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APPROXIMATION OF PIECEWISE CONTINUOUS 
FUNCTIONS BY QUOTIENTS OF BOUNDED 

ANALYTIC FUNCTIONS 

DONALD SARASON 

1. Introduction. This paper concerns a certain subalgebra of the Banach 
algebra of complex valued, essentially bounded, Lebesgue measurable functions 
on the unit circle in the complex plane (denoted here by L°°). My interest in 
this subalgebra was prompted by a question of R. G. Douglas. Let Hœ denote 
the space of functions in L°° whose Fourier coefficients with negative indices 
vanish (equivalently, the space of boundary functions for bounded analytic 
functions in the unit disk). Douglas [5] has asked whether every closed sub
algebra of L°° containing Hœ is determined by the functions in Hœ that it 
makes invertible. More precisely, is such an algebra generated by H°° and the 
inverses of the functions in Hœ that are invertible in the algebra? An affirmative 
answer is known for U° itself and for certain subalgebras of U° recently 
studied by Davie, Gamelin, and Garnett [3]. At the time of this writing, no 
algebra is known for which the above question can be answered negatively. 

Let C\ denote the space of complex valued functions on the unit circle that 
are continuous except possibly at z = 1 and have one-sided limits at s = 1. 
Let B\ denote the closed subalgebra of L°° generated by C\ and Hœ. I began 
the present investigation in the hope that B\ would provide a negative answer 
to Douglas's question. My hope turned out to be unfounded; Douglas's 
question has an affirmative answer for B\.\ shall prove this here and obtain 
some additional properties of B\. 

The paper is organized as follows. In § 2 it is shown that on a certain 
decreasing family of subdomains of the unit disk, the Poisson integral is 
asymptotically multiplicative on B\. This yields a necessary condition for a 
function to be invertible in B±. In § 3 a Blaschke product is exhibited whose 
complex conjugate together with Hœ generates Bi. Besides answering 
Douglas's question for B\, this enables one to demonstrate the sufficiency of 
the invertibility condition of § 2. In § 4 the inner functions that are invertible 
in B\ and the inner functions whose inverses generate B± are characterized. 
Section 5 contains some remarks on the Gelfand space of B\. Finally, in § 6, 
the results about B\ are extended to certain larger algebras and some conse
quent approximation theorems are obtained. 

The reader is assumed to be familiar with the basic theory of Hardy spaces 
in the unit disk (see [7; 9]). The unit disk will be denoted by D. We denote 
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APPROXIMATION BY QUOTIENTS 643 

by L1 the Banach space of integrable complex valued functions with respect 
to normalized Lebesgue measure on dD, by H1 the corresponding Hardy space 
of functions in L1 whose Fourier coefficients with negative indices vanish, 
and by Ho1 the space of functions in H1 with mean value 0. We shall identify 
the functions in H1 with their natural analytic extensions into D. 

I am indebted to R. G. Douglas and H. S. Shapiro for helpful discussions. 
My treatment of the algebra Bi borrows ideas used by Douglas [6] and 
M. B. Abrahamse [1] to study the algebra iT° + C. 

2. The Poisson integral on Bx. Fo r / in U° and z in D, we let/(z) stand for 
the value at z of the Poisson integral of / . Thus 

f(reie) = ^ " T f(eu)P(r, 6 - t)dt, 0 < r < 1, 

where P is the Poisson kernel: 

1 — 2 

P(r,e) = 1 _ 2 r c o s
f

( 9 + r 2 -

For 0 < e < 7T/2, we let G€ denote the domain whose boundary is the union 
of the unit circle, the circular arc \eie cos e : e ^ \6\ ^ w}, and the two seg
ments [1, eu cos e] and [1, e~u cos e] (a "pinched annulus")- The two segments 
are tangent to the circular arc, and each makes an angle with the vertical of 
absolute value e. 

Our aim in this section is to prove the following theorem. 

THEOREM 1. If f and g are in Bi, then 

Km sup{|/(s)g(s) - (fg)(z)\ :z £ G€} = 0. 

This has the following immediate consequences. 

COROLLARY 1. / / / is an invertible Junction in B\, then there is an e such that 
f is bounded away from 0 on Gt. 

In fact, if / is invertible in B\ then, by the theorem, the product of the 
Poisson integral of / with the Poisson integral of / _ 1 must be uniformly close 
to 1 on Ge when e is sufficiently small. 

COROLLARY 2. Let <p be an inner function which is invertible in B\. Then <p is 
a Blaschke product whose zeros, if they are infinite in number, tend nontan-
gentially to 1. 

In fact, if (p has infinitely many zeros then these zeros tend nontangentially 
to 1, because otherwise <p would vanish on every Gc. No point of dD — {1} 
can lie in the support of the singular measure associated with <p, because at 
any point in the support of this measure the cluster set of <p contains 0 
[9, p. 76]. The point 1 cannot be an atom for the singular measure of <p, for if 
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it were, then <p would be divisible by exp[a(z + l ) / ( s — 1)] for some a > 0, 
and the latter function, since it tends to 0 as z —» 1 nontangentially, is not 
bounded away from 0 on any G . Thus, the singular measure of (p vanishes, 
that is, <p is a Blaschke product. 

Theorem 1 follows without difficulty from the following lemma. 

LEMMA l.Iff is in G and g is in L°°, then 

lim sup{|/(s)g(s) - (fg)(z)\ :z 6 G} = 0. 

To prove the lemma we note that, for reid in D, 

f(rei&)g(reie) - (fg)(reiG) 

= [i(reie) - f{eie)]g{re^) + [f(ei9)g(rei9) - (fg)(rei&)] 

= A(reie) + B(reie). 

We shall show that lime^0 sup{|5(2;)| : z G Ge] = 0. This result yields the 
lemma, because the special case when g is the constant function 1 gives 
lim^osup{|i4(z)| :z 6 G} = 0. 

Fix an e and a point reie in G€. Let y\ be the angle between 0 and e such that 
reir{ is in dGt. Elementary geometric considerations yield the relation 
r cos(e — y) = cos e. We have 

Breaking the integral into two parts, one corresponding to the range of 
integration \6 — t\ < rj and the other to the range of integration rj < \0 — t\ < 7r, 
we find that 

\B{rei6)\< | | g | L s u p { | / ( e r t ) - / ( e " ) l :d-v<t<8 + v\ 

+ 2||/|U|g||œ--rTp(r,0*. 
TV J v 

The supremum in the first term on the right side is majorized by 

sup{ | / (e**)- / (e") l :~L<s,t<Y^t>0, \s - t\ < e}, 

and because / is in G, this tends to 0 with e. It remains to show that the 
integral in the second term on the right side is majorized by a quantity which 
tends to 0 with e. 

From the equality r cos(e — 77) = cos e we obtain 

https://doi.org/10.4153/CJM-1972-060-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-060-9


APPROXIMATION BY QUOTIENTS 645 

Therefore 

77 (1 - r) cos(e - ij) (1 - r) cos e ( . 
77 > 2 sin - = 7- v > : = (1 — r) cot e. 

2 / w \ sin e sin 

Because 

it follows t h a t 

(-1) 
P(r, 0 = 

1 2 1 — r 1 2 

< irt2/*2 P(r, 0 = 
( 1 - - rf + 4r sin2(i/2) 

1 2 

< irt2/*2 

J V 
P(r, ,t)dt < - 2 d -

< 4r~" 
1!) f ' 

^ ( 1 - 7 
r*dt 

) COt € 

4r 

7T2(1 + 

r2) 
' ( 1 -

r) tan e 

_1 
- r) cot e 

4r 

When cos e > 1/2 the right side is no larger than 7r2 tan e, and this tends to 0 
with e. T h e proof of Lemma 1 is complete. 

T o prove Theorem 1 we introduce the function a(eid) = eie/2
y 0 < 6 < 2ir, 

which will also be useful later. Let B0 be the set of all functions afx + ji with 
/1 a n d / 2 in 2T30. I t is obvious t h a t B0 is a subalgebra of £ 1 and t h a t it contains 
Hœ. Also, B0 contains all the nonnegative powers of c, and these functions 
span C\. Hence Bo is dense in B\, and it will suffice to prove Theorem 1 for 
f u n c t i o n s / and g in Bo. 

L e t / = 0/1 + / 2 and g = agi + g2 be two functions in J50 ( w h e r e / i , / 2 , gi, g2 

are in Hœ). For s in Z), the difference / (2)g (s) — ( /g) (2) can be wri t ten as the 
sum of the following four terms: 

Ai(z) = (af1)(z)(ag1)(z) - (**/*!)(*), 

A2(z) = (0/1) (2)22(2) - (cr/ig2) (2), 

^ 3 (2) = / 2 (2) ((Tgi) (2) - ( o / ^ i ) (2) , 

.4 4 (2) = / 2 (2 )g 2 (2 ) ~ (/2g2)(2). 

T h e last term vanishes because the Poisson integral is multiplicative on Hœ. 
T h e first term can be broken up as follows: 

+ «K*)/i(*)[tei)(»)-<K*)*iOO] 
+ c r ( 2 ) [< r ( 2 ) ( / 1 g 1 ) ( s ) - (o-/ l g l)(2)] 

+ * ( * ) ( t f i f i ) ( * ) - (<r2/i^)(2). 

An application of Lemma 1 to each term on the r ight side shows t h a t 
l im^o sup{|^4i(2)| : 2 6 G€} = 0. As the terms ^42 and Az can clearly be 
handled similarly, the proof of Theorem 1 is complete. 
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3. Generation of B\ by the inverse of a Blaschke product. For/ in Lœ 

we let Hœ[f] denote the smallest closed subalgebra of L°° containing Hœ and / . 
Our aim in this section is to show that there is a Blaschke product ç such that 
B\ = Hœ[<p]. The following lemma is the key. 

LEMMA 2. Let h be a function in Hœ. Then 

dist(Ao-, H°°) S sup{\h(x)\ : 0 < x < 1J. 

Let K denote the above supremum. In estimating the distance of ha from 
H°°} we shall use the fact that the quotient space Lœ/Hœ is the dual of the 
space Ho1. The latter implies that dist (ha, Hœ) (the norm of the coset of 
ha in U°/Hœ) equals the norm of the functional that ha induces on Ho1. We can 
prove the lemma, therefore, by showing that for all g in H1, 

(i) \± f Heie)<r(eie)g(eie)ei6de 
I Z T J -7T 

<*llslli-

To avoid a minor technical difficulty, we shall prove this directly only for g 
in H°°. That will suffice, because Hœ is Z^-dense in H1. 

Let g be a function in Hœ. The quantity inside the absolute value signs on 
the left side of (1) can be rewritten as 

2irtJ d 
h(z)a(z)g(z)dz. 

3D 

Let G = D — [0, 1), and let a be extended in the obvious way to an analytic 
function in G. (Thus, the extended a- is a branch of z1'2. We violate here our 
convention of extending functions on dD by means of the Poisson integral.) 
The function hag is then bounded and analytic in G, and it has nontangential 
boundary values almost everywhere on dG, provided we think of each point 
of (0, 1) as representing, in the obvious manner, two points of dG. Applying 
Cauchy's theorem on a sequence of curves in G converging out towards dG 
and using the bounded convergence theorem, we obtain J do hagdz = 0. Thus, 

/
hagdz = — I hagdz 

3D JdG-dD 

= — I h(x)a(x + i0)g(x)dx + I h(x)a(x — i0)g(x)dx 
J o «/o 

= — 2 I h(x)x1/2g(x)dx. 
J o 

It follows that the left side of (1) is no larger than 

- J \g{x)\dx. 
TV Jo 
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By the Fejér-Riesz inequality [7, p. 46], 

I \g(x)\dx ^ 7r||g||i. 

T h e proof of Lemma 2 is complete. 

COROLLARY 3. Let <p be an inner function such that 

K = sup{|<£>0)| : 0 < x < 1} < 1. 

Then Bx C HT[<p]. 

In fact, by Lemma 2 we have, for any nonnegative integer n, 

dist((7, pH00) = d i s t (^V, Hœ) ^ Kn. 

T h e left side majorizes dist(V, H^lip]), and the right side tends to 0 as n tends 
to oo. T h u s a belongs to Hœ[ip], Since B± = Hœ[a], the corollary follows. 

T o answer Douglas's question affirmatively for Blf therefore, it will suffice 
to produce an inner function tha t is invertible in Bx and satisfies the condition 
of Corollary 3. We delay this briefly in order to mention another corollary of 
Lemma 2. 

Let C denote the space of continuous complex valued functions on dD. We 
recall t h a t if00 + C is a closed subalgebra of U° [8, Theorem 2] ; it is, in fact, 
the closed subalgebra of L°° generated by i7°° and z. 

COROLLARY 4. Let h be in Hœ. Then ha is in H"0 + C if and only if h has 

radial limit 0 at the point 1. 

If h has radial limit 0 a t 1 then it is immediate from Lemma 2 t h a t 
dist(ftcr, znHœ) = dist(znha, H°°) —> 0 as n —> oo, which implies t ha t ha is in 
Hœ + C. Conversely, if ha is in Hœ + C, then there is a g in Hœ such t h a t 
g — ha is in C and takes the value 0 a t 1. This means tha t 

lim [g(ei$) - h(eie)] = 0, 
0-*O+ 

so it follows from Lindelôfs theorem [2, p . 42] tha t g — h has radial limit 
0 a t 1. Also 

lim [g(eid) + h(ei6)] = 0, 
0^0-

so g + h has radial limit 0 a t 1. Therefore h has radial limit 0 a t 1. 

W e now produce an inner function which is invertible in B\ and satisfies 
the condition of Corollary 3. Let the f u n c t i o n / on D — {1} be defined by 
f(z) — exp[27r^'log(l — z)] (the branch of the logarithm is the principal one). 
T h e function / is invertible in Hœ, and | / | (restricted to dD) belongs to d. 
H e n c e / = / " 1 | / | 2 is in Bx. Therefore \f - 1|2 = | / |2 - / - / + 1 is in B±. 
Since \f— 1|2 is bounded away from 0 on dD, the function | / — 1|~2 can be 
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uniformly approximated on 3D by polynomials in | / — 1|2; therefore | / — 1|"2 

is in B\. Consequently ( / — 1)_ 1 = (f — 1 ) | / — 1|~2 is in Bi; in other 
words, the function / — 1 is invertible in B\. The outer factor of / — 1 is 
invertible in Hœ, and hence the inner factor of / — 1 is invertible in B±. We 
denote this inner factor by <po. By Corollary 2, <p0 is a Blaschke product. Its 
zeros are at the points 1 — e~n, n = 0, 1, 2, . . . , on the interval [0, 1). Thus 

|<£o w i = n i 
(1 - e~n)z 1*1 < l. 

An elementary calculation shows that the nth term in the above product is 
increasing on the interval [1 — e~n, 1 — e~n~1] and does not exceed 1 — e~l 

at the right endpoint of that interval. Hence |^o(#)| ^ 1 — £ -1 for 0 < x < 1; 
in other words, <po satisfies the condition of Corollary 3. We have proved 

THEOREM 2. Bi = Hœ[ë0]. 

The knowledge that <pQ is in Bi enables us to prove the following converse 
of Corollary 3: If cp is an inner function such that Bi C Hœ[<p]> then 

sup{|^(x)| : 0 < x < 1} < 1. 

To prove this, let K = sup{|<p0(*)| : 0 < x < 1}. If Bx C fl°°[^], then there 
is a positive integer n and a function h in Hœ such that ||£o — <Pnh\\œ < 
(1 - X ) / ( l + K). Thus | | ^ - <p0h\\œ < (1 - K)/{1 + K) and \\h\\œ < 1 + 
(1 - JST)/C1 + K) = 2/(1 + K). If 0 < x < 1, then 

W(x)\n ^ \<p0(x)\\h(x)\ + \<p(x)n - <p0(pc)h(x)\ 

^ X l l A l U + H ^ - ^ o A l U 

The right side is smaller than 

K 2 \ X ~ K - Ï 

1 +K~r 1 +K ' 
and so sup{|<p(#)| : 0 < x < 1} < 1, as desired. 

We shall now use the function <p0 to show that B\ contains the boundary 
functions of the bounded analytic functions in the regions Ge. This will enable 
us to prove that the invertibility condition of Corollary 1 is sufficient as well 
as necessary. 

THEOREM 3. Let f be a bounded analytic function in one of the regions 
G€ (0 < e < 7r/2). Then the boundary function of f on 3D belongs to B±. 

Let cn = dis t ( / , ip^IT0), n = 1, 2, . . . . We wish to show that l i m ^ ^ = 0. 
We have cn = dist(<p0

w/> Hœ), so, as in the proof of Lemma 2, cn is the norm 
of the functional that <p0

nf induces on Ho1. We estimate this norm by the method 
used in the proof of Lemma 2. 
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Let g be any function in Hœ. Then (p0
nfg is a bounded analytic function in 

G«, so that jdG€<Ponfgdz = 0. Therefore 

(2) ± P «,.(e")"/(*")g(e")*rtd0 = ^ f Wftd* 

= 9 ^ I *>on/#fe. 

L e t X = sup{|^0(2)| : z G dGe — dD}. Because sup{|<p0(tf)| : 0 < x < 1} < 1, 
it follows from a theorem of Doob [4, Theorem 5.1] that K < 1. The right 
side of (2) is no larger in absolute value than 

è^ll/iuf \g(z)\\d*\. 
AT J do€-dD 

By a theorem of Carleson [7, p. 157], there is a positive constant M (depend
ing on e) such that 

^-f \g(z)\ \dz\ ^ M\\g\U. 
ATtJ dGt-dD 

Combining this with the preceding estimate, we may conclude that 
cn ^ Kn\\f \\œM. Since K < 1 we have cn —» 0, as desired. Theorem 3 is 
proved. 

We observed in § 2 that B\ is the closure in L°° of the space of functions 
afi + / 2 with / i and / 2 in if00. From this and Theorem 3 we see that B\ can 
also be described as the closure in L°° of the space of boundary functions on 
dD for bounded analytic functions in the slit disk G. Thus, if we transform B\ 
by means of a suitable conformai map of G onto Dy we find that B\ is iso-
metrically isomorphic to the closure of Hœ in U° of Lebesgue measure on the 
semicircle {eie : 0 < 6 < ir}. 

The following corollary establishes the sufficiency of the invertibility con
dition whose necessity was established by Corollary 1. 

COROLLARY 5. Let f be a function in Bi, and assume that there is an e such 
that f is bounded away from 0 in G€. Then f~~l is in Bi. 

Let 8 = inf {| f(z) | : z G Gt). By Theorem 2, there is a non-negative integer n 
and a function h in Hœ such that \\(fonh — / ||œ < ô/2. By Theorem 1, if e is 
sufficiently small then \<p0

n(z)h(z)\ > 8/2 for z in G€>. Hence h is bounded 
away from 0 in Ge> for such e', so that h is invertible in Bi by Theorem 3. 
Therefore <ponh is invertible in JBI, and the norm of its inverse is obviously 
no larger than 2/5. Since 

||i - teW-yiL ^ I K ^ A H U I ^ A - / I U < (2/s)(*/2) = i, 
the function (<ponh)~1f is invertible in 5 i . Therefore / is invertible in B\t as 
desired. 

https://doi.org/10.4153/CJM-1972-060-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-060-9


650 DONALD SARASON 

4. The Blaschke products invertible in Bu We saw in § 2 that an inner 
function which is invertible in Bi must be a Blaschke product whose zeros, if 
they are infinite in number, tend nontangentially to 1. In the present section 
we shall obtain a simple criterion for the invertibility of such a Blaschke 
product in terms of the distribution of its zeros. 

Let <p be an infinite Blaschke product whose zeros tend nontangentially 
to 1. For the sake of simplicity we make a Cayley transformation to the upper 
half-plane, defining the Blaschke product b in the upper half-plane by 

b{z) = <PV+V 
The zero sequence of b will be denoted by {zn}. For r > 0 let v(r) denote the 
number of indices n such that Im zn < r. 

THEOREM 4. The following conditions are equivalent. 
(i) (p is invertible in B\. 

(ii) There is a positive constant C such that v(ar) — v(r) S aC for all r > 0 
and a > 1. 

(iii) For some a > 1, there is a positive constant C such that v(ar) — v(r) ^ C 
for all r > 0. 

The equivalence of (ii) and (iii) is elementary. These conditions say, roughly, 
that the zeros of b tend to co exponentially fast, on the average. They imply, 
for example, that v(r)/\og r = 0(1) . 

We shall prove below that (i) implies (ii) and that (iii) implies (i). Several 
lemmas of a routine nature are needed. 

Since the zeros of (p tend nontangentially to 1, there is a number a in the 
interval (0, ir/2) such that \w/2 — arg zn\ S OL for all n. By Corollaries 1 
and 5, <p is invertible in B\ if and only if there is a fi in (a, ir/2) such that b 
is bounded away from 0 in the region fi < \T/2 — arg z\ < TT/2. AS we shall 
see below, if the preceding condition holds for one such 0 then it holds for 
every such p. For the remainder of the proof of Theorem 4, we fix a (3 in 
(a, 7r/2). We shall write yn for lmzn. 

LEMMA 3. If /3 < |TT/2 — arg z\ < ir/2, then 

\z — zn\ 

for all n. 

z — zn 
^ |sin(/3 -a) 

In fact, for such a z, the inequalities \z — zn\ è \z\ sin(/3 — a) and 
\z — zn\ ^ \zn\ sin(/5 — a) follow from elementary geometric considerations. 
Thus \z — zn\ ^ f (N + \zn\) sin(/3 — a). Since \z — zn\ S N + |s„|, the de
sired inequality follows. 
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LEMMA 4. The Blaschke product b is bounded away from 0 in the region 
P < \ir/2 — arg z\ < TT/2 if and only if the sum 

^ \ \z — zn\ I 

is uniformly bounded in that region. 

Let z belong to the region in question. We have 

and so 
w*)i= n 

2 log \b (z) | = Z l o g 

z — Zn 

z - zn 
i 

log 
z - zn log 
z -~ Zn 

Because the function — log t/(l — t) is decreasing on the interval 0 < t ^ 1 
and takes the value 1 at t = 1, it follows from Lemma 3 that 

1 -
Z — Zn 

Z — Zn 

è - l o g z — zn 
Z — Zn 

where 

Thus 

*4-|H3l')-
7 = 

- l o g [ i s i n 2 ( f f - a ) l 
1 - isin2(|S -a) 

< E U - \- H) ^ -21» 
_ \ \z — zn\ / 

e !&(*)!, - ^ l o g | i ( « ) 

and the lemma follows. 

LEMMA 5. The Blaschke product b is bounded away from 0 in the region 
13 < \ir/2 — arg z\ < TT/2 if and only if the sum 

ryn 
i 2 i 2 

r +yn 

(3) 

remains bounded for r > 0. 

Let z = reid belong to the upper half-plane. We have 

\Z — Zn 
1 

Aryn sin 6 
\z - zn\

2 ' 

Since |arg z — arg zn\ > w/2 — a, an application of the law of cosines gives 
the inequality 

\z - zn\
2 è (r2 + 3v0(l - sin a) . 

On the other hand, 

\z-zn\
2 ^ 2(r2 + \zn\

2) 

g 2{r2 + V t a n ^ + V ) 

^ 2 sec2 a (r2 + yn
2). 
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Thus 

O 2 * / . ^ rJn ^ V> ( ^ \Z - Zn \ 2 \ ^ 4 ^ TJn 
2 cos a sin $2^ i—; 2 ^ 2^ l ! ~ ~ I ^ 1 '•— 2^ ~2—, 2. 

r + ?n \ I z - s» I / 1 - sin a ^ r + yn 

The desired conclusion is now immediate from Lemma 4. 

The proof of Theorem 4 can now be completed in a few lines. Assume first 
that (iii) holds. For a fixed r > 0, the function ry/(r2 + y2) is increasing on 
the interval 0 < y < r and decreasing on the interval r < y < co. Hence 

x̂  ry* - v v r?* 
/ , 2 ! 2 — Z-J 2-J 2 1 2 

^ T" 3^ j=-oo aJr^yn<aJ + lr r ~T Jn 

é^ r2+(a'+V)2 

, ^ [»(g^V) ~ v(a'r)]r • a3r 

^ 2 C £ a - ' = 2C(1 - a"1) - 1 . 
3=0 

Therefore <p is invertible in B\ by Lemma 5 and Corollary 5, in other words, 
(i) holds. 

Assume now that (i) holds. Then by Lemma 5 and Corollary 1, there is a 
positive constant C such that 

for all r > 0. If yn ^ r then yn/(r
2 + yn

2) §: l /2^n . Therefore, for any a > 1, 

r^yn<ar yn &? 

so that (ii) holds. The proof of Theorem 4 is complete. 

There exists, also, a simple characterization of the Blaschke products 
whose inverses generate Bi. We retain the above notations. 

THEOREM 5. If the Blaschke product <p is invertible in Bi, then the following 
conditions are equivalent. 

(i') Bx = ETl$\. 
(ii') There is an a > 1 and an r0 > 0 such that v(ar) — v(r) > 0 for all 

r > r0. 
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By Corollary 3 and the remark following Theorem 2, the condition 
Bi C Hœ[<p] is equivalent to the condition lim supr_^œ|6(ir)| < 1. We shall 
prove the theorem by showing that if <p is in Bi, then the last condition is 
equivalent to (ii'). A lemma is needed. 

LEMMA 6. The conditions lim supr_>œ\b(ir)\ < 1 and 

l i m i n g 2
Tln

 2 > 0 
r->oo ^ r +yn 

are equivalent. 

We have 

21og|6(tr)| = Z l o g ir 
ir — zn 

-EnO-is^) 
a-En 4ryw 

ir - zn\
2 ' 

Since \ir — zn\
2 ^ 2 sec2 a(r2 + yn

2) (see the proof of Lemma 5), we obtain 

log|6(«r)| ^ - C O S ^ S T ^ V 5 -

This inequality shows that the second condition of Lemma 6 implies the first 
condition. 

For the other direction, assume that there is a sequence {r j] tending to oo 
such that 

We may assume, without loss of generality, that 4r^;yn/(r/ + yn
2) < 1/2 for 

all n and j . This implies that 

Hence 

2 1 o g | & ( ^ ) | = £ l o g ( l - 4 rf" 2 ) 

n I j i Jn 

and it follows that \b(irj)\ —> 1. Lemma 6 is proved. 
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To prove Theorem 5 it is convenient to note that 

\r y/ r + y \r y J 
\ mm 

Consequently, 

E^T^Z^ + '-Z^Z; ryn 
+ Jn r ££/n l ' £>ryn "^ r2 + yn

2 ' 

Let the quantity in the middle of this pair of inequalities be denoted by S(r). 
In view of Lemma 6, it will suffice, for the proof of Theorem 5, to show that, 
if (p is invertible in B\, condition (ii') is equivalent to the condition 
lim infr^œ5(r) > 0. One direction is completely trivial, for if (ii') holds then, 
obviously, S(r) ^ I/a for r > r0. For the other direction, assume that (ii') 
fails. Fix a > 1 and r0 > 0. Then there is an R > r0 such that v(a2R) — 
v{ar2R) = 0. Using condition (ii) of Theorem 4, we obtain 

S(R) ^ 4 É Haj+1R) - v(ajR)]aj+1R 
•K- j=—oo 

oo 

+ Rj: [v(aj+1R) - vWKa'R)-1 
3=2 

^ aC ^ a3+1 + aC^2 a 
j=—<x> j=2 

2C 

We may conclude that lim infr_^0O5(r) ^ 2C/(a — 1). Since a can be chosen 
arbitrarily large, it follows that lim infr^œ5(r) = 0. The proof of Theorem 5 
is complete. 

Condition (iir) obviously implies that lim infr^œ^(r)/log r > 0. The last 
condition does not imply (ii/), however, as one can show by simple examples. 

5. The Gelfand space of Bi. By the Gelfand space of a commutative 
Banach algebra, we shall mean here the set of (nontrivial) multiplicative 
linear functionals on the algebra, endowed with the Gelfand topology. We 
denote the Gelfand spaces of L°°, Hœ, and Bi by X, F, and Z, respectively. 
We shall not distinguish notationally between the functions in L°°, if°°, and B± 
and their Gelfand transforms. The spaces X and Y are discussed in detail in 
[9, Chapter 10], and we shall use without further reference the basic facts 
presented there. For X in dD we let X\ and Y\ denote the fibers of X and Y 
above X. 

Each functional in Z is the extension to B\ of a functional in F. Because 
functionals in F have unique representing measures on X, no functional in F 
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has more than one extension to a functional in Z. We may thus identify Z 
with the set of functionals in F that extend multiplicatively to Bi, or, equi-
valently, with the set of functionals in F whose representing measures are 
multiplicative on B±. 

If X is in dD and X 9e 1, then Bi\X\ = Hœ\X\, so every functional in Y\ 
extends multiplicatively to B\. It is clear that none of the evaluation func
tionals in Y at points of D extend multiplicatively to B\. Thus, to describe Z, 
it only remains to describe the functionals in Fx that extend multiplicatively 
toBx. 

The fiber X\ splits naturally into two parts, the set Xi+ of functionals that 
assign to a the value 1 and the set X-r of functionals that assign to a the value 
— 1. If / is any function in Ci, t h e n / assumes on Xi+ and X-r the constant 
values 

Km/(**') and lim/(**'), 
0-»O+ 0->O-

respectively. Thus B\\Xi+ is the uniform closure of Hœ\Xi+, and Bi\X*r is the 
uniform closure of H^X-r. It follows that any functional in Y\ whose repre
senting measure is supported either entirely by Xi+ or entirely by X-r extends 
multiplicatively to B\. On the other hand, if the support of a representing 
measure for a functional in Y\ meets both Xi + and Xi~, the measure is easily 
seen not to be multiplicative on C\. 

Let Fi+ (Fi~) be the set of functionals in Y\ whose representing measures 
are supported by Xi+ (Xf). The above remarks show that 

Z = ( U Fx) U Fx
+ U Y!~. 

Using the function exp [i log (1 — z)]t it is simple to prove from this that in 
order for a net in D to have all of its cluster points in Z, it is necessary and 
sufficient that the net be eventually in every region G€. Theorem 1 is an easy 
consequence of this observation. (Nevertheless, the more "down to earth" 
proof of Theorem 1 given in § 2, although more computational, seemed 
preferable to the author.) Corollary 5 can also be obtained via the preceding 
observation. One seems to need the corona theorem for that, however. 

Corollary 4 yields the following curious fact about Hœ: If h is in Hœ and h 
has radial limit 0 at the point 1, then there is a gin Hœ such that g\Xi+ = h\Xi+ 

and g\Xi~ = —h\Xi~. 

6. The algebras BE. For E a subset of dD, let CE denote the space of 
functions in U° that are continuous at each point of dD — E and have one
sided limits at each point of E. Let BE denote the closed subalgebra of L°° 
generated by CE and H°°. If £ is a singleton {X}, we shall write B\ in place of BE. 

The algebra BE can be described alternatively as the closed subalgebra of L°° 
generated by the algebras B\ with X in E. Because the question of Douglas 
has an affirmative answer for each J3X, it also has an affirmative answer for BE: 
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the algebra BE is the closed subalgebra of Lœ generated by Hœ and the inverses 
of the Blaschke products that are invertible in BE. 

The problem now arises of characterizing the inner functions that are 
invertible in BE. To answer this, it is sufficient to consider the case where E 
is finite. 

LEMMA 7. Let h be a function in Hœ which is invertible in BE. Then there is a 
finite subset F of E such that h is invertible in BF. 

In fact, because BE is generated by \J\<iEB\, there is a finite subset F of E 
and a function g in BF such that ||g — k~l\\œ < l/\\h\\œ. Then ||1 — gh\\œ < 1, 
so gh is invertible in BF. Therefore h is invertible in BF, as desired. 

Now fix a finite subset F of dD. For |X| = 1 and 0 < e < TT/2, let Ge(X) be 
the domain obtained by rotating Ge about the origin through an angle arg X. 
Thus, GC(X) plays the same role relative to B\ as G€ does relative to B±. Let 
G€(F) = H X ^ F G ^ X ) . We note that, if F is not a singleton, Ge(F) is not con
nected when e is small. The following theorem, analogous to Theorem 1, is an 
easy consequence of Lemma 1. 

THEOREM 6. / / / and g are in BFy then 

lim sup{|/(*)*(s) - (/*)(*)[ :z G Gt(F)} = 0. 

As an immediate consequence we obtain a necessary condition for inverti-
bility in BF. 

COROLLARY 6. Iff is an invertible function in BF, then there is an e such that f 
is bounded away from 0 on Ge(F). 

On the other hand, a trivial modification of the proof of Theorem 3 yields 
its analogue in the present situation. 

THEOREM 7. If f is a bounded analytic function in one of the regions Ge(F), 
then the boundary function of f on dD belongs to BF. 

This yields, in the same way as before, the sufficiency of the invertibility 
criterion. 

COROLLARY 7. Iff is a function in BF and f is bounded away from 0 in one of 
the regions Ge(F), then f is invertible in BF. 

Suppose now that <p is an inner function which is invertible in BF. From 
Corollary 6 we see that <p must be a Blaschke product whose zeros, if they are 
infinite in number, tend nontangentially to F. Assuming <p does have infinitely 
many zeros, we can partition the zero sequence of <p into finitely many subse
quences, each of which tends to a single point of F. In the corresponding 
factorization of <p, each factor is invertible in ^ \ for X the limit of its zero 
sequence. (The latter follows from Corollary 5.) 

Combining the preceding observations with Lemma 7, we obtain the follow
ing conclusion: If <p is an inner function which is invertible in BE for some 
subset E of dD, then there is a finite subset {Xi, . . . , Xp} of E and a factorization 
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<p = <pi . . . cpp of <p such that <Pj is a Blaschke product invertible in B\r This in 
conjunction with Theorem 4 describes precisely how the zeros of a Blaschke 
product must be distributed for the product to be invertible in BE. 

The above results can be used to establish some approximation theorems, 
of which the following is a sample. We let D+ denote the intersection of D 
with the upper half-plane and (dD)+ the intersection of dD with the upper 
half-plane. 

THEOREM 8. Let f be a bounded analytic function in D+. Then there is a 
sequence in H°° converging uniformly on (dD)+ to the boundary function of f. 

Let g be the function on dD that equals the boundary function of/ on (dD)+ 
and equals 0 on the rest of dD. By Theorem 7, g is in B {i,_i}. Hence we can 
uniformly approximate g by a finite sum of the form Uihi + . . . + uphp, where 
hi, . . . , hp are in Hœ and U\, . . . , up are in C{i,_i}. The functions Uj\(dD)+ 
extend continuously to the closure of (dD)+, so each u3- can be uniformly 
approximated on (dD)+ by polynomials. Replacing each Uj by a suitable 
approximating polynomial, we obtain a function in Hœ that uniformly approxi
mates g on (dD)+. 

The same reasoning gives a stronger result. 

THEOREM 9. Let 7i, . . . , Ip be disjoint closed subarcs of the unit circle. For 
k = 1, . . . , p let Jk be the Jordan curve formed from Ik and the line segment 
having the same end-points as Ik, and let fk be a bounded analytic function in 
the interior of Jk. Then there is a sequence in Hœ which, for each k, converges 
uniformly on Ik to the boundary function of fk. 

REFERENCES 

1. M. B. Abrahamse, Toeplitz operators in multiply connected regions, Doctoral Dissertation,. 
University of Michigan, 1971. 

2. C. Carathéodory, Theory of functions of a complex variable, Vol. II (Chelsea, New York,. 
1954). 

3 . A. M. Davie, T. W. Gamelin, and J. Garnett, Distance estimates and pointwise bounded 
density (to appear). 

4. J. L. Doob, The boundary values ofanalytic functions. II , Trans. Amer. Math. Soc. 35 (1933), 
418-451. 

5. R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Proc. Conference on 
Abstract Spaces and Approximation (Oberwohlfach, 1968), I.S.N.M., vol. 10 (Birk-
hâuser Verlag, Basel, 1969), pp. 53-66. 

6. Banach algebra techniques in operator theory (Academic Press, New York and 
London, 1972). 

7. P. L. Duren, Theory of Hp spaces (Academic Press, New York and London, 1970). 
8. H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 5-16. 
9. K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, N.J., 

1962). 

University of California, 
Berkeley, California 

https://doi.org/10.4153/CJM-1972-060-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-060-9

