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Abstract

We demonstrate the use of a probabilistic machine-learning technique to develop stochastic parameterizations of
atmospheric column physics. After suitable preprocessing of NASA’s Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA2) data to minimize the effects of high-frequency, high-wavenumber
component of MERRA2 estimate of vertical velocity, we use generative adversarial networks to learn the probability
distribution of vertical profiles of diabatic sources conditioned on vertical profiles of temperature and humidity. This
may be viewed as an improvement over previous similar but deterministic approaches that seek to alleviate both,
shortcomings of human-designed physics parameterizations, and the computational demand of the “physics” step in
climate models.

Impact Statement

Global climate models can now be used to produce realistic simulations of climate. However, large uncertainties
remain: for example, the estimated change in globally-averaged surface-temperature to a doubling of atmos-
pheric CO2 varies between 2° and 6°C across leading models. Uncertainty in representing cumulus convection
(think thunderstorm) is amajor contributor to this spread: Scales at which they occur, 100m–10 km, are too small
to be resolved in global climate models, requiring their effects on larger scales to be approximated with simple
models. Improving such approximations using new probabilistic machine-learning techniques, initial steps
toward which are successfully demonstrated in this work will likely lead to improvements in the modeling of
climate through improvements in the representation of cumulus convection.

1. Introduction and Problem Formulation

Over the past 70 years, there has been a concerted effort to develop first principles-basedmodels of Earth’s
climate. In this ongoing effort, current (state-of-the-art, SOTA) comprehensive climate models and Earth
System Models (ESMs) have achieved a level of sophistication and realism that they are proving
invaluable in improving our understanding of various processes underlying the climate system and its
variability (Chen et al., 2021, p. 82). Limited by computational resources, however, most comprehensive
climate simulations are currently conductedwith horizontal grid spacings of between 50 and 100 km in the
atmosphere. However, many atmospheric processes occur at much smaller scales. These include cumulus
convection, boundary layer turbulence, cloud microphysics, and others. Even as resolutions continue to
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slowly increase, a number of these small-scale processes are not expected to be explicitly resolved in long-
term simulations of climate for a long time. As such, the effects of such unresolved subgrid processes on
the resolved scales have to be represented using parameterizations.

To wit, the evolution of temperature T and moisture (represented by specific humidity) q may be
written as (e.g., see Yanai et al., 1973; Nitta, 1977):
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Here, (u,v) is the horizontal velocity field, ω is the vertical velocity in pressure coordinates, Sp is static
stability given by Sp ¼�T

θ
∂θ
∂p, where θ is potential temperature and other notation is standard. To simplify

notation, in the above equations all variables on the left-hand side (LHS) are understood to be variables at
the resolved scale. With that convention, q1 and q2 are parameterizations that represent the effect of
unresolved subgrid processes on the evolution of resolved scale temperature and moisture. (Additional
mass and momentum conservation equations complete the system, e.g., by providing the evolution of
(u,v,ω).) For convenience, following Yanai et al. (1973), we refer to q1 as apparent heating and q2 as
apparent moisture sink.

In the above equations, terms on the LHS represent slow, large-scale dynamical evolution. Phenomeno-
logically,when the large-scale dynamical evolution or forcing serves to set up conditions that are convectively
unstable, the system responds by locally and intermittently forming cumulus convective updrafts that serve to
locally resolve or eliminate the instability. Indeed, the interaction between the large-scale dynamics and
small-scale intermittent moist nonhydrostatic cumulus response continues over a range of subgrid scales,
fromminutes and hundreds ofmeters to hours and up to 10 km. Thus, from the point of view of the equations
above, q1 and q2 represent the effect of unresolved cumulus and other subgrid processes on the evolution of
the vertical profiles of environmental averages of the thermodynamic variables T and q; q1 is an apparent
heating source and q2 is an apparent moisture sink. In particular, q1 comprises effects of radiative and latent
heating and vertical turbulent heat flux, and q2 effects of latent heating. The effects of horizontal turbulent
transport are smaller in comparison and are therefore commonly neglected, as we do here.

In SOTA climate models, forward evolution of the atmospheric state over each timestep consists of a
“dynamics” update (solving the mass and momentum equations and computing terms on the LHS of
equations (1) and (2)) followed by a “physics” update. It is the “physics” update—effectively computing q1
and q2—that implements the various schemes that capture the effect of unresolved dynamical and
thermodynamic processes (e.g., turbulence transport including that of convective updrafts, various bound-
ary layer processes, cloud microphysics, and radiation) on the resolved scales. Physics parameterizations in
SOTA climate models tends to be one of the most computationally intensive parts (e.g., see Bosler et al.,
2019; Bradley et al., 2019). Furthermore, since traditional parameterizations are based on our limited
understanding of the complex subgrid-scale processes, significant inaccuracies persist in the representation
of microphysics, cumulus, boundary layer, and other processes (e.g., Sun and Barros, 2014). Indeed, as
pointed out by Sherwood et al. (2014), uncertainty in cumulus parameterization is a major source of spread
in climate sensitivity of ESMs that are used for climate projections for the 21st century.

The recent explosion of research in machine learning (ML) has naturally led to the examination of the
use of ML in alleviating both, shortcomings of human-designed physics parameterizations, and the
computational demand of the “physics” step in climate models. In this context, recent research has
focused on using short high-resolution simulations of climate that resolve convective updrafts, commonly
called cloud-resolving models (CRMs) as ground truth for developing a computational-cheaper, unified
machine-learned parameterization that replaces the traditional “physics” step. For example, using this
approach, Brenowitz and Bretherton (2018) were able to improve the representation of temperature and
humidity fields when compared with traditional physics parameterizations.
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In this study, instead of using output from high-resolution CRMs, since CRMs can themselves deviate
from reality in many aspects (e.g., Lean et al., 2008; Weisman et al., 2008; Herman and Schumacher,
2016; Zhang et al., 2016), we train aMLmodel using reanalysis fields from theModern-Era Retrospective
Analysis for Research and Applications version 2 (MERRA-2, Rienecker et al., 2011). Further, two
similar input profiles (of temperature and humidity) can evolve differently due to chaotic subgrid cumulus
dynamics and result in different output profiles (of apparent heating and apparent moisture sink). As such,
we estimate q1 and q2 using a probabilistic ML model. This choice is also consistent with the suggestion
that a stochastic approach is likely more appropriate for parameterizations in terms of reducing the
uncertainties stemming from the lack of scale separation between resolved and unresolved processes (e.g.,
see Duan and Nadiga, 2007; Nadiga and Livescu, 2007; Nadiga, 2008; Palmer, 2019).

2. The Tropical Eastern Pacific, Data and Preprocessing

The inter-tropical convergence zone (ITCZ) is one of the easily recognized large-scale features of earth’s
atmospheric circulation. It appears as a zonally elongated band of clouds that at times even encircles the
globe. It comprises of thunderstorm systems with low-level convergence, and intense convection and
precipitation, The domain we choose—the region of Eastern Pacific, 15S–15N and 180–100.25 W—
includes both a segment of the more coherent northern branch of the ITCZ as a band across the northern
part of the domain, and a segment of the more seasonal southern branch in the southwestern part of the
domain. In the top-left panel of Figure 1, which shows the 2003 annual mean of column-averaged specific
humidity, the ITCZ is contained in the broad and diffuse bands of high moisture seen in yellow.While not
evident in the equivalently averaged temperature field (top-right), it is better identified in the q1 and q2
fields (bottom row; see later). To aid in geo-locating the domain considered and the ITCZ, the inset in the
bottom-right panel shows the q1 field for January 1, 2003 on a map with the coastlines of the Americas.

Whereas the timescales of convective updrafts range from minutes to hours, the reanalyzed fields
under NASA’s Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2)

Figure 1. Preprocessing of MERRA2 data in the tropical Eastern Pacific. Top: Annual mean of column-
averaged specific humidity (left) and temperature (right) in the Eastern Pacific. Bottom: Annual mean of
apparent moisture sink (left) and apparent heating (right). To aid in geo-locating the domain considered
and the ITCZ, the inset in the bottom-right panel shows the q1 field for January 1, 2003 on a map.
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project are made available at a sampling interval of 3 hr. Nevertheless, the reanalyzed fields contain the
averaged effects of convective updrafts and other subgrid processes. First, we use the T , q, and (u,v,ω)
fields to estimate q1 and q2 using equations (1) and (2). On so doing, we find that there are numerous
instances wherein the diagnosed q1 and q2 fields are dominated by the vertical advection of temperature
and specific humidity, respectively, and which are themselves much larger than the horizontal advection
terms and the temporal tendency terms. Furthermore, in such cases, the vertical distributions of q1 and q2
were found to be highly correlated to the vertical distributions of vertical advection of temperature and
specific humidity respectively. We proceed to further investigate this aspect of the diagnosed diabatic
sources in order to establish that they are not mere artifacts before proceeding with modeling them.

MERRA2 is a reanalysis product in the sense that it uses an atmospheric general circulation model
(AGCM), the Goddard Earth Observing System version 5 (GEOS-5), and assimilates observations to
produce interpolated and regularly gridded data (Rienecker et al., 2011). While vertical motion is
intimately linked to the stability of the atmosphere given stratification in the vertical, and is key to the
formation of cumulus, vertical velocity is usually not directly measured. It is indeed the case that direct
observations of vertical motion are not part of the data that are assimilated by the GOES-5 AGCM to
produce MERRA2. As such, to examine whether the high-frequency (temporal), high-wavenumber
(spatial) component of the inferred vertical (pressure) velocity of MERRA2 (components in which the
confidence tends to be lower than in the slower, larger-scale components) leads to the correlation
mentioned above, we consider further spatiotemporal averaging of the MERRA2 fields from a native
resolution of 0.5° � 0.625° at 3 hr to a daily average at a coarsened resolution of 1° � 1° (e.g., Sun and
Barros, 2015). The persistence of the correlations, however, suggests that the correlations are likely real.

All fields are considered on MERRA2’s native vertical grid (pressure levels) and we confine attention to
the troposphere, defined here for convenience as pressure levels deeper than 190mbar (hPa); there are 31 such
levels. Figure 1 shows the annual and vertical average of specific humidity (top-left), temperature (top-right),
diagnosed specific humidity sink (bottom-left), and temperature source (bottom-right). The ITCZ is seen to be
better defined in the diagnosed (bottom) fields and its structure in q1 and q2 is also seen to be highly correlated.

3. Generative Adversarial Networks

The governing equations would be closed if we are able to express the three-dimensional fields q1 and q2
in terms of the resolved (3D) variables; given that they are not closed, we proceed to find such closures
using machine-learning. However, given the physics of the problem described previously, the dominant
variation of such relationships is captured by the column-wise variation of q1 and q2 in terms of the
column-wise variation of T and q. Furthermore, as alluded to earlier, we should not expect unique
functional relationships between the predictands and predictors. As such a probabilistic ML framework is
called for. That is, instead of learning maps,

T pð Þ, q pð Þ½ �↦ q1 pð Þ, q2 pð Þ½ �,
we are led to want to learn the conditional probability,

P q1 pð Þ½ , q2 pð Þ�j T pð Þ½ , q pð Þ�ð Þ,
the probability of q1 pð Þ, q2 pð Þ½ � occurring given the occurrence of conditions T pð Þ, q pð Þ½ �.

In this setting, a conditional generative model is required, since in essence, a generative model learns a
representation of the unknown probability distribution of the data. Different classes of generative models
have been developed and they can range fromgenerative adversarial networks (GANs) (Goodfellow et al.,
2014) to variational autoencoders (Kingma andWelling, 2013) to continuous normalizing flows (Rezende
and Mohamed, 2015) to diffusion maps (Coifman and Lafon, 2006) and others. However, we choose
GANs since they have been investigated more extensively than the others. As a class of generative
models, GANs are trained using an adversarial technique: while a discriminator continually learns to
discriminate between the generator’s synthetic output and true data, given a noise source, the generator
progressively seeks to fool the discriminator by synthesizing yet more realistic samples. The (dual)
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learning progresses until quasi-equilibrium is reached (see Figure 2a for an example of this in the current
setup), wherein the discriminator’s feedback to the generator does not permit further large improvements
of the generator, but rather leads to stochastic variations that explore the local basin of attraction. In this
state, the training of the generatormay be considered as successful to the extent that the discriminator has a
hard time, both, discriminating between true samples and fake samples created by the trained generator,
and learning further to discriminate them.

Initially, the training of GANs was problematic in that they commonly suffered from instability and
various modes of failure. One of the approaches developed in response to the problem of instability in the
training of GANs was the Wasserstein GAN (WGAN) (Arjovsky and Bottou, 2017) The WGAN
approach leverages the Wasserstein distance (Kantorovitch, 1958) on the space of probability distribu-
tions to produce a value function that has better theoretical properties, and requires the discriminator
(called the critic in the WGAN setting) to lie in the space of 1-Lipschitz functions. While the WGAN
approach made significant progress toward stable training of GANs and gained popularity, subsequent
accumulating evidence revealed that the WGAN approach could sometimes generate only poor samples
or, worse, even fail to converge. In further response to this aspect of WGANs, a variation of the WGAN
was proposed by Gulrajani et al. (2017): while in the original WGAN, a weight-clipping approach was
used to ensure that the critic lay in the space of 1-Lipschitz functions, the new approach used a gradient
penalty term in the critic’s loss function to satisfy the 1-Lipschitz requirement. As such this approach was
called the Wasserstein GAN with gradient penalty (WGAN-GP).

3.1. Architecture and loss functions

In the conditional version of theWGAN-GPwe use, besides the input and output layers, the generator and
critic networks each consist of three fully connected feed-forward hidden layers (multilayer perceptron
architecture). The hidden layers have 512 neurons each with 10% dropout, and use rectified linear unit
(ReLU) activation functions while the input and output layers are linear. The noise sample was
concatenated to the condition vector for input to the generator. And, the condition vectorwas concatenated
to the real or generated sample to form the input to the critic network.

The dataset consisted of 864,000 datapoints (30 latitude bins, 80 longitude bins, and 360 daily averages
[1/4–12/29]) with 62 conditions representing temperature and humidity at 31 vertical pressure levels. The
target variables were q1 and q2 at the same 31 vertical levels. To account for the typical dominant nature of

(a) (b)

Figure 2. (a) Training loss with dropout (blue) and with batch normalization as a function of training
epoch. Both generator and discriminator losses are shown and the training is seen to continue stably over
large numbers of epochs. (b) Comparison of vertical distribution of cGAN predictions against reference
MERRA2 analysis. Averages over test set of apparent heating (left) and apparent moisture sink (right) are
compared. Teal (Magenta) values are for the case when the dimension of the noise vector is 10 (20).
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the seasonal component of climate variability, the dataset was split into quarters, the first 70 days of each
quarter were used for training and the subsequent 20 days of each quarter constituted the test set. Training
data was scaled to a mean of zero and unit standard deviation (standardized), and the same, learned,
transformation was applied to the test data. Data was inverse transformed prior to plotting and metric
calculations. Training data was split into 100 mini-batches per epoch.

The generator and critic loss functionswere as proposed inGulrajani et al. (2017)with gradient penalty
added to the critic loss. Training was performed with an Adam optimizer with momentum parameters (βs)
set to 0.5 and 0.9. The coefficient of gradient penalty was set at 0.1. We note that when using the same
generator and critic architectures, but with other data (Hossain et al., 2021), we have found robust
behavior of the predictions over a wide range of values for the coefficient of gradient penalty (0.01–10). A
learning rate of 1e-3 was used. The generator was only updated every fifth step in order to allow the critic
to learn the Wasserstein distance function better before updating the generator. Once training was
complete, the test conditions along with noise samples were fed to the generator to produce results that
we discuss in the next section.

Variations of hyperparameter considered consisted of number of neurons in each layer, number of
layers, activation function, coefficient of gradient penalty in discriminator loss, dropout and batch
normalization layers in generator, and the dimension of the noise vector input to the generator. No
sensitive dependencies were found. Furthermore, a validation set was not used for the reason that the
training of the cGAN was stable and no special stopping criterion was used. For example, the averaged
generator and discriminator loss functions were monotonic and could be continued for tens of thousands
of epochs (see Figure 2a for an example).

4. Results

Given the physics of the problem, and as described earlier, we focus on the vertical distributions of
apparent heating and moisture sink, conditioned on the vertical distributions of temperature and specific
humidity. Figure 2b shows comparisons of the vertical distribution of cGAN predictions against reference
MERRA2 analysis. Here, averages over the test set are compared, with apparent heating shown in the left
panel and the apparent moisture sink shown in the right panel. Two sets of cGAN predictions are shown
with the only change being the dimension of the noise vector (cyan: 10, magenta: 20). The overall
structure of the vertical distribution of both heating and moisture sink are reasonably well captured by the
cGAN predictions with no indication of bias.

In more detail, in Figure 3a, we consider the probability distributions over the test set at each pressure
level with red indicating high probability and blue indicating low probability. Apparent heating is shown
in the left column and apparent moisture sink is in the right column. Reference MERRA2 analysis is
shown in the top row and cGAN predictions (noise vector dimension 10) are in the bottom row. The pdfs
of the cGAN predictions are seen to compare well with the referenceMERRA2 analysis. In particular, the
predictions capture the skewed nature of the distributions well. However, the regions of high probability
(width of red regions) in the pdfs of the cGANpredictions of heating, are seen to be slightly sharper than in
MERRA2 analysis. (With batch normalization, while the width of the mode region is as in MERRA2, a
different minor discrepancy is seen: there are sharper jumps in the vertical.) For reference, at a yet more
detailed level, we show stochastic ensembles of predictions at four randomly chosen test conditions in
Figure 3b. The referenceMERRA2 profiles are shown in blue and the predictions are in orange. Note that
while the cGAN predictions sometimes appear as a thick orange line, they are actually an ensemble of thin
lines. The stochastic ensemble was obtained by holding the test condition fixedwhile repeatedly sampling
the noise vector. More often, the cGAN predictions are seen to better capture the slower variations.

5. Conclusion

The tropical Eastern Pacific is an important region for global climate and contains regions of intense
tropical convection—segments of the ITCZ. Adopting a framework of apparent heating and apparent
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moisture sink to approximately separate the effects of dynamics and column physics, we diagnosed the
“physics” sources using the MERRA2 reanalysis product in a preprocessing step. We performed the
analysis at MERRA2’s native spatiotemporal resolution, and then at a significantly coarser resolution. In
both cases, we found that the heating and moisture sink were highly correlated with vertical advection of
temperature and humidity (~0.9, and �0:7), respectively.

Thereafter, we designed a probabilistic ML technique to learn the distribution of the heating and
moisture sink profiles conditioned on vertical profiles of temperature and specific humidity. This was
based on a Wasserstein Generative Adversarial Network with gradient penalty (WGAN-GP). After
successfully training the cGAN, we were able to demonstrate the viability of the methodology to learn
unified stochastic parameterizations of column physics by comparing predictions using test conditions
against referenceMERRA2 analysis profiles.We expect this work to add to the growing body of literature
(e.g., Krasnopolsky et al., 2010, 2013; Brenowitz and Bretherton, 2018; O’Gorman and Dwyer, 2018;
Rasp et al., 2018, and others) that seeks to develop machine-learned column-physics parameterizations
toward alleviating both, shortcomings of human-designed physics parameterizations, and the computa-
tional demand of the “physics” step in climate models.

We conclude by mentioning a few issues that need further investigation. Given the diversity of
behavior (e.g., ITCZ vs. non-ITCZ regions), it remains to be seen if adding velocity fields as predictors
will improve performance. Training over ITCZ regions and testing elsewhere and other such combin-
ations are likely to render further insight into the parameterizations. The stochastic ensemble our method
produces, for example, like in Figure 3b, can be readily subject to reliability and other analyses using tools
developed in the context of probabilistic weather forecasts (e.g., see Nadiga et al., 2013; Luo et al., 2022,
and references therein). We anticipate that such analyses will help us better understand the role played by
the dimension of the latent space used in generativemodeling. Finally, the stability of themachine-learned
parameterization in a GCM setting is an important issue. For example, Brenowitz and Bretherton (2018)
find this to be a problem when they learn deterministic parameterizations from CRM-based data. They
circumvent the problem by changing the problem formulation to include time integration of the
temperature (in their case static stability) and moisture equations and changing the loss function to

(a) (b)

Figure 3. (a) The probability distribution functions (pdf; red: high probability; blue: low probability)
over the test set are computed at each pressure level and compared against the MERRA2 pdfs. The
variable depth of the MERRA2 vertical layers is apparent in these figures. Apparent heating is shown in
the left column and apparent moisture sink is shown in the right column. Reference MERRA2 analysis is
shown in the top row and cGAN predictions (noise vector dimension of 10) are shown in the bottom row.
(b) A stochastic ensemble of cGAN predictions is shown for four random instances in the test set. The top
row is for heating whereas the bottom row is for moisture sink. The referenceMERRA2 profiles are shown
in blue and the predictions are in orange.
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penalize deviations of the predictions of T and q at multiple times in a cumulative sense. It remains to be
seen if the stochastic parameterizations learned using a probabilisticMLmethodology, aswe do presently,
can provide an alternative way of addressing the stability issue.
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