB,CS] x

PROOF: Since CS and B are both neutral in £(CR) by Lemma3.6 and i (OG)n
BG = CSVB, the result follows from purely lattice theoretic considerations (see Petrich
and Reilly [18, Theorem 7.5]). D

Let
DCh = { 5 € CR | S/J is a chain }

In [23], the first author studied the varieties of completely regular semigroups generated
by members of DCh. Since all the relevant examples in [23] are finite, the next result
carries over to pseudovarieties.

LEMMA 3 . 8 .

(a) For all V 6 £(B), V = (V H DCh).
(b) Tiere exist V e £(CR) suci tiat V ^ (V n DCh).

https://doi.org/10.1017/S0004972700033888 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033888


214 N.R. Reilly and S. Zhang [8]

Trivially, for any V G £(CS) , we have

V = V D D C h .

The next result enlarges the class of pseudovarieties V for which it is known that

V = (VnDCh).

PROPOSITION 3 . 9 . Let V e £ ( I ( O G ) n B G ) . Then V = ( V n D C h ) .

PROOF: By Lemma 3.7, there exist U e £(CS) and W e £(B) such that V =
UVW. Since U = UflDCh and W = (WnDCh), it follows that V = (VnDCh). D

LEMMA 3 . 1 0 . Let S e F,T e DCh and (p : S -> T be a. surjective homomor-
phism. Then there exists a subsemigroup R of S such that R £ DCh and (p\n is
surjective.

PROOF: Since S is finite, so also is T and we may list the ./-classes of T as
D\,.-.,Dn where, since T £ DCh, we may assume that

Di > D2 > ... > Dn

in the natural partial order of the ,7-classes.
For each a — 1,2,..., n, there exists by Lemma 2.1 a i7-class Ca in 5 that is the

least i7-class in the ./-class order within Da(p~l and for which Ca<p = Da. Since Da

is a subsemigroup of T it follows that Ca must be a subsemigroup of 5 . Thus Ca is
completely simple. For a > (3 we have

DaDf}Da C Dp,

so that
CaCpCaC

But Cp is the least ./-class in Dpip"1 whence we must have

CaCpCa C Op.

n

It follows easily from this that R = |J Ca is a completely regular subsemigroup of S
a=l

with ./-classes C\,..., Cn that are linearly ordered:

Ci > C2 > . . • > Cn.

Thus R G DCh and, since Catp = Da, it follows that <P\R is surjective. u
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LEMMA 3 . 1 1 . Let U , V e £ ( F ) and let S £ D C h be such that S £ U W .
Then

5 e (u n DCh) v (v n DCh).

PROOF: By the hypothesis, there exist U £ U, V € V, a subsemigroup P of
U x V and a surjective homomorphism ip : P —> 5. By Lemma 3.10, there must be a
subsemigroup R of P such that R G DCh and <P\R is surjective. There is no loss in
generality in assuming that P — R and that R is a subdirect product of U and V.
This implies that U and V are both homomorphic images of R, which clearly implies
that U,V £ DCh. This establishes the claim. D

We are now ready to prove the main result of this paper.

THEOREM 3 . 1 2 . Let W e £(CR) have the following properties:

(i) W is neutral in £(CR);
(ii) V € £(W) implies that V = (V D DCh).

Then the mapping

X w : u ^ u n w (Ue£(F))

is a complete endomomorphism of £(F).

PROOF: By Lemma 3.2, it sufficies to show that %w is an endomorphism of £(F).
So let U , V e £ ( F ) and 5 6 ((U V V) D W) n DCh. By Lemma 3.11,

5 6 ((U n DCh) V (V n DCh)) n W

where, since W is neutral in £(CR).

((U n DCh) v (v n DCh)) n w = ((un DCh) n w) v ((v n DCh) n w)

c (unw)v(vnw).

By part (ii) of the hypothesis, it follows that

(u v v) n w c (u n w) v (v n w).
The reverse containment holds trivially. Hence x w is an endomorphism of £(F). U

By combining Lemma 3.6 and Proposition 3.9 with Theorem 3.12, we obtain

COROLLARY 3 . 1 3 . Foreach W 6 £(B VCS(AG))U{G,CS,BVG,BVCS},
the mapping

X w : U —» UnW (U6£(F))
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is a complete endomorphism of £ (F) .

Corollary 3.13 includes previously known examples such as W = G or CS or S
(see [1], [2] and [4]) and some new examples such as W = B or B VCS(AG) or B VG
or B V CS.

We conclude this section with an observation on the mapping XCR induced by
taking intersections with CR.

Let S G F . Then S is called group closed if Gr(S), the set of all group elements of
S, is a subsemigroup (which then is clearly completely regular) of S. Denote the class
of all finite group closed semigroups by GC. By [25, Lemma 3.2], GC = [xu+1yu>+1 =
(xu+1yu+1)"+1] so that GC is a pseudovariety.

LEMMA 3 . 1 4 . The mapping

X c R : U - > U n C R

is a complete endomorphism of £(GC) onto £(CR).

PROOF: In view of Lemma 3.2, it suffices to show that XCR ls a homomorphism of
£(GC) onto £(CR). So let U, V G £(GC), and let 5 G (U V V) n CR. Then there
exists U G U, V G V, a subsemigroup R of U x V and a surjective homomorphism
<p : R —• S. It follows easily from Lemma 2.1 that the restriction of <p to Gr(R) is a
homomorphism of Gr{R) onto 5 , since R G GC. On the other hand, we have

Gr(R) C Gr(U x V)

= Gr{U) x Gr{V)

G (u n CR) v (v n CR),

whence 5 G (U D CR) V (V D CR). It follows that

(uw)ncRc(un CR) v(vn CR).

The reverse containment holds trivially. Hence XCR *S a complete homomorphism of
£(GC) onto £(CR). D

The above result automatically leads us to the following question: Is XCR a com-
plete endomorphism of £(F) ?

For any U G £(CS), the class

X>U = {5 G F | all regular J-classes of 5 belong to U}

is always a pseudovariety. We refer the reader to [2] for the discussion of various
examples. Note that our notation differs from that in [2] slightly, since we write £>RB
where Almeida would write DA and we write DCS where Almeida would write DS.
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It follows from the discussion in [23] that the pseudovariety (DCh) is a proper
subpseudovariety of C R . A slightly larger class than D C h is

DCh(DCS) = { 5 € DCS | the regular J -dasses of 5 form a chain}.

For any words p, q, let

\p,q}=p»+1q"+1p"-1q»-1.

For any variables x,y,w,z let

a = (xy)"x, b — (wz)uw and e = (a^b")"

and
u = [[exe,ex2e],[eye,ey2e]}.

Then the elements of DCh(DCS) satisfy the pseudoidentity u2 — u. Since DCS does
not satisfy this pseudoidentity, it follows that (DCh(ZJCS)) is a proper subpseudova-
riety of D C S .

NOTE ADDED IN PROOF. Part (a) of Lemma 3.8 also appears in "Linear Semigourps
of Idempotents" by 1.0. Koryakov, Investigations in modern algebra (Ed. L.N. Sher-
rin), Mathematical Proceedings of the Ural University, Sverdlousk KK (1978), 54-109
(Russian).
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