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Let 3C be a finite dimensional toric variety over an algebraically closed field of characteristic zero, k. Let 3X

be the sheaf of differential operators on SC. We show that the ring of global sections, F(#",©,-) is a finitely
generated Noetherian Ic-algebra and that its generators can be explicitly found. We prove a similar result for
the sheaf of differential operators with coefficients in a line bundle.
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1. Introduction

Throughout this paper let fc be an algebraically closed field of characteristic zero. For
a commutative fc-algebra A we define D(A): = \JfL0D'(A) where D°(A) = EndAA and
D'(A) = {eeEndkA\[8,a]eDi-1{A) for all aeA}. Then D(A) is a subring of EndkA called
the ring of differential operators on A. For an irreducible affine variety SC, we define
@(SC): = D((!)(SC)) where <P(SC) is the ring of regular functions on SC. For a general
irreducible variety we define the sheaf of differential operators on 3C to be the unique
quasi-coherent Cj-module for which T(U,2)x) = D{T(lJ,0x)) for U an open affine subset
of SC. Now if {[/,} is an open affine cover of SC then ^x{Vi):
Thus the global sections of the sheaf of differential operators is

and is called the ring of differential operators on SC. In order to study the differential
operators on SC we will calculate the above intersection.

Differential operators on smooth affine varieties have been well studied and also for
certain classes of non-affine varieties such as projective spaces. We study a collection
which contains examples of smooth, singular, affine and non-affine varieties. The
collection in question consists of toric varieties, which are defined via cones and a lattice
in a finite dimensional Q-vector space. We shall use the geometry of the cones to prove
results about the differential operators. The main result we prove is:

Theorem. Let SC be a finite dimensional toric variety over an algebraically closed field
k. Then the ring of global sections of the sheaf of differential operators on SC is a finitely
generated Noetherian k-algebra. An explicit method to find this ring is given.

143

https://doi.org/10.1017/S0013091500018770 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018770


144 A. G. JONES

The paper is split into four main sections. In Section 2 we recall the definition of a
tone variety and state some of its properties. In Section 3 we establish some abstract
properties of certain rings which enable us to calculate the intersection. In Section 4 we
show that these properties hold for differential operators on a toric variety and finally in
Section 5 we give some examples.

2. Toric varieties

The aim of this paper is to investigate the global sections of the sheaf of differential
operators on a toric variety. First we need to define the notion of such a variety. We
adopt the approach of [1] for simplicity.

Let V be a finite dimensional vector space over Q. A subset {ve V\ X(V)^0} where
X: V-+ Q is a non-zero linear functional is called a halfspace of V. A cone, a in V is the
intersection of a finite number of halfspaces. A subset of a of the form {ve V\ X(v) = 0}
where X: V-* Q is a linear functional positive on a is called a face of a. The dimension
of the cone a is the dimension of the vector space a — a over Q.

Let a be a n-dimensional cone and M an ^-dimensional lattice both embedded in the
space MQ = M <g)zQ. Without loss of generality we can consider the lattice to be Z" and
our cone therefore embedded in Q". We can consider A = a n M as an additive
semigroup. Let /cA be the semigroup algebra associated to A. The varieties of the form
#" = SpecfcA are affine toric varieties.

Examples, (i) 3T = Speck[x2,xy,y2~\. Here k[x2,xy,y2~\ = k[x,xy,xyl~\. Then <r =

(ii) £ = Spec*[x,j>,xz,jra]. Here a=(l,0,0)Qa o + (0,l,0)Qao + (0,0,l)QgO+(l,l ,-1)
= Z3.

The following results give some idea of what sort of variety we are dealing with.

Proposition 2.1. Let SC be an affine toric variety. Then

(1) O(SC) is a finitely generated k-algebra;
(2) 0{3C) is normal;

(3) 6(3C) is Cohen-Macaulay.

Proof. See [1,3].

General toric varieties are obtained by gluing together affine ones.

Definition 2.2. A fan in V is a collection Z of cones satisfying the following conditions

(1) Every cone has a vertex;
(2) / / T is a face of a cone CTES then t eE;
(3) / / a,& 6 Z then a r\& is a face of both a and a'.
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RINGS OF DIFFERENTIAL OPERATORS 145

Let M, N be lattices dual to one another and let Z be a fan in NQ. Again we can
assume that M = Z" and V=Q". Define an affine toric variety for each

where aw ={XeNQ\ A(«r)^0} is the dual cone of a. These varieties can be glued together
to give a variety over k denoted by S"E. We consider toric varieties where £ consists of a
finite number of cones. Now if {al,...,ar} are cones such that dimQ(atnOj)<
min(dim0ah dim0CT,) for all i / / which cover \JaezO~ then {Ui,...,Ur}, where
Ut = Spec fc[ff,v n M], is an open affine cover of SEZ. We call this cover the standard open
affine cover of 3C.

As far as our interests are concerned we have that the dual of any cone in £ is of
dimension n. Thus Z(av nM) = M for all a el..

Examples, (i) SC = V>2.
(ii) #" = P(0Pi @ &P,(a)). This is a Hirzebruch surface. The construction of projective

space bundles can be found in [2]. The fans of both of these examples are as given in
the following diagram.

(i)

Another approach to toric varieties can be found in [6] where one embeds a torus
into an affine toric variety (hence the name) as a dense open subset and then patch
affines together to give the general case. In fact this idea of embedding a torus yields the
following theorem.

Theorem 23. Suppose an algebraic torus Ts(fc*)" acts algebraically on an irreducible
normal variety SC locally of finite type over k. If 9C contains an open orbit isomorphic to T,
then there exists a unique fan £ such that SC is equivariantly isomorphic to 2EZ.

Proof. See [6]. •
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3. Calculating intersections

In this section we abstract the properties we shall use to perform our calculations.
Let R = k[.Xil,...,x*1,dl,...,dn'] be the ring of differential operators on an n

dimensional torus. Consider the (fc*)"-action on R given by

(k*)"xR->R

( A t , . . . , An) • x f I—> A,x,-

Define

We call these the homogeneous elements of degree (iu...,in). Let W=GR(0,...,0). Then
W=fc[xjd!,...,xndn]. Let grR be the associated graded ring with respect to the
differential operator filtration. We note that grR is a commutative domain. Let X{ be
the image of x, in the associated graded ring, and likewise, A, the image of dt. Consider
the map

sym: R -> grR = k[X?\...,X* \ A,,..., AJ

where f is the maximum integer such that t=ji + Vjn and atl lnJ1 ; n#0. There is
an action induced on gr R given by

Define

to be the set of elements of gr R of degree (iu..., Q. Now,

(A1;..., AJ • sym(r)=sym{(Xl,..., AJ • r)

for all reK and so the (fe*)"-action is equivalent with respect to sym. Thus we have a
Z"-graded structure on grR compatible with the grading arising from the differential
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RINGS OF DIFFERENTIAL OPERATORS 147

operator filtration. In the rest of this paper we shall write xx: = x\1 ...x*" for X =
(Aj,...,An)eZ". We now think about subalgebras of R. If A is a /"-graded subalgebra of
R then we can filter A by the differential operator filtration and form gr A, the
associated graded ring. Note that gr A will be a Z"-graded subalgebra of grR. Then gr A
is a commutative domain since gr A^grR. All our calculations involving gr A take
place in grR. Thus for re A we denote by r, the image sym(r). To illustrate the above,
W is a graded subalgebra of R and gr W=k[Xl&l,...,Xn&n~] is a graded subalgebra
of grR.

We will be using the concept of gcd and Icm in both of the rings R and gr R. Consider
ru...,rpeR all of the same degree, say L Then r, = x*// for some fjSW for all
j=l,...,p. Then ( ^ . . . . r ^ ^ x V i , - - - , / , ) where (fi,...,fp) is the standard gcrf in W.
Similarly lcm(rl,...,rp): = xilcm(fl,...,fp). The same process is used for grR with the
gcd and /cm really being found in gr W. Thus these notions are well-defined.

Lemma 3.1. Let L = {qu...,qp) be a finite collection of points in Q" such that no two
elements of L are linearly dependent. Suppose that the Q-span of the collection L is Q".
Then there exists a collection of sets {/,} such that \jle=L, \le\ = n and qieSe: =

Proof. Choose d1,...,daeL such that they form a Q-basis of Q". Suppose d'eL\
{du...,dn} such that d'e£"=iQgo<*i. Then

By repetition of this and the fact that |JL|<oo we can construct a collection {/,}
satisfying the condition. •

Definition 3.2. With the notation of the previous lemma, the collection of cones {S,}
as constructed in the proof is called a partition of Q^QL. Let {grA)e be the fc-algebra
generated by {aegrA\&egaeSe).

To proceed with any calculations we need to consider a particular type of graded
subalgebra of R.

Definition 33. Let L s Z " such that |L|<oo and no two elements of L are linearly
dependent. A graded fc-subalgebra A of R is said to be L-faithful if

(1) W £ A ;
(2) There exist a,eA for leL such that dega,=/ for all leL, A = k[al\leL\[W~\ and

fc\
(3) GgrA(su...,sn) is a cyclic grW-module for all (s1,...,sn)eZg0L. Here

{ \ }
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148 A. G. JONES

(4) {grAY = k^al\leIt][grVir\.

We say that {a,|/eL} is the set of L-generators of A. A is said to be faithful if it is
L-faithful for some L.

We will work with a collection of graded subalgebras of R but the faithful condition
is not enough to proceed. We need some information about the algebras relative to each
other.

Definition 3.4. A collection AX,...,AT of L-faithful subalgebras of R where At has
L-generators {au\lsL} is said to be L-compatible if

(1) ®((gr AjY, {gr AkY) = 1 for all ;, k = 1,..., r and t, where

7^—v n F-^-

A a a ) A a a

(2) /cm(ali,,...,ar,1) = /cm(a1>,,...,art,)for all leL.

where {au\leL} are the L-generators of A{.

Lemma 3.5. Let A, B be L-compatible and faithful subalgebras of R with L-generators
{a,\leL}, and {b,\leL} respectively. Then, gr A ngrB = k[6t\leL] [gr W~\ where Bt =
lcm(ahb,).

Proof. Write d, = Xr^' ...Xr
n'"mai and E, = X'{-'... X'n' "mbl where mat,mb{egrW.

Consider (s1,...,sn)eZn. Then (s^.-^sJeSg for some t and so there exist qu...,qpeN0

such that at most n are non-zero and

GgrA(su...,Sn)=X[dVgrW

GgrB(sl,...,sn)=Y\BVgrW.

This uses condition 4 of the definition of L-faithful. Now

Ggr Ar.gr B(Sl, • • •, Sn) = GgrA(Si,. . . ,Sn) O GgrB(su ...,Sn)

= GigrA}e(si,...,sn)nG(grByf(s1,...,sn)

ml\gr= X\>...X?(11 <F w) n X\' ...X?(Y[ ml\
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RINGS OF DIFFERENTIAL OPERATORS 149

= X\'...X'a- n m%\(I! <
Isle \le/^

where mei=(mai,mbl), wm=majmei and wbl = mbjmei. The second equality follows by
point 4 of the definition of faithful. Since A and B are L-compatible,

Y\i,ie<grW^X\ullWt\grW=X\leIe(WaiWh^grW. This gives

G^n^«(s,,...,s.)= ft {XV-Xr^waiwblmeirgr

where the B, are as in the statement. Clearly B,egrAngrB for all leL and
^cgr/1 ngrB by assumption and so gr A ngrB=k[8t | / eL] [gr VF]. •

Remark. Without compatibility we can still use the techniques of the proof of the
theorem to find out the monomial which generates elements of any particular degree (as
a module over gr W).

Lemma 3.6. Let P^Q be an inclusion of N-filtered rings such that grP=grQ. Then

Proof. Clearly P0 = Qo-.SuPPose t h a t ^ . - i = 6 i - i f ° r ieN- Then let qeQt. Thus by
hypothesis, there is a pePt such that q + Q,_1 = p + P,-_1. Hence q—pePi_l and thus

j. Thus by induction, P = Q. •

Proposition 3.7. Let A, B be compatible L-faithful subalgebras of R with L-generators
{a,|/eL}, and {b,\leL} respectively. Then, grAr^grB=gr(Ar\B) and AnB =
fc[0,|/eL,xldu...,xndn~\ where 9, = lcm(a,,b,). Also Ar\B is an L-faithful Noetherian
subalgebra of R.

Proof. From the previous lemma we have grAnigrB = k[9,\leL~\[grW~\. Define
0/ = /cm(a,,fc,). Then 6,eAnB. Also by the compatibility,

lcm(ahb,) = lcm(dhB,)

for all leL and so #, is the image of 0, under the symbol map. Thus 9,egr(A n B). Since
grW^gr(AnB) then gr A ngr B ^gr(A n B). The opposite inclusion is obvious and so
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gr A n gr B=gr (A n B).

Using the inclusions

we have equality and since fc[9,|(eL;x13,,...,x,3,]£XnB, then Lemma 3.6 gives the
required equality since the associated graded rings have been taken with respect to the
differential operator filtration which is an N-filtration. The Noetherian condition follows
from the fact that by the lemma, gr(AnB) is finitely generated and [4, 1.6.9]. Now

(1) W^AnB;
(2) AnB = kldl\leL]W ™dgr(AnB) = k[Bl\leL][grWr\ withdeg0, = /;

(3) Gg,^nB)(S!,..., sn) is a cyclic gr W-module for all (slt..., sn) e Z";
(4) If(s1,...,5B)e/,then Ggr(AnB)(sl,...,sn)^k[.Bl\leI^[jgrW^.

Thus A n B is an L-faithful subalgebra of R. D

We now have the required result to intersect two faithful and compatible subalgebras
of R. We will use induction to prove the general result. To do this we need to show that
compatibility and faithfulness are preserved by taking intersections.

Lemma 3.8. Let A, B, C be L-compatible and faithful subalgebras of R. Then AnB,C
are L-compatible and faithful subalgebras of R.

Proof. The important point is that AnB and C are L-compatible. Let the
L-generators of A, B, C be {a,\leL}, {b,\leL}, {ci\leL} respectively. By the previous
proposition AnB and C are L-faithful subalgebras of R. Also the compatibility of A, B
and C gives ®((gr(A n B)Y, {grC)e) = \. Finally for any /,

km (Icm (a,, b,), c,) = km {km (ah 5,), c,)

= lcm(dhb~hc,)

= lcm(a,,bl,cl)

= km (km (a,, bt), c,)

which gives the compatibility. •

Theorem 3.9. Let Au...,Ar be a collection of L-compatible and faithful subalgebras of
R. Let {au\leL} be the L-generators of Av Then
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RINGS OF DIFFERENTIAL OPERATORS 151

where Oi = lcm(aiti,...,arl) and Bi = lcm(dlth...,drtl). Also At n---nAr is Noetherian.

Proof. We proceed by induction on r. The result is trivial for r = l . Let r ^ 2 and
suppose the result holds for r— 1. Then

where <p, = 1cm(at,/,...,a,_1() and p, = /cm(alt,,...,ar_li,). By the previous proposition
and induction we see that Aln---r\Ar_l and Ar are compatible L-faithful subalgebras
of R. Now by Proposition 3.7 and the induction hypothesis,

grA1n---ngrAr=gr(A1n---nAr-1)ngrAr=gr(A1n---nAr) =

where

Again gr(/4t n •••n/lr) is finitely generated and so Atn---nAr is Noetherian. This
completes the induction. •

We will be applying these ideas to calculating the global sections of sheaves on a toric
variety. We need to define the notions of faithfulness and compatibility for these.

Definition 3.10. Let SF be a quasi-coherent sheaf on a toric variety 9C such that
{^"(l/,)} is an L-faithful and compatible collection of subalgebras of R for some L where
{U,} is the standard open affine cover of 3C. Then fF is said to be an L-faithful and
compatible sheaf on 3C.

4. Applications to toric varieties

We now apply the results of the previous section to toric varieties. We must first
establish that our results are applicable to the rings in question. From now on until
stated otherwise we let 3C = Spec k{a n Z"] be an n-dimensional affine toric variety for
some rational n-dimensional cone a given as the irredundant intersection of a finite
collection of halfspaces Hu...,Hr with boundaries 3Hu...,dHr respectively. Recall that
Z(CTnZ") = Z\ Let hu...,hr be the linear polynomials defining dHu...,dHr respectively.
Define i/( = Q"\//j. Recall that all affine toric varieties can be written in this way.

In order to describe 9s(9C) and how it relates to the underlying cone a we use a
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correspondence between functional on Q" and the degree zero elements,
Qlxld1,...,xndn].

Let fcA be the associated semigroup algebra of A and D(fcA) the ring of differential
operators. We view D(fcA) as a subring of R as defined above. Now for /zeZ",
xldl*x" = fitx" where /i=(/ij,...,/in). Now W=Q[xidi,...,xBdn~\ <g)ofc. Thus elements of
W define polynomial functions from Z" £ Q" to fc by the rule x.d, * (n) = /i,- for /x e ZA.
Thus for / e W and fieZ",

f(x1dl,...,xndn)(x")=f(fi)x".

Hence we can now regard an element /e(Q")* as an element of Q\_x1d1,...,xndn'].
Let A = <rnZ\ Q(/l) = {/ieA|A+/i£A} nnd_nHi(^) = {neA\X + n^HinZn} for AeZ".

Observe that fi(A) = UQHi(A). If Q c p , let Q be the Zariski closure of Q in Qn and
| }|

We now give some results describing the differential operators on an affine toric
variety. These results are taken from [5] with a slight change in the setting in which
they work.

Lemma 4.1. Let A be a semigroup of Q" with QA = Q". For ge(Q")* and beQ set
Ab = {A e A | g(k) = b}. Suppose that

(1)
(2) dimQQA0 = n - l .

Then Ab = {keQn\g{X) = b}.

Proof. See [5, 2.5]. •

Lemma 4.2. For i=l,...,r, if fc1(Z") = aZ for some a>0 then there exists keA such
that h,{k) = a.

Proof. By assumption /i,(A') = a for some A'eZ". Now 3//,- and dHj are distinct
subspaces of codimension one in Q" and so dHt £ dHj and since dHt n A spans dHj
there exists U j e ^ n A with Uj$dHj. Therefore /J,(U,) = 0 and hj(uj)>0.

Let

"= Z ";eA-

Then /i,(u) = 0 and hj(u) > 0. Set X = A' + Nu for N » 0 to get the result. •

Lemma 43. With the notation as above,
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for i = l,...,r. Hence iiH((A) is a finite union of hyper planes parallel to dHt.

Proof. Since /i, is linear and the right hand side is Zariski closed then we have " c " .
Let fi lie in the right hand side. Suppose hi(ii) = behi{Z") with 0^/i,(//)< -Ji.-(A). Let
Ai={AGA|/iI(/i) = b}. By the previous lemma we have that Afc#0. Also since dif,- is
a face of a then dimQA0 = n— 1. Hence by Lemma 4.1, Rb = {keQ"\hl[X) = b}. Thus

(X). •

Proposition 4.4. Wi'rAj t/ie above notation,

(1) W^
(2)
(3) £2(A) is a finite union of hyperplanes each parallel to an (n — l)-dimensional face of a;
(4) l
(5) gr3)(S£) is finitely generated as a k-algebra.

Proof. (1) This is obvious.
(2) Clearly Ga{X)(k) g x ' W . If feW then xxf*x» = f(n)xx+». Now since differential

operators extend uniquely to localisations and

= {BeD{kT) \ 0* (9(2C) c 0{SEj\

then xxf e@{T)o /(/i) = 0 for /iefi{A). This gives the equality.

(3) We have fi(/L) = U,fiH((^)- By Lemma 4.3, flHi(A) is a finite union of hyperplanes
parallel to dH,. Then

and so Q(A) is a finite union of hyperplanes each parallel to some dH{.
(4) Clearly we have fi(A) £ Q(^) n A. Conversely, suppose F £ J2(A) is a hyperplane

parallel to some dHk. Then by the following lemma, we have X + F £ HI and so
l + ( F n A ) c f / J and hence FnAsf2(A). By 3, Q(A) is a union of such hyperplanes
and so

Q(/l) n A = ( u F) n A = u (F n A) s fJ(/l)

which gives the equality.
(5) This is proved in [5]. •

The next lemma shows exactly which hyperplanes lie in £1(1).
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Lemma 45. Let F be a hyperplane in Q" parallel to some dHt with F = F n A. Then
for A e Z", A + F £ H] if and only if F £ fi(A).

Proof. =*• is obvious.

For the converse, note that ht{F) = b for some beQ^0 and using Lemma 4.3 we have
/i,(A + F) < 0 which implies that A + F^H'. •

Now that we have described @(2E), we wish to check that it is of the correct form to
apply the ideas of the previous section.

Proposition 4.6. With SC as above, 2)(T) is L-faithful for some L. Also if L 2 L with
|L' |<oo such that no two elements of L are linearly dependent then 3){?C) is L'-faithful for
some set of L'-generators.

Proof. We only need to check 2 and 4 of the definition for a valid L as the rest is
done. Consider the partition of <Q>" given by

For each S, choose elements of Z" such that they generate SfnZn over Z^o. Consider
the set of all such elements {du...,d,} and the elements {au...,at} of 2)(9C) such that
Ga(<r)(di) = a(H .̂ Consider the set of all such elements arising from all of the Se and add
in any elements of non-zero degree needed to generate S)(3C) along with W, such that
their images in gr2l{SC) along with grW generate grS>(9f). This will be the set of L-
generators where L is the set of all their degrees. For the moment we will refer to this
set as simply the generators. We further divide the partition as in Lemma 3.1 to give a
new partition which we still call {S,} such that the degrees in S, of the set of generators
form a basis of Q" for each <f. It is clear that we have condition 2 with these generators.

Now each Ŝ  = ( f ) , G / f l i )n ( f | u / - f f , ) for some /. Consider any AeS,. Then fi(A)
consists of hyperplanes parallel to some d//f for i$I. This follows from the previous
lemma and the fact that A + A s H , for all iel. For each dHt where i$I, Q(A) contains
at least one hyperplane parallel to dH( unless

Consider A, nsSe for some <f. Then

Now Q(/i) is a union of hyperplanes, each parallel to some dHt for i $ I. By Lemma 4.3
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such a hyperplane, say F, is defined by an equation ht—a=0 where Oga< —hfai) and
ae/i,(Zn). Now since AeS,, then /i,-(A)^0 and so /i,(A + n) g Ji,(/i). Thus by another
application of Lemma 4.3 we have FsQ(X+7i). A similar argument shows that
Q(X)—H^Q(X+fi). Thus the above inclusion becomes equality.

Hence

and since the right hand side is a disjoint union of hyperplanes then fx+ll=f* /„ where

and ftip):=fx(p+it). Hence xx+"fx+ll = xxfxx"fll. Thus (gr#(*))' is generated by
generators with degree in Se. This gives condition 4. Also by the above we can reduce
our L until we have that every two elements are linearly independent. Thus 2)(3C) is
L-faithful.

Consider AeZ"\L. Suppose GaiX)(X) = uxW. Then by adding ax to the L-generators
and setting L'=Lu{A} does not affect any part of the above proof. Hence S){3C) is L'-
faithful. This completes the proof. •

We now consider a general toric variety. When we take an open affine cover of SC it is
of the form as described in Section 2. Let {I/,} be the cover. Then each Ut is an affine
toric variety. Thus without loss of generality, C2-([/i) = fe[<7,nZ'1] for an n-dimensional
cone <Tj in Q".

Proposition 4.7. Let 3C be a toric variety. Then there exists an L such that each
@x(Ui) is L-faithful and that if o{ is an intersection of half spaces Hu...,Hr, then either
S( S Hi or S, £ - Hi for all (.

Proof. By the above proposition, 3>X{U?) is L.-faithful for some Lt. Let L = uLt.
Then again by the above S>X(U^) is L-faithful as we can subdivide the partition until the
statement is true. •

Thus we have that @x is L-faithful for some carefully chosen L with the property of
the above proposition. We shall use this property to show compatibility.

Proposition 4A Let OF be a toric variety with open affine cover {f/J. Then <2ix is
compatible. Moreover:
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(1) with the partition as given in the above lemma, ®((gr@x(Uj)Y, (gr@x(Uk)Y) = l for
all j , k and £;

(2) if au...,ar are elements of distinct @X(U,) of the same degree such that
&*((/,) = a, W then

l c m ( a u ...,ar) = lcm(au . . . , a r ) .

Proof. We already have that 2>x is faithful and so proving 1 and 2 gives the
compatibility condition.

(1) We have seen that for an affine toric variety, Q(A) is a finite union of hyperplanes
each parallel to a face of the underlying cone. Hence for any partition,
&{gr^3:(UjY,grSisr(UkY) is a monomial in terms of the linear equations of the faces of
the underlying cones. In fact it is a monomial in terms of the equations of the
hyperplanes which form (n — l)-dimensional faces to both of the underlying cones. Thus
the only way statement 2 could fail is if some cones a} and ak have parallel faces. Say H
is the hyperplane with linear equation h passing through two such parallel faces. Then
either a} and ak lie on the same side of H or on opposite sides. We consider these two
possibilities.

(A) Same side. Consider A e Se. Let

= {n e aj n Zn | A + fi $ a, n Z"}

Qk(A) = {(i e ak n Zn | A + \i i ak n Z"}.

From above both closures consist of a finite union of hyperplanes parallel to faces of
the underlying cones. By Lemma 4.3 any hyperplane parallel to H belongs to the union
in both cases or neither. Thus h\(a~i/(a~i,'ak~i)) for all leL in the notation of Section 3.
Hence h\G(gr®x(UjY,gr®x(UkY). '

(B) Opposite sides. The partition is such that either h(S,)^0 or h(S,)^0 for all S,.
Then without loss of generality we can suppose that Gj and Se lie on the same side of
the hyperplane H. In this instance, h\a for any L-generator aegr^x(UjY- Hence

\ Y Y
Hence ®{gr 3>X(U})

e, gr3)x{UkY) = \ for all j , k and t.
(2) Let p = degaf. Then from Proposition 4.4 we have

i

for some degree one polynomials fiy Consider the following statement,

There exists AeQ and linear / such that /|a,-,/ + A|a, and f+k\at for some i # ; . (f)

The linearity of the fi} allows the following statement.

Icm (a7,..., ar) = km (a 1,..., ar) o (f) does not hold for any i, j .
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Suppose that (f) holds for some i,j. Since the {/,-,}} are completely determined by the
underlying cone of GX(U^, say a,, then (f) => at and Oj both have a face parallel to K(/).
There is only one such hyperplane through the origin parallel to V(f). Now by (f) and
Proposition 4.4 at and a} lie on the same side of this hyperplane. Let H be the halfspace,
defined by this hyperplane, containing <x, and a}. Let fla(A) = {fieatn Z"| A + n$H} for
all i. Then by (t) there exists qeQ!H(p) such that q + keQ!H(p) and q + A$Cl!H(p). Since
Qj,(p) = Qif(p) we have a contradiction. Q

We can now restate Proposition 3.9 in terms of differential operators on toric
varieties.

Theorem 4.9. Let 3C be a toric variety. Then

Thus 2){2C) is Noetherian and

= kUcm(aul,...,aril)\leL;x1d1,...,xndn]

where SC has open affine cover {[/,•}'= i and in the notation of Section 3, A, = @x(Ui) with
the aiyj defined appropriately.

A similar result holds for the global sections of the sheaf of differential operators on a
toric variety with coefficients in some invertible sheaf.

Corollary 4.10. Let 3C be a toric variety and Sx an invertible sheaf on SE. Then
Jtx: = Sx%()x3ix®f)xSx

v is the sheaf of differential operators on 9C with coefficients in
Sx. Then

Thus T(SC, Jtx) is Noetherian and

tx) = k[lcm(auh...,ar,,)\leL;xld1,...,xndn]

where 9C has open affine cover {[/,}'= t and in the notation of Section 3, /4i =
with the atj defined appropriately.

Proof. By [1, 6.1], locally we have
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for some aeZ". Since 3)x is faithful and compatible then so is J(x. Thus we have the
results. •

5. Examples

We now give some examples to illustrate the process in operation,

(i) Consider P" with {[/,}"= 0 as standard open affine cover. We know that

1,xr1
Xl,...,xr1xn,xin,xidl,...,xidn] for i

3>pn(U0) = k\xl,...,xa,d1,...,dtt].

Calculating the required Icm's gives ®(P") Noetherian and

) = klXin, dh x,dh Xidu Xidt | i= 1,..., «]•

Also

r(P>B, OPn(a) <g>P» 0Pn ®pn Gpn( - a)) = klxfa-a), dj; xt 5,, x,3lt Xidi I i = 1,..., n]

is Noetherian for all aeZ.
(ii) For the line bundles 2£m = V(0Pn{m)) = Spec 6^(0Pn(m)) we have an affine morphism

n:SCm -* P". Let {[/,.} be the standard open affine cover of P". The affine toric varieties
Spec(9Xm(Uj) glue to give 2Em. For the construction of vector bundles see [2]. Then

The calculation is similar to the above for projective space yielding

) = klxxn,d\xldi,xld1,xidi\i=l,...,n;AeZ%0 such that X'i .='

as a Noetherian ring.
Consider the invertible sheaves on Xm, OxJ.a) defined by

for aeZ. Then

H ^ , , QxJa) ® flr. ®*m ®o,_ OXJ ~ a)) = k[xx(n - a), d\ Xldt, x,dlt x,d, | i = 1,... ,n; X e Z"g0

such that J] k{ = m]

is Noetherian for all aeZ.

(iii) Consider the Hirzebruch surfaces n:Fa = P((9pi®0P,(a))-* P1 for a>0. Here we
have @)Fa on the open affine cover V$, V* as

https://doi.org/10.1017/S0013091500018770 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018770


RINGS OF DIFFERENTIAL OPERATORS 159

where n=ydy+ax8x. Hence we have @>(Ftt) as a Noetherian ring. We have the
L-generators of the pieces as in the following table

L

(0,1)
(0,-1)
( — \,j)
(1, -j)

®FSYS)

y
dy

faxd,

®F.(VZ)

y
dy

x~y
xdJ

yx8x

®FSYX)

yn

y-1

x-y

*F.(V;)

yn
y'1

fa
xy Jfa-An)

di = Icm

yn

8y

fax8i
yxdxfa.J(n)

where fa-j(n) = n(n+l)-••(n + a—j— 1). The partition in this case is the following
collection of cones

Hence
table. That is,

( l . - a )

generated by ydy,x8x and the entries in the last column of the above

y dx, yn, fyx2 dxn{n +1) • • • (n+a - j -1) , xdx, ydy \ j = 0,1, . . . , a].
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