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Abstract

We show that every such semigroup is a homomorphic image of a subsemigroup of some finite inverse
semigroup. This shows that the pseudovariety generated by the finite inverse semigroups consists of
exactly the finite semigroups with commuting idempotents.
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Introduction

Let S be a finite semigroup in which every two idempotents commute. The main
result of this paper is Theorem 2, that for every such semigroup 5 there exist a
finite inverse semigroup /, a subsemigroup T of / and a homomorphism from T
onto S.

This result may be regarded as a structure theorem for finite semigroups with
commuting idempotents. It may also be viewed in the light of the notion of a
pseudovariety. A pseudovariety of semigroups is a class of finite semigroups
closed under the formation of subsemigroups, finite direct products and homo-
morphic images. By Theorem 1, the class of all finite semigroups with commuting
idempotents is a pseudovariety. Thus, since this class contains all finite inverse
semigroups, it includes the pseudovariety generated by the finite inverse semi-
groups. Theorem 2 therefore establishes the reverse inclusion, showing that the
pseudovariety generated by the finite inverse semigroups is exactly the class of all
finite inverse semigroups with commuting idempotents.
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The question thus answered in this paper was posed by S. Margolis [4] in 1980
and is discussed further in [5], [6] and [7]. For the sake of completeness, we give
again the easier half of our result in Theorem 1 and its Corollary.

For unexplained terminology and semigroups in general we refer to [1], [2] or
[3].

THEOREM 1. The class of all finite semigroups in which idempotents commute is a
pseudovariety.

PROOF. We must show that the class is closed under the formation of subsemi-
groups, finite direct products and homomorphic images. The first two of these are
immediate. For the third, suppose that T is finite, that </>: T -* S is a surjective
homomorphism and that idempotents in T commute. Let e, f be idempotents in
S. Consider {x€7 ' : i j i (x ) = e} . Then this is a finite subsemigroup of T and so
contains at least one idempotent, e', say, of T. Similarly, let / ' be an idempotent
of T for which <>( / ' )= / • Then ef = <J>(e')<H/') = <$>{e'f) = <j>(f'e') =

= fe.

COROLLARY. The pseudovariety generated by the finite inverse semigroups consists
only of finite semigroups with commuting idempotents.

We now proceed to the converse of this corollary. We need to establish some
properties of semigroups of this kind.

LEMMA 1. Let S be a semigroup with commuting idempotents.
(i) Let u,v,e,f& S where e, fare idempotents.

(a) If fu = v and ev = u then u = v.
(b) If uf = v and ve = u then u = v.

(ii) / / u, v are regular elements of S with inverses u', v' respectively and if
uu'v = u and vv'u = v, then u = v.

(iii) If S is finite, u,v,s e S, u@us, v9tvs and us = vs, then u = v.
(iv) The regular elements of S form a subsemigroup. More generally, if uv and vw

are regular, then so is uvw.

PROOF, (i) (a) u = ev = e(fu) = (ef)u = (fe)u = ( / e ) O ) = feh) = f(ev) =

fu = v. (b) Similarly.
(ii) Let e = uu', f = vv'. Then e, f are idempotents and ev = u, fu = v. So

u = v, by (i)(a).
(iii) Since S is finite, there is a positive integer N such that for all x e 5, xN is

idempotent. Now let p,q e S1 be such that usp = u and vsq = v, since
and vs@v. Then u{sp)N = u and v(sq)N = v.
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Putting e = (sp)N and / = (sq)N we have uf = u(sq)N = v{sq)N (since us =
vs) = v. Similarly, ve = v(sp)N = u(sp)N = u. So, by (i)(b), we have u = v.

(iv) Let u, v be regular with inverses u', v' respectively. Then u'u and vv' are
idempotents and so (uv)(v'u')(uv) = u(vv')(u'u)v = u(u'u)(vv')v = uv. Thus, uv
is regular.

(The subsemigroup of regular elements is thus clearly a regular semigroup in
which idempotents commute and is therefore an inverse semigroup.)

Similarly, if uv and vw are regular, having inverses p and q respectively, then
we may check that vwq and vpu are idempotent and so (uvw)(qvp)(uvw) =
u(vwq)(vpu)vw = u(vpu)(vwq)vw = (uvpuv)(wqvw) = (uv)(wqvw) = u(vwqvw)
= uvw. Thus, uvw is regular.

We need also to use the following property of the partial ordering of the
^classes.

LEMMA 2. / / S is a finite semigroup, v, x e S, v is regular and vx is not, then
Jf(vx) <Jf(v).

PROOF. Certainly J{vx) ^f{v). Suppose that /(vx) =/{v). Then we have
v = a(vx)b for some a, b e S1.

Let N be such that, for all s e 5, sN is idempotent. Then v = aNv(xb)N and
so v(xb)N = v. But now if v' is an inverse of v, we have

( w c X ^ x ^ ) ^ V](wc) = v(xb)Nv'vx = vv'vx = vx, so vx is regular, contradic-
tion.

From now on, let S be any fixed finite semigroup with commuting idempo-
tents. Let sv...,sn be a fixed sequence of generators for S. (We could let
S = {slt...,sn}.) Let F denote the free semigroup on n generators. Thus the
elements of F may be viewed as finite non-empty sequences or "words" from the
set {j t j , . . . , xn } of symbols.

There is a unique homomorphism from F to S which maps each x, to s, for
/ = 1,...,«. We denote by w(S) the image of vv G F under this homomorphism.
Of course this depends on the fixed choice of sv..., sn.

We find it most convenient to describe our inverse semigroups in terms of the
inverse semigroups ^(A) of all partial one-one functions on a set A. We
therefore define a system to mean a sequence J / = (A,alt...,an) where A is a
finite set and each a, is a partial one-one function on A. There is a unique
homomorphism from F into J(A) which maps each JC, to a, for / = 1 , . . . , n. We
denote by vv(s/) the image of w e F under this homomorphism.
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For each set X, \X\ denotes the cardinality of X. Similarly for a semigroup S,
\S\ denotes the cardinality of S and for a system sf= (A,av...,an), we also
denote \A\ by \s/\.

We may reformulate our problem in terms of systems, as follows.

LEMMA 3. To show that S is a homomorphic image of a subsemigroup of an
inverse semigroup, it is sufficient to show that there exists an integer K such that if
wx,w2 G F and wx{S)± w2(S) then there is a system s/ for which \s/\ < K and

PROOF. Let s#j = (Aj,a[j\...,a^) be all the finitely many systems s/ for
which | J / | < K. We may let / be the inverse semigroup Y\JJ{AJ) and let T be
the subsemigroup of / generated by tx,...,tn where <,-(/) = ap ' . For w e F, let
w(T) denote the image of w under the homomorphism from F to T which maps
each xt to /,. Then, by the assumed condition, we have that if wx, w2 e F and
w^S) * w2(S) then, for some j , w-^s/j) # w2(s/j) and so w^T) # w2(T). Thus
the map w(T) -* w(S) is a well defined homomorphism from Tonto S.

COMMENT. In devising these arguments, we had frequent recourse to sketches of
these systems, treating them as directed graphs each of whose edges is labelled
with one of the symbols sv...,sn. The reader may well prefer to reinstate such
sketches. The case n = 2 is sufficiently representative. (In fact, although we do
not need to use this, T. E. Hall has show that every finite idempotent commuting
semigroup embeds into a finite two-generator idempotent commuting semigroup.)
In the terminology of automata, what we call a system is an injective
{ x 1 ? . . . , xn }-automaton except that no initial or final states are specified.

A supply of systems is provided by S itself as follows.

DEFINITION. Let R be any ^-class of 5. For / = 1 , . . . , n, let p,. be the partial
function on R defined, for each a e R, as follows.

I as: iiaSMas:,
ap;= { ' '

\ undefined otherwise.
Now let j / ( i ? ) denote (R, pv..., pn).

LEMMA 4. (i) Each s/(R) is a system.
(ii) For each a s R, w e F,

fw(S) ifa&aw(S),
undefined otherwise.

(iii) / / w1(S) and w2(S) are regular elements of S where wx(S) =t w2(5), then
there exists a system s/ with \s&\ < \S\ for which w-^sf) =t=

https://doi.org/10.1017/S1446788700028998 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028998


[s] Finite semigroups with commuting idempotents 85

(iv) / / w(S) is regular and (wxk)(S) is not, then there exists a system
s&= (A, av...,an) and a e A for which \s/\ < \S\, aw(s/) is defined and aw(s&)
£ dom(ak).

(v) Similarly, if w(S) is regular and (xj\v)(S) is not, then there exist s# =
(A, au..., an) and a e A for which \s/\ < |S|, aw(s/) is defined and a <£ ran(a7).

PROOF, (i) To show that each p, is one-one, suppose that u,v e R, that upt, vpt

are defined and that i/p, = vpt. Then u^ust, v^vsi and us, = vst. Therefore, by
Lemma 1 (iii), u = v.

(ii) By induction on the length of w. We need only to consider w = w0Xj and
observe that, from the definitions, w(s/) = wo(s/)pj and from the properties of
Si, that a®awo{S)Sj iff both a@awo(S) and awo(S)&awo(S)Sj.

(iii) Let u = w^S), v = w2(S) and let «', v' be inverses of u and v respec-
tively. Then we claim that J / = S/{R) has the desired property where R is one or
other of the ^-classes of MM' of vv'. Taking R to be the ^-class of uu\ we have
(uu^w^s/) = MM'M = u by (ii), so, if wx{s&) = w2(s/) in this case, we must also
have uu'w2(A) = u and so MM'J; = u.

Similarly, if W X ( J / ) = w2(jtf) when R is taken to be the ^-class of vv', we
must have vv'u = v.

But then u = v, by Lemma 1 (ii), contrary to the assumption that wx(S) #

(iv) Let M = vv(S') and let u' be an inverse of u. We may take J / to be
where /? is the ^-class of MM', and take a to be MM'. Then (MM')M = u, so
aw(s/) = M, by (ii). To see that aw(jrf) £ dom(ak), suppose otherwise. Then
usk0tu, so we may let t e Sl be such that uskt = u. Thus usk(tu')usk =
(uskt)u'usk = uu'usk = usk, so usk = (wxk)(S) is regular, contrary to the as-
sumption.

(v) We could show that by defining systems on the ^c lasses of S similarly to
the s/{R). For the sake of brevity, let us instead consider the dual semigroup S
with the same generators J 1 ; s 2 , . . . , s n and, for each w0 e F, let w0 denote the
result of reversing the word w0, so that wo(S) = >vo(S).

Then w(S) is regular in S, while (xjw)(S) = (wxj)(S) is not. So, applying (iv)
above to the semigroup S, there is a system 38 = (A,$x,...,/?„) such that
| J*| < \S\ and such that, for some b & A, bw{3&) is defined while bw(3&) €
dom(/?,.). We may now take a = bw( 98) and J / = (^4, av..., an) where each a, is
the inverse of the function /?,.

Thus, Lemma 4 (iii) shows that we already have systems fulfilling the require-
ments of Lemma 3 for those words whose values in S are regular. For the general
case, we shall "patch together" old systems to obtain new ones, at which stage we
use the details of parts (iv) and (v) of Lemma 4.
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A simple device allows us sometimes to combine known properties of systems.

D E F I N I T I O N . For two systems s/= (A,ax,...,an) and 3S = (B, Bx,...,Bn) we

let srf X 38 denote the new system (A X B, yx,..., yn) where, for each i, (a, b)yt

= {aai,bBi).
We use the following properties of st X 38.

LEMMA 5. (i) Suppose that axw(s/) = a2, ax £ ran(ay), bxw(38) = b2 and
b2 £ dom(Bk). Then in s/X 38 there exist cx,c2 for which cxw(s/X 38) = c2,
cx <£ ran(yj) and c2 £ dom(yAr).

(ii) Suppose that axwx{jtf) = axw2(stf) = a2, ax € ran(ay) and a2 £ dom(ak).
Suppose also Z)1>v1(^) = b2 while bxw2{38) + b2 {where bxw2{3$) may or may not be
defined). Then there exist cx,c2 such that cxwx(s/X 38) = c2, cx £ ran(y/) and
c2 ^ dom(7yt). If bxw2{38) is undefined, then C 1 W 2 (J /X 38) is undefined, while if
bxw2(38) is defined then cxw2(s/X 38) <£ dom(yA.).

PROOF. In each case we take cx = (ax, bx) and c2 = (a2, b2). The statements
follow immediately from the observations that ran(y/) = ran(a,) X mn(Rj),
dom(y^) = domCa^) X dom^S^) and that (a, b)w(s/X 38) is defined iff both
aw(sf) and bw(38) are defined, in which case (a, b)w{s& X. 38) =

) , bw(36)\

The last ingredient of our proof is to show that, even if w(S) is not regular,
each word w may still be written in the form w = wxw2 • • • wm so that the total
length of those n>, for which w,(S) is not regular is bounded.

In showing this, we use Ramsey's Theorem [3] in the form that for every finite
set S there is a number M such that, for every set U of integers for which
\U\ > M and for every function / from {(u,v) e U X U:u < v] into S there
exist r , j , ( € U for which r < s < t and f(r, s) = f(r, t) = f(s, t).

PROPOSITION 6. Let S be a finite semigroup, with commuting idempotents, let F
be the free semigroup on the letters xx,..., xn and let w •-» w(S) be a homomor-
phism from F to S.

Then there is a number M, depending only on S, such that for every word w e F,
w can be written in the form uovxuxv2 • • • vkuk satisfying the following conditions.

(1) Each Vj(S) is regular in S.
(2) Ifxj, is the last symbol of u, then (XJVJXS) is not regular in S.
(3) If xk is the first symbol ofui+x then (vtxk)(S) is not regular in S.
(4) The word uoux • • • uk has length < M.
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H e r e we allow the possibilities that u0 or uk is the empty word or tha t k = 0,
so tha t n o vt occurs. However, we require that each v{ for i = 1 , . . . , k and each M,
for / = 1 , . . . , {k — 1) is nonempty .

P R O O F . Le t w = yxy2 ••• y m where each yr is one of xv..., xn. Say tha t a set is
good if it is of the form {r,r + l,...,r + s} where l < r < r + . s < m and if
v(S) is regular, where v is the word yryr+i • • • y r + s . A maximal good set means
a good set which is not a proper subset of any other good set.

N o w let {/•,/• + 1 , . . . , / • + s} and {/•',/•' + 1 , . . .,/•' + s ' } b e any two distinct
max ima l good sets. Then we m a y easily see that either r + s + 2 < r' or
r' + s' + 2 < r. Otherwise the two sets are adjacent or overlapping, in which case
the cor responding words are pq and qr where p,r e F, q e F1 and p(S)q(S)
and q(S)r(S) are regular. But then by Lemma 1 (iv), p(S)q(S)r(S) is also
regular, so the union of the two sets is also good, contradicting their maximality.

Thus the maximal good sets (if any) are {r^ rx + 1, ...,rx + sx), {r2,r2 +
1 , . . . , r2 + s2 } , . . . , {rk, rk + 1 , . . . , rk + sk} where r, + st• + 2 < ri+1, and we may
take o, = yn • • • y,i+St ioil^i^k and u m = j , i + J i + 1 • • • y^^ for 0 < i < k,
with the conventions that r0 = s0 = 0 and rk+1 = 1 = m Then certainly w =
uoui " ' ' vkuk-' anc^ e a c n u i(^) is regular.

Conditions (2) and (3) follow immediately from the maximality of the sets. For
condition (4), let U be the set of all r e ( 1 , . . . , m} which do not appear in any
of the maximal good sets. It remains to show that \U\ is bounded independently
of w.

For r,s e U with r < s, let wrs = yryr+1 • • • ys_v and let f(r, s) = wrS(S).
By Ramsey's Theorem, there exists an M, depending only on |S|, for which, if
\U\ > M then there exist r , j , i e U with r < s < t for which f(r, s) = f(r, t) =
f(s, t), that is, wrs(S) = wrt(S) = wst(S) = w, say. But in this case wrl = wrswsl, so
x2 = x. Thus wrj(S) is idempotent in S and is therefore regular, so that
{ r, r + 1 , . . . , i — 1} is a good set and so is included in one of the maximal good
sets, contradicting that r e U. Hence for this M we always have \U\ < M.

NOTE. It follows from (2) and (3) and from Lemma 2 and its dual that, for each
' ' </(",($)) ></(w(S))> except for the case where w = vt.

THEOREM 2. Let S be a finite semigroup in which idempotents commute. Then S
is a homomorphic image of a subsemigroup of some finite inverse semigroup.

PROOF. For each s e S, let d(s) denote the number of ^classes of S strictly
above that of s. We proceed by induction on h to show that, for each h there
exists a number K{h) such that whenever w, w' e F, w(S) ¥= w'(S) and d(w(S))
+ d(w'(S)) = h then there exists a system J / for which \sf\ < K(h) and
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w'(s/). Since S is finite we may then take K = max{K(h): h - d(s) +
d{t), s,t e S) and the result follows immediately by Lemma 1.

Thus, suppose that w,w' <= F, w(S) * w'(S) and d(w(S)) + d(w'(S)) = h. If
w, w' are both regular, then we may use Lemma 4 by ensuring that K(h) > \S\. So
without loss of generality, we may suppose that w is not regular. Let w = uovl

• • • vkuk as in Proposition 6.
Our notation will correspond to the case where k # 0 and both u0 and uk are

nonempty, but the other cases may be treated in just the same way except for
obvious modifications. Let M, = ui0 • • • w,7(l) where each ujr is one of xv..., xn.
In particular, let ui0 be xk^ and «l7(/) be xj( l ) . Then, from the statement of
Proposition 6, each v^S) is regular while (jcjr(/_1)uJ-X>S) and (VjXkii))(S) are not.
So, by Lemma 4 (iii), (iv) and Lemma 5 (i), there is, for each i, a system
s/t: = (At, a['\.. ^a^) having elements a,-, bt for which a,j;,(j^;) = bt, a, $

We may now form a composite system stf= (A,av.. .,<*„), where A is the
disjoint union of the Ai together with new elements pir for 0 < /' < k, 1 < r < /(/')
and also p = pM and q = pkj(k+iy We define each a, as follows. For an element
a of some At where a # &,, we define aay = aaf\ We let i,ay = &,aj° except for
y = k(i) in which case A/OĴ  is undefined and we instead define btak(i) = pa. For
each element of the form pir, we let />,vay be undefined unless uir = Xj, in which
case, for 0 < r < /(/') or / = A: and r = /(A:), we define /;,rav = />,->r+1. For / < A:
and uil(k) = Xj (that is, j = j(i)), we let Pilik)aj = aj+1, and we let go, be
undefined for each / The ay may be seen to be one-one because of the choice of
the J</,, at and bt.

The effect of this definition is that puQ(ssf) = av a^^s/) = bu b^^s/) =
a2. • • •, okvk(s/) = bk and bkuk(s?) = q. So pw(s/) = q. Now, since the total
length of the u, is at most the number M described in Lemma 6, we have
\s/\ < k\S\2 + M - k + 1. For the same reason, k < M + 1 and so | J / | <
(M + 1)|5|2 . So the result is proved in the case where W ( J / ) # w'(s/) by
ensuring that K(h) > (m + l)\S\2.

We may thus suppose that w(stf) - w'{jrf), and in particular, pw'(jtf) = q.
But i n j / , the only sequences of elements which lead from p to q and in which
each arises from its predecessor by applying some ay, are of the form

P ~ POO' P o i ' - • • > Poi(O)> fll> • • • > ^ l > ^ 1 1 > / ? 1 2 ' - - - » / ' l / ( l ) >

a2,...,b2,...,ak,...,bk, p k l , . . . ,pkl(k), q-

Moreover, the only ay for which piraj = pir+1 is that for which uir = ay. It
follows that w' must be of the form UQU^V'J • • • v'kuk where the w, are the same
as in the decomposition of w and where, for each i, a^s/) = bt.
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Of course, this expression for w' need not be the decomposition of w' given by

Proposition 6, but certainly, for each /', ^{v'^S)) ^,/(w'(S)) while, by the note

following Proposition 6, and since w(S) is assumed not to be regular, f{vt{S))

> e / O ( S ) ) . Now, since w(S) ¥= w'(S), there is at least one m for which vm(S) #

v'm(S). Let one such m be chosen. Then h0 = d(vm(S)) + d(v'm(S)) < d(w(S))

+ d(w'(S)) and so we may apply the induction hypothesis to obtain a system 3S

with \&\ < K(h0) for which vm{38) * v'm{38).
The argument is symmetrical with respect to w and w' from this point onwards.

We use only that, for each i, a^pi^f) = bt and that vm(3S) * v'm{38). So
without loss of generality we may suppose that there exist c and d for which
cvm(3S) = d and cv'm(38) ¥= d, whre cv'm(3>) may or may not be defined.

Now we may form the system 38' = stfm X 38 and take a' — (am,c) and
b' = (bm, d), so that, by Lemma 5 and by the choice of stfm and 38, we have
a'vm(38') = b', a'v'm(3S) * b', a' £ ran(ay(m_1)) and V € domK( m )). Let s/'
= {A', a'v..., a'n) be the new system defined in just the same way as s/ except
that s?m, am and bm are replaced by J", a' and b'. Then, since a'vm{38') — b', we
still have a'vm(jtf') = b'.

We now show that if a'v'm{s^') is defined, then a'vm{st') e 38' and a'v'm{sf')
* b'. Suppose that a'v'm(s/') is defined. If a'v'm(jaf') £ 38' then we must have
v'm = uxk(m)v where a'u(s/') = 6'. So a'u(3S') = b' and therefore amu{jtfm) = bm.
But then amw(^'m)^/(:(m)(^) £ s#m and so amv'm(s/) € j / m , which contradicts
the fact that amv'm(jtf) = fem. So if a't^(j*") is defined, then a'v'm(sf') e J".
Thus fl'»;(j/') = a'i>;(*')- But «'»;(*') * b', since c ^ ( ^ ) ^ cvm{38).

Now let a'v'm{38') = (fcm, rf') where </' ^ d. Then a '^( J " ) ^ ( m ) ( ^ ' ) is unde-
fined, since bmxk(m)(s/m) is undefined. Hence a'(u'mxk(m))(s/') =
a'v'm{38')xk{m){sf') is also undefined, since (bm, d')i= b'. It follows that pw'(jtf')
is undefined, and so w'(s/') =t w(jrf'). [In the case where m = k and uk is
empty, we conclude only that if a'v'm(sf') is defined then pw'{j#') = a'v'm(s/')
* b', but then again w'(s/) =t w(s?).\

Since st' is obtained from j / by replacing s£m by j / m X 38, we see that
\s/'\ < (M + 1)|S|2 + |S|2(ii:(A0) - 1) = |S|2(M + K(h0)). The proof is there-
fore complete if we ensure that K{h) > |S|2(M + K{h0)) for all h0 < h, which
implies the other conditions previously mentioned provided that K(0) >
(M+1)\S\2.
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